1
|
Gomberg AF, Grossman AD. It's complicated: relationships between integrative and conjugative elements and their bacterial hosts. Curr Opin Microbiol 2024; 82:102556. [PMID: 39423563 PMCID: PMC11625472 DOI: 10.1016/j.mib.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICEclc, Tn916, and TnSmu1) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICEclc and Tn916, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE-host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.
Collapse
Affiliation(s)
- Alexa Fs Gomberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
2
|
Rashid FZM, Dame RT. 2024: A "nucleoid space" odyssey featuring H-NS. Bioessays 2024; 46:e2400098. [PMID: 39324242 DOI: 10.1002/bies.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
The three-dimensional architecture of the bacterial chromosome is intertwined with genome processes such as transcription and replication. Conspicuously so, that the structure of the chromosome permits accurate prediction of active genome processes. Although appreciation of this interplay has developed rapidly in the past two decades, our understanding of this subject is still in its infancy, with research primarily focusing on how the process of transcription regulates and is regulated by chromosome structure. Here, we summarize the latest developments in the field with a focus on the interplay between chromosome structure and transcription in Escherichia coli (E. coli) as mediated by H-NS-a model nucleoid structuring protein. We describe how the organization of chromosomes at the global and local scales is dependent on transcription, and how transcription is regulated by chromosome structure. Finally, we take note of studies that highlight our limited knowledge of structure-function relationships in the chromosome, and we point out research tracks that will improve our insight in the topic.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Figueroa-Bossi N, Fernández-Fernández R, Kerboriou P, Bouloc P, Casadesús J, Sánchez-Romero MA, Bossi L. Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin. Nat Commun 2024; 15:2787. [PMID: 38555352 PMCID: PMC10981669 DOI: 10.1038/s41467-024-47114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
In all living cells, genomic DNA is compacted through interactions with dedicated proteins and/or the formation of plectonemic coils. In bacteria, DNA compaction is achieved dynamically, coordinated with dense and constantly changing transcriptional activity. H-NS, a major bacterial nucleoid structuring protein, is of special interest due to its interplay with RNA polymerase. H-NS:DNA nucleoprotein filaments inhibit transcription initiation by RNA polymerase. However, the discovery that genes silenced by H-NS can be activated by transcription originating from neighboring regions has suggested that elongating RNA polymerases can disassemble H-NS:DNA filaments. In this study, we present evidence that transcription-induced counter-silencing does not require transcription to reach the silenced gene; rather, it exerts its effect at a distance. Counter-silencing is suppressed by introducing a DNA gyrase binding site within the intervening segment, suggesting that the long-range effect results from transcription-driven positive DNA supercoils diffusing toward the silenced gene. We propose a model wherein H-NS:DNA complexes form in vivo on negatively supercoiled DNA, with H-NS bridging the two arms of the plectoneme. Rotational diffusion of positive supercoils generated by neighboring transcription will cause the H-NS-bound negatively-supercoiled plectoneme to "unroll" disrupting the H-NS bridges and releasing H-NS.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Rocío Fernández-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Getz LJ, Brown JM, Sobot L, Chow A, Mahendrarajah J, Thomas N. Attenuation of a DNA cruciform by a conserved regulator directs T3SS1 mediated virulence in Vibrio parahaemolyticus. Nucleic Acids Res 2023; 51:6156-6171. [PMID: 37158250 PMCID: PMC10325908 DOI: 10.1093/nar/gkad370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Justin M Brown
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Lauren Sobot
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Alexandra Chow
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Jastina Mahendrarajah
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
- Department of Medicine, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| |
Collapse
|
5
|
Picker MA, Karney MMA, Gerson TM, Karabachev A, Duhart J, McKenna J, Wing H. Localized modulation of DNA supercoiling, triggered by the Shigella anti-silencer VirB, is sufficient to relieve H-NS-mediated silencing. Nucleic Acids Res 2023; 51:3679-3695. [PMID: 36794722 PMCID: PMC10164555 DOI: 10.1093/nar/gkad088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
In Bacteria, nucleoid structuring proteins govern nucleoid dynamics and regulate transcription. In Shigella spp., at ≤30°C, the histone-like nucleoid structuring protein (H-NS) transcriptionally silences many genes on the large virulence plasmid. Upon a switch to 37°C, VirB, a DNA binding protein and key transcriptional regulator of Shigella virulence, is produced. VirB functions to counter H-NS-mediated silencing in a process called transcriptional anti-silencing. Here, we show that VirB mediates a loss of negative DNA supercoils from our plasmid-borne, VirB-regulated PicsP-lacZ reporter in vivo. The changes are not caused by a VirB-dependent increase in transcription, nor do they require the presence of H-NS. Instead, the VirB-dependent change in DNA supercoiling requires the interaction of VirB with its DNA binding site, a critical first step in VirB-dependent gene regulation. Using two complementary approaches, we show that VirB:DNA interactions in vitro introduce positive supercoils in plasmid DNA. Subsequently, by exploiting transcription-coupled DNA supercoiling, we reveal that a localized loss of negative supercoils is sufficient to alleviate H-NS-mediated transcriptional silencing independently of VirB. Together, our findings provide novel insight into VirB, a central regulator of Shigella virulence and, more broadly, a molecular mechanism that offsets H-NS-dependent silencing of transcription in bacteria.
Collapse
Affiliation(s)
- Michael A Picker
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Monika M A Karney
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Taylor M Gerson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | - Juan C Duhart
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Joy A McKenna
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Helen J Wing
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
6
|
Picker MA, Karney MMA, Gerson TM, Karabachev AD, Duhart JC, McKenna JA, Wing HJ. Localized modulation of DNA supercoiling, triggered by the Shigella anti-silencer VirB, is sufficient to relieve H-NS-mediated silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523335. [PMID: 36711906 PMCID: PMC9882051 DOI: 10.1101/2023.01.09.523335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In Bacteria, nucleoid structuring proteins govern nucleoid dynamics and regulate transcription. In Shigella spp ., at ≤ 30 °C, the histone-like nucleoid structuring protein (H-NS) transcriptionally silences many genes on the large virulence plasmid. Upon a switch to 37 °C, VirB, a DNA binding protein and key transcriptional regulator of Shigella virulence, is produced. VirB functions to counter H-NS-mediated silencing in a process called transcriptional anti-silencing. Here, we show that VirB mediates a loss of negative DNA supercoils from our plasmid-borne, VirB-regulated PicsP-lacZ reporter, in vivo . The changes are not caused by a VirB-dependent increase in transcription, nor do they require the presence of H-NS. Instead, the VirB-dependent change in DNA supercoiling requires the interaction of VirB with its DNA binding site, a critical first step in VirB-dependent gene regulation. Using two complementary approaches, we show that VirB:DNA interactions in vitro introduce positive supercoils in plasmid DNA. Subsequently, by exploiting transcription-coupled DNA supercoiling, we reveal that a localized loss of negative supercoils is sufficient to alleviate H-NS-mediated transcriptional silencing, independently of VirB. Together, our findings provide novel insight into VirB, a central regulator of Shigella virulence and more broadly, a molecular mechanism that offsets H-NS-dependent silencing of transcription in bacteria.
Collapse
|
7
|
Winogradoff D, Li P, Joshi H, Quednau L, Maffeo C, Aksimentiev A. Chiral Systems Made from DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003113. [PMID: 33717850 PMCID: PMC7927625 DOI: 10.1002/advs.202003113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Indexed: 05/05/2023]
Abstract
The very chemical structure of DNA that enables biological heredity and evolution has non-trivial implications for the self-organization of DNA molecules into larger assemblies and provides limitless opportunities for building functional nanostructures. This progress report discusses the natural organization of DNA into chiral structures and recent advances in creating synthetic chiral systems using DNA as a building material. How nucleic acid chirality naturally comes into play in a diverse array of situations is considered first, at length scales ranging from an individual nucleotide to entire chromosomes. Thereafter, chiral liquid crystal phases formed by dense DNA mixtures are discussed, including the ongoing efforts to understand their origins. The report then summarizes recent efforts directed toward building chiral structures, and other structures of complex topology, using the principle of DNA self-assembly. Discussed last are existing and proposed functional man-made nanostructures designed to either probe or harness DNA's chirality, from plasmonics and spintronics to biosensing.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Pin‐Yi Li
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Himanshu Joshi
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Lauren Quednau
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Christopher Maffeo
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Aleksei Aksimentiev
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| |
Collapse
|
8
|
Evaluation of chromosomal insertion loci in the Pseudomonas putida KT2440 genome for predictable biosystems design. Metab Eng Commun 2020; 11:e00139. [PMID: 32775199 PMCID: PMC7398981 DOI: 10.1016/j.mec.2020.e00139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
The development of Pseudomonas strains for industrial production of fuels and chemicals will require the integration of heterologous genes and pathways into the chromosome. Finding the most appropriate integration site to maximize strain performance is an essential part of the strain design process. We characterized seven chromosomal loci in Pseudomonas putida KT2440 for integration of a fluorescent protein expression construct. Insertion in five of the loci did not affect growth rate, but fluorescence varied by up to 27-fold. Three sites displaying a diversity of phenotypes with the fluorescent reporter were also chosen for the integration of a gene encoding a muconate importer. Depending on the integration locus, expression of the importer varied by approximately 3-fold and produced significant phenotypic differences. This work demonstrates the impact of the integration location on host viability, gene expression, and overall strain performance. Pseudomonas putida KT2440 chromosomal loci were characterized as potential insertion targets for heterologous genes. Integration location had a significant effect on heterologous protein expression and host phenotype. The identification of an appropriate chromosomal insertion location is essential to optimize genetic engineering design.
Collapse
|
9
|
Shahul Hameed UF, Liao C, Radhakrishnan AK, Huser F, Aljedani SS, Zhao X, Momin AA, Melo FA, Guo X, Brooks C, Li Y, Cui X, Gao X, Ladbury JE, Jaremko Ł, Jaremko M, Li J, Arold ST. H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing. Nucleic Acids Res 2019; 47:2666-2680. [PMID: 30597093 PMCID: PMC6411929 DOI: 10.1093/nar/gky1299] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
As an environment-dependent pleiotropic gene regulator in Gram-negative bacteria, the H-NS protein is crucial for adaptation and toxicity control of human pathogens such as Salmonella, Vibrio cholerae or enterohaemorrhagic Escherichia coli. Changes in temperature affect the capacity of H-NS to form multimers that condense DNA and restrict gene expression. However, the molecular mechanism through which H-NS senses temperature and other physiochemical parameters remains unclear and controversial. Combining structural, biophysical and computational analyses, we show that human body temperature promotes unfolding of the central dimerization domain, breaking up H-NS multimers. This unfolding event enables an autoinhibitory compact H-NS conformation that blocks DNA binding. Our integrative approach provides the molecular basis for H-NS-mediated environment-sensing and may open new avenues for the control of pathogenic multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Anand K Radhakrishnan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Franceline Huser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Safia S Aljedani
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Afaque A Momin
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Fernando A Melo
- Department of Physics (IBILCE), São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Xianrong Guo
- King Abdullah University of Science and Technology (KAUST), Imaging and Characterization Core Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Claire Brooks
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Yu Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| |
Collapse
|
10
|
Biofuel production with a stress-resistant and growth phase-independent promoter: mechanism revealed by in vitro transcription assays. Appl Microbiol Biotechnol 2018; 102:2929-2940. [DOI: 10.1007/s00253-018-8809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
|
11
|
Seid CA, Smith JL, Grossman AD. Genetic and biochemical interactions between the bacterial replication initiator DnaA and the nucleoid-associated protein Rok in Bacillus subtilis. Mol Microbiol 2017; 103:798-817. [PMID: 27902860 DOI: 10.1111/mmi.13590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
We identified interactions between the conserved bacterial replication initiator and transcription factor DnaA and the nucleoid-associated protein Rok of Bacillus subtilis. DnaA binds directly to clusters of DnaA boxes at the origin of replication and elsewhere, including the promoters of several DnaA-regulated genes. Rok, an analog of H-NS from gamma-proteobacteria that affects chromosome architecture and of Lsr2 from Mycobacteria, binds A+T-rich sequences throughout the genome and represses expression of many genes. Using crosslinking and immunoprecipitation followed by deep sequencing (ChIP-seq), we found that DnaA was associated with eight previously identified regions containing clusters of DnaA boxes, plus 36 additional regions that were also bound by Rok. Association of DnaA with these additional regions appeared to be indirect as it was dependent on Rok and independent of the DNA-binding domain of DnaA. Gene expression and mutant analyses support a model in which DnaA and Rok cooperate to repress transcription of yxaJ, the yybNM operon and the sunA-bdbB operon. Our results indicate that DnaA modulates the activity of Rok. We postulate that this interaction might affect nucleoid architecture. Furthermore, DnaA might interact similarly with Rok analogues in other organisms.
Collapse
Affiliation(s)
- Charlotte A Seid
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
13
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
14
|
Horinouchi T, Suzuki S, Hirasawa T, Ono N, Yomo T, Shimizu H, Furusawa C. Phenotypic convergence in bacterial adaptive evolution to ethanol stress. BMC Evol Biol 2015; 15:180. [PMID: 26334309 PMCID: PMC4559166 DOI: 10.1186/s12862-015-0454-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial cells have a remarkable ability to adapt to environmental changes, a phenomenon known as adaptive evolution. During adaptive evolution, phenotype and genotype dynamically changes; however, the relationship between these changes and associated constraints is yet to be fully elucidated. RESULTS In this study, we analyzed phenotypic and genotypic changes in Escherichia coli cells during adaptive evolution to ethanol stress. Phenotypic changes were quantified by transcriptome and metabolome analyses and were similar among independently evolved ethanol tolerant populations, which indicate the existence of evolutionary constraints in the dynamics of adaptive evolution. Furthermore, the contribution of identified mutations in one of the tolerant strains was evaluated using site-directed mutagenesis. The result demonstrated that the introduction of all identified mutations cannot fully explain the observed tolerance in the tolerant strain. CONCLUSIONS The results demonstrated that the convergence of adaptive phenotypic changes and diverse genotypic changes, which suggested that the phenotype-genotype mapping is complex. The integration of transcriptome and genome data provides a quantitative understanding of evolutionary constraints.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Shingo Suzuki
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Takashi Hirasawa
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Naoaki Ono
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Hiroshi Shimizu
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Chikara Furusawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan. .,Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Higgins NP, Vologodskii AV. Topological Behavior of Plasmid DNA. Microbiol Spectr 2015; 3:10.1128/microbiolspec.PLAS-0036-2014. [PMID: 26104708 PMCID: PMC4480603 DOI: 10.1128/microbiolspec.plas-0036-2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 11/20/2022] Open
Abstract
The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells.
Collapse
Affiliation(s)
- N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | | |
Collapse
|
16
|
Lim CJ, Kenney LJ, Yan J. Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties. Nucleic Acids Res 2014; 42:8369-78. [PMID: 24990375 PMCID: PMC4117784 DOI: 10.1093/nar/gku566] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Escherichia coli H-NS protein is a major nucleoid-associated protein that is involved in chromosomal DNA packaging and gene regulatory functions. These biological processes are intimately related to the DNA supercoiling state and thus suggest a direct relationship between H-NS binding and DNA supercoiling. Here, we show that H-NS, which has two distinct DNA-binding modes, is able to differentially regulate DNA supercoiling. H-NS DNA-stiffening mode caused by nucleoprotein filament formation is able to suppress DNA plectoneme formation during DNA supercoiling. In contrast, when H-NS is in its DNA-bridging mode, it is able to promote DNA plectoneme formation during DNA supercoiling. In addition, the DNA-bridging mode is able to block twists diffusion thus trapping DNA in supercoiled domains. Overall, this work reveals the mechanical interplay between H-NS and DNA supercoiling which provides insights to H-NS organization of chromosomal DNA based on its two distinct DNA architectural properties.
Collapse
Affiliation(s)
- Ci Ji Lim
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore Centre for Bioimaging Sciences, National University of Singapore, Singapore Mechanobiology Institute, Singapore Department of Physics, National University of Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, Singapore Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, USA Department of Biological Sciences, National University of Singapore, Singapore
| | - Jie Yan
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore Centre for Bioimaging Sciences, National University of Singapore, Singapore Mechanobiology Institute, Singapore Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
17
|
Winkelman JT, Bree AC, Bate AR, Eichenberger P, Gourse RL, Kearns DB. RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis. Mol Microbiol 2013; 88:984-97. [PMID: 23646920 DOI: 10.1111/mmi.12235] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/29/2022]
Abstract
Biofilm formation in Bacillus subtilis requires expression of the eps and tapA-sipW-tasA operons to synthesize the extracellular matrix components, extracellular polysaccharide and TasA amyloid proteins, respectively. Expression of both operons is inhibited by the DNA-binding protein master regulator of biofilm formation SinR and activated by the protein RemA. Here we show that RemA is a DNA-binding protein that binds to multiple sites upstream of the promoters of both operons and is both necessary and sufficient for transcriptional activation in vivo and in vitro. We further show that SinR negatively regulates eps operon expression by occluding RemA binding and thus for the P(eps) promoter SinR functions as an anti-activator. Finally, transcriptional profiling indicated that RemA was primarily a regulator of the extracellular matrix genes, but it also activated genes involved in osmoprotection, leading to the identification of another direct target, the opuA operon.
Collapse
Affiliation(s)
- Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lim CJ, Lee SY, Kenney LJ, Yan J. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci Rep 2012; 2:509. [PMID: 22798986 PMCID: PMC3396134 DOI: 10.1038/srep00509] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 11/23/2022] Open
Abstract
H-NS is an abundant nucleoid-associated protein in bacteria that globally silences genes, including horizontally-acquired genes related to pathogenesis. Although it has been shown that H-NS has multiple modes of DNA-binding, which mode is employed in gene silencing is still unclear. Here, we report that in H-NS mutants that are unable to silence genes, are unable to form a rigid H-NS nucleoprotein filament. These results indicate that the H-NS nucleoprotein filament is crucial for its gene silencing function, and serves as the fundamental structural basis for gene silencing by H-NS and likely other H-NS-like bacterial proteins.
Collapse
Affiliation(s)
- Ci Ji Lim
- NUS Graduate school For Integrative Sciences and Engineering, Singapore 119077
| | | | | | | |
Collapse
|
19
|
Heddleston JM, Hitomi M, Venere M, Flavahan WA, Yang K, Kim Y, Minhas S, Rich JN, Hjelmeland AB. Glioma stem cell maintenance: the role of the microenvironment. Curr Pharm Des 2012; 17:2386-401. [PMID: 21827414 DOI: 10.2174/138161211797249260] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
Glioblastomas are highly lethal cancers for which conventional therapies provide only palliation. The cellular heterogeneity of glioblastomas is manifest in genetic and epigenetic variation with both stochastic and hierarchical models informing cellular phenotypes. At the apex of the hierarchy is a self-renewing, tumorigenic, cancer stem cell (CSC). The significance of CSCs is underscored by their resistance to cytotoxic therapies, invasive potential, and promotion of angiogenesis. Thus, targeting CSCs may offer therapeutic benefit and sensitize tumors to conventional treatment, demanding elucidation of CSC regulation. Attention has been paid to intrinsic cellular systems in CSCs, but recognition of extrinsic factors is evolving. Glioma stem cells (GSCs) are enriched in functional niches--prominently the perivascular space and hypoxic regions. These niches provide instructive cues to maintain GSCs and induce cellular plasticity towards a stem-like phenotype. GSC-maintaining niches may therefore offer novel therapeutic targets but also signal additional complexity with perhaps different pools of GSCs governed by different molecular mechanisms that must be targeted for tumor control.
Collapse
Affiliation(s)
- John M Heddleston
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kang SO, Wright JO, Tesorero RA, Lee H, Beall B, Cho KH. Thermoregulation of capsule production by Streptococcus pyogenes. PLoS One 2012; 7:e37367. [PMID: 22615992 PMCID: PMC3355187 DOI: 10.1371/journal.pone.0037367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface.
Collapse
Affiliation(s)
- Song Ok Kang
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Jordan O. Wright
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Rafael A. Tesorero
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Hyunwoo Lee
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois, United States of America
| | - Bernard Beall
- Streptococcus Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
Collapse
|
22
|
Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit? mBio 2011; 2:mBio.00034-11. [PMID: 21810966 PMCID: PMC3147163 DOI: 10.1128/mbio.00034-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In growing bacterial cells, the global reorganization of transcription is associated with alterations of RNA polymerase composition and the superhelical density of the DNA. However, the existence of any regulatory device coordinating these changes remains elusive. Here we show that in an exponentially growing Escherichia coli rpoZ mutant lacking the polymerase ω subunit, the impact of the Eσ(38) holoenzyme on transcription is enhanced in parallel with overall DNA relaxation. Conversely, overproduction of σ(70) in an rpoZ mutant increases both overall DNA supercoiling and the transcription of genes utilizing high negative superhelicity. We further show that transcription driven by the Eσ(38) and Eσ(70) holoenzymes from cognate promoters induces distinct superhelical densities of plasmid DNA in vivo. We thus demonstrate a tight coupling between polymerase holoenzyme composition and the supercoiling regimen of genomic transcription. Accordingly, we identify functional clusters of genes with distinct σ factor and supercoiling preferences arranging alternative transcription programs sustaining bacterial exponential growth. We propose that structural coupling between DNA topology and holoenzyme composition provides a basic regulatory device for coordinating genome-wide transcription during bacterial growth and adaptation. IMPORTANCE Understanding the mechanisms of coordinated gene expression is pivotal for developing knowledge-based approaches to manipulating bacterial physiology, which is a problem of central importance for applications of biotechnology and medicine. This study explores the relationships between variations in the composition of the transcription machinery and chromosomal DNA topology and suggests a tight interdependence of these two variables as the major coordinating principle of gene regulation. The proposed structural coupling between the transcription machinery and DNA topology has evolutionary implications and suggests a new methodology for studying concerted alterations of gene expression during normal and pathogenic growth both in bacteria and in higher organisms.
Collapse
|
23
|
Queiroz MH, Madrid C, Paytubi S, Balsalobre C, Juárez A. Integration host factor alleviates H-NS silencing of the Salmonella enterica serovar Typhimurium master regulator of SPI1, hilA. MICROBIOLOGY-SGM 2011; 157:2504-2514. [PMID: 21680637 DOI: 10.1099/mic.0.049197-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coordination of the expression of Salmonella enterica invasion genes on Salmonella pathogenicity island 1 (SPI1) depends on a complex circuit involving several regulators that converge on expression of the hilA gene, which encodes a transcriptional activator (HilA) that modulates expression of the SPI1 virulence genes. Two of the global regulators that influence hilA expression are the nucleoid-associated proteins Hha and H-NS. They interact and form a complex that modulates gene expression. A chromosomal transcriptional fusion was constructed to assess the effects of these modulators on hilA transcription under several environmental conditions as well as at different stages of growth. The results obtained showed that these proteins play a role in silencing hilA expression at both low temperature and low osmolarity, irrespective of the growth phase. H-NS accounts for the main repressor activity. At high temperature and osmolarity, H-NS-mediated silencing completely ceases when cells enter the stationary phase, and hilA expression is induced. Mutants lacking IHF did not induce hilA in cells entering the stationary phase, and this lack of induction was dependent on the presence of H-NS. Band-shift assays and in vitro transcription data showed that for hilA induction under certain growth conditions, IHF is required to alleviate H-NS-mediated silencing.
Collapse
Affiliation(s)
- Mário H Queiroz
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal, 645, 08028 Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal, 645, 08028 Barcelona, Spain
| | - Sònia Paytubi
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal, 645, 08028 Barcelona, Spain
| | - Carlos Balsalobre
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal, 645, 08028 Barcelona, Spain
| | - Antonio Juárez
- Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Baldiri Reixach, 15-21, 08028 Barcelona, Spain
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal, 645, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Arold ST, Leonard PG, Parkinson GN, Ladbury JE. H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci U S A 2010; 107:15728-32. [PMID: 20798056 PMCID: PMC2936596 DOI: 10.1073/pnas.1006966107] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The histone-like nucleoid structuring (H-NS) protein plays a fundamental role in DNA condensation and is a key regulator of enterobacterial gene expression in response to changes in osmolarity, pH, and temperature. The protein is capable of high-order self-association via interactions of its oligomerization domain. Using crystallography, we have solved the structure of this complete domain in an oligomerized state. The observed superhelical structure establishes a mechanism for the self-association of H-NS via both an N-terminal antiparallel coiled-coil and a second, hitherto unidentified, helix-turn-helix dimerization interface at the C-terminal end of the oligomerization domain. The helical scaffold suggests the formation of a H-NS:plectonemic DNA nucleoprotein complex that is capable of explaining published biophysical and functional data, and establishes a unifying structural basis for coordinating the DNA packaging and transcription repression functions of H-NS.
Collapse
Affiliation(s)
- Stefan T. Arold
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Paul G. Leonard
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom; and
| | - Gary N. Parkinson
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - John E. Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom; and
| |
Collapse
|
25
|
Kodama T, Yamazaki C, Park KS, Akeda Y, Iida T, Honda T. Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS. FEMS Microbiol Lett 2010; 311:10-7. [PMID: 20722736 DOI: 10.1111/j.1574-6968.2010.02066.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vibrio parahaemolyticus, one of the human pathogenic vibrios, causes gastroenteritis, wound infections and septicemia. Genomic sequencing of this organism revealed that it has two distinct type III secretion systems (T3SS1 and T3SS2). T3SS1 plays a significant role in lethal activity in a murine infection model. It was reported that expression of the T3SS1 gene is controlled by a positive regulator, ExsA, and a negative regulator, ExsD, which share a degree of sequence similarity with Pseudomonas aeruginosa ExsA and ExsD, respectively. However, it is unknown whether T3SS1 is regulated by a mechanism similar to that demonstrated for P. aeruginosa, because functional analysis of VP1701, which is homologous to ExsC, is lacking and there is no ExsE homologue in the T3SS1 region. Here, we demonstrate that vp1701 and vp1702 are functional orthologues of exsC and exsE, respectively, of P. aeruginosa. VP1701 was required for the production of T3SS1-related proteins. VP1702 was a negative regulator for T3SS1-related protein production and was secreted by T3SS1. We also found that H-NS represses T3SS1-related gene expression by suppressing exsA gene expression. These findings indicate that the transcription of V. parahaemolyticus T3SS1 genes is regulated by a dual regulatory system consisting of the ExsACDE regulatory cascade and H-NS.
Collapse
Affiliation(s)
- Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Fàbrega A, du Merle L, Le Bouguénec C, Jiménez de Anta MT, Vila J. Repression of invasion genes and decreased invasion in a high-level fluoroquinolone-resistant Salmonella typhimurium mutant. PLoS One 2009; 4:e8029. [PMID: 19946377 PMCID: PMC2777507 DOI: 10.1371/journal.pone.0008029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background Nalidixic acid resistance among Salmonella Typhimurium clinical isolates has steadily increased, whereas the level of ciprofloxacin resistance remains low. The main objective of this study was to characterize the fluoroquinolone resistance mechanisms acquired in a S. Typhimurium mutant selected with ciprofloxacin from a susceptible isolate and to investigate its invasion ability. Methodology/Principal Findings Three different amino acid substitutions were detected in the quinolone target proteins of the resistant mutant (MIC of ciprofloxacin, 64 µg/ml): D87G and G81C in GyrA, and a novel mutation, E470K, in ParE. A protein analysis revealed an increased expression of AcrAB/TolC and decreased expression of OmpC. Sequencing of the marRAB, soxRS, ramR and acrR operons did not show any mutation and neither did their expression levels in a microarray analysis. A decreased percentage of invasion ability was detected when compared with the susceptible clinical isolate in a gentamicin protection assay. The microarray results revealed a decreased expression of genes which play a role during the invasion process, such as hilA, invF and the flhDC operon. Of note was the impaired growth detected in the resistant strain. A strain with a reverted phenotype (mainly concerning the resistance phenotype) was obtained from the resistant mutant. Conclusions/Significance In conclusion, a possible link between fluoroquinolone resistance and decreased cell invasion ability may exist explaining the low prevalence of fluoroquinolone-resistant S. Typhimurium clinical isolates. The impaired growth may appear as a consequence of fluoroquinolone resistance acquisition and down-regulate the expression of the invasion genes.
Collapse
Affiliation(s)
- Anna Fàbrega
- Department of Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Laurence du Merle
- Institut Pasteur, Pathogénie Bactérienne des Muqueuses, Paris, France
| | | | - M. Teresa Jiménez de Anta
- Department of Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
27
|
Canales BK, Higgins L, Markowski T, Anderson L, Li QA, Monga M. Presence of five conditioning film proteins are highly associated with early stent encrustation. J Endourol 2009; 23:1437-42. [PMID: 19698053 DOI: 10.1089/end.2009.0389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Ureteral stents are susceptible to biofilm formation and crystal deposition, especially in stone formers. To identify proteins responsible for this accumulation, we compared conditioning film proteomes obtained from human ureteral stents with and without encrustation. MATERIALS AND METHODS Twenty-seven Bard Inlay hydrophilic ureteral stents were removed after ureteroscopy. Stent encrustation was quantified by visual analog score 0 (none) to 4 (heavy) and further categorized as nonencrusted (scores 0 and 1; n = 22) or encrusted (scores 2, 3, and 4; n = 5). Stent conditioning film was sampled and digested with trypsin, and peptide tandem mass spectrometry data were acquired using liquid chromatography. After protein identification, unconditional exact tests were used to compare categorical variables versus encrustation outcome. Stone analysis and follow-up metabolic urine profiles were examined to identify additional risk factors for stent encrustation. RESULTS More than 300 unique proteins with >95% confidence were identified. Proteins alpha-1 anti-trypsin, Ig kappa, IgH G1, and histone H2b and H3a were found to be highly associated with stent encrustation (p < 0.05), while Tamm-Horsfall protein and histone H2a were found to have a marginal association (p < 0.1). Patients with early stent encrustation were more likely to have mixed stone analysis (p = 0.03) and low urinary volumes (p < 0.01). CONCLUSION Immunoglobulins and Tamm-Horsfall protein are common urinary proteins that appear to nonselectively bind early onto ureteral stent surfaces. Histones, nuclear DNA-condensing proteins, likely contribute to stent encrustation because of their unique net positive charge and may represent a potential clinical target for encrustation prevention.
Collapse
Affiliation(s)
- Benjamin K Canales
- Department of Urology, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Dorman CJ, Kane KA. DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. FEMS Microbiol Rev 2009; 33:587-92. [DOI: 10.1111/j.1574-6976.2008.00155.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Uropathogenic Escherichia coli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect Immun 2008; 76:5760-7. [PMID: 18838520 DOI: 10.1128/iai.00618-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo accumulation of D-serine by Escherichia coli CFT073 leads to elevated expression of PAP fimbriae and hemolysin by an unknown mechanism. Loss of D-serine catabolism by CFT073 leads to a competitive advantage during murine urinary tract infection (UTI), but loss of both D- and L-serine catabolism results in attenuation. Serine is the first amino acid to be consumed in closed tryptone broth cultures and precedes the production of acetyl phosphate, a high-energy molecule involved in intracellular signaling, and the eventual secretion of acetate. We propose that the colonization defect associated with the loss of serine catabolism is due to perturbations of acetate metabolism. CFT073 grows more rapidly on acetogenic substrates than does E. coli K-12 isolate MG1655. As shown by transcription microarray results, D-serine is catabolized into acetate via the phosphotransacetylase (pta) and acetate kinase (ackA) genes while downregulating expression of acetyl coenzyme A synthase (acs). CFT073 acs, which is unable to reclaim secreted acetate, colonized mouse bladders and kidneys in the murine model of UTI indistinguishably from the wild type. Both pta and ackA are involved in the maintenance of intracellular acetyl phosphate. CFT073 pta and ackA mutants were screened to investigate the role of acetyl phosphate in UTI pathogenesis. Both single mutants are at a competitive disadvantage relative to the wild type in the kidneys but normally colonize the bladder. CFT073 ackA pta was attenuated in both the bladder and the kidneys. Thus, we demonstrate that CFT073 is adapted to acetate metabolism as a result of requiring a proper cycling of the acetyl phosphate pathway for colonization of the upper urinary tract.
Collapse
|
30
|
Paliy O, Gargac SM, Cheng Y, Uversky VN, Dunker AK. Protein disorder is positively correlated with gene expression in Escherichia coli. J Proteome Res 2008; 7:2234-45. [PMID: 18465893 PMCID: PMC2754758 DOI: 10.1021/pr800055r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We considered, on a global scale, the relationship between the predicted fraction of protein disorder and the RNA and protein expression in Escherichia coli. Fraction of protein disorder correlated positively with both measured RNA expression levels of E. coli genes in three different growth media and with predicted abundance levels of E. coli proteins. Though weak, the correlation was highly significant. Correlation of protein disorder with RNA expression did not depend on the growth rate of E. coli cultures and was not caused by a small subset of genes showing exceptionally high concordance in their disorder and expression levels. Global analysis was complemented by detailed consideration of several groups of proteins.
Collapse
Affiliation(s)
- Oleg Paliy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | |
Collapse
|
31
|
Lithgow JK, Haider F, Roberts IS, Green J. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 2007; 66:685-98. [PMID: 17892462 PMCID: PMC2156107 DOI: 10.1111/j.1365-2958.2007.05950.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Fouzia Haider
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Ian S Roberts
- 1.800 Stopford Building, Faculty of Life Sciences, University of ManchesterOxford Road, Manchester M13 9PT, UK.
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
- For correspondence. E-mail ; Tel. (+44) 114 222 4403; Fax (+44) 0114 222 2800
| |
Collapse
|
32
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
33
|
Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 2007; 14:441-8. [PMID: 17435766 DOI: 10.1038/nsmb1233] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 03/14/2007] [Indexed: 12/19/2022]
Abstract
H-NS is a protein of the bacterial nucleoid involved in DNA compaction and transcription regulation. In vivo, H-NS selectively silences specific genes of the bacterial chromosome. However, many studies have concluded that H-NS binds sequence-independently to DNA, leaving the molecular basis for its selectivity unexplained. We show that the negative regulatory element (NRE) of the supercoiling-sensitive Escherichia coliproU gene contains two identical high-affinity binding sites for H-NS. Cooperative binding of H-NS is abrogated by changes in DNA superhelical density and temperature. We further demonstrate that the high-affinity sites nucleate cooperative binding and establish a nucleoprotein structure required for silencing. Mutations in these sites result in loss of repression by H-NS. In this model, silencing at proU, and by inference at other genes directly regulated by H-NS, is tightly controlled by the cooperativity between bound H-NS molecules.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Biotechnologie et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | |
Collapse
|
34
|
Ye F, Brauer T, Niehus E, Drlica K, Josenhans C, Suerbaum S. Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling. Int J Med Microbiol 2007; 297:65-81. [PMID: 17276136 DOI: 10.1016/j.ijmm.2006.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 11/13/2006] [Accepted: 11/17/2006] [Indexed: 12/20/2022] Open
Abstract
In Helicobacter pylori, a host-adapted bacterium with a small genome and few dedicated transcriptional regulators, promoter structure, and gene organization suggested a role for DNA topology in the transcriptional regulation of flagellar genes. H. pylori DNA supercoiling, monitored by a reporter plasmid, was relaxed by novobiocin, an inhibitor of DNA gyrase. A decrease in negative supercoiling coincided with lowered transcription of the late flagellin gene flaA. Targeted mutagenesis that either increased or decreased promoter spacer length in the flaA sigma(28) promoter lowered flaA transcript levels, expression of FlaA protein, and flagella formation. It also changed the promoter response to decreased superhelicity. Supercoiling of reporter plasmid DNA in H. pylori varied with growth phase in liquid culture. H. pylori sigma(28) promoters of various spacer length, as well as other supercoiling-sensitive genes, were differentially transcribed during the growth phases, consistent with supercoiling being associated with growth phase regulation. Genome-wide transcript analysis of wild-type H. pylori under conditions of reduced supercoiling identified flagellar, housekeeping, and virulence genes, the expression of which correlated with supercoiling change and/or growth phase. These data indicate that global supercoiling changes may help coordinate temporal (growth phase-related) regulation of flagellar biosynthesis and other cellular functions in Helicobacter.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/metabolism
- Flagella/genetics
- Flagella/ultrastructure
- Gene Expression Profiling
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Helicobacter pylori/genetics
- Helicobacter pylori/physiology
- Helicobacter pylori/ultrastructure
- Hydro-Lyases/biosynthesis
- Hydro-Lyases/genetics
- Microscopy, Electron, Transmission
- Novobiocin/pharmacology
- Oligonucleotide Array Sequence Analysis
- Oxidoreductases/biosynthesis
- Oxidoreductases/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Deletion
- Topoisomerase II Inhibitors
- Transcription, Genetic
Collapse
Affiliation(s)
- Fang Ye
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hanover, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Yang J, Baldi DL, Tauschek M, Strugnell RA, Robins-Browne RM. Transcriptional regulation of the yghJ-pppA-yghG-gspCDEFGHIJKLM cluster, encoding the type II secretion pathway in enterotoxigenic Escherichia coli. J Bacteriol 2006; 189:142-50. [PMID: 17085567 PMCID: PMC1797218 DOI: 10.1128/jb.01115-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene cluster gspCDEFGHIJKLM codes for various structural components of the type II secretion pathway which is responsible for the secretion of heat-labile enterotoxin by enterotoxigenic Escherichia coli (ETEC). In this work, we used a variety of molecular approaches to elucidate the transcriptional organization of the ETEC type II secretion system and to unravel the mechanisms by which the expression of these genes is controlled. We showed that the gspCDEFGHIJKLM cluster and three other upstream genes, yghJ, pppA, and yghG, are cotranscribed and that a promoter located in the upstream region of yghJ plays a major role in the expression of this 14-gene transcriptional unit. Transcription of the yghJ promoter was repressed 168-fold upon a temperature downshift from 37 degrees C to 22 degrees C. This temperature-induced repression was mediated by the global regulatory proteins H-NS and StpA. Deletion mutagenesis showed that the promoter region encompassing positions -321 to +301 relative to the start site of transcription of yghJ was required for full repression. The yghJ promoter region is predicted to be highly curved and bound H-NS or StpA directly. The binding of H-NS or StpA blocked transcription initiation by inhibiting promoter open complex formation. Unraveling the mechanisms of regulation of type II secretion by ETEC enhances our understanding of the pathogenesis of ETEC and other pathogenic varieties of E. coli.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
36
|
Falconi M, Higgins NP, Spurio R, Pon CL, Gualerzi CO. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 2006; 10:273-282. [PMID: 28776853 DOI: 10.1111/j.1365-2958.1993.tb01953.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of a promoterless cat gene fused to a DNA fragment of approximately 400 bp, beginning at -313 of Escherichia coli hns, was significantly repressed in E. coli and Salmonella typhimurium strains with wild-type hns but not in mutants carrying hns alleles. CAT expression from fusions containing a shorter (110 bp) segment of hns was essentially unaffected in the same genetic backgrounds. The stage of growth was found to influence the extent of repression which was maximum (approximately 75%) in mid-log cultures and negligible in cells entering the stationary phase. The level of repression in early-log phase was lower than in mid-log phase cultures, probably because of the presence of high levels of Fis protein, which counteracts the H-NS inhibition by stimulating hns transcription. The effects observed in vivo were mirrored by similar results obtained in vitro upon addition of purified H-NS and Fis protein to transcriptional systems programmed with the same hns caf fusions. Electrophoretic gel shift assays, DNase I footprinting and cyclic permutation get analyses revealed that H-NS binds preferentially to the upstream region of its own gene recognizing two rather extended segments of DNA on both sides of a bend centred around -150. When these sites are filled by H-NS, an additional site between approximately -20 and -65, which partly overlaps the promoter, is also occupied. Binding of H-NS to this site is probably the ultimate cause of transcriptional auto-repression.
Collapse
Affiliation(s)
- Maurizio Falconi
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - N Patrick Higgins
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Roberto Spurio
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Cynthia L Pon
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Claudio O Gualerzi
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Begic S, Worobec EA. Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH. MICROBIOLOGY-SGM 2006; 152:485-491. [PMID: 16436436 DOI: 10.1099/mic.0.28428-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serratia marcescens is a Gram-negative enterobacterium that has become an important opportunistic pathogen, largely due to its high degree of natural antibiotic resistance. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, which is controlled in part by OmpC and OmpF porin proteins. OmpF expression is regulated by micF, an RNA transcript encoded upstream of the ompC gene, which hybridizes with the ompF transcript to inhibit its translation. Regulation of S. marcescens porin gene expression, as well as that of micF, was investigated using beta-galactosidase reporter gene fusions in response to 5, 8 and 10 % sucrose, 1, 5 and 8 mM salicylate, and different pH and temperature values. beta-Galactosidase activity assays revealed that a lower growth temperature (28 degrees C), a more basic pH (pH 8), and an absence of sucrose and salicylate induce the transcription of the ompF gene, whereas the induction of ompC is stimulated at a higher growth temperature (42 degrees C), acidic pH (pH 6), and maximum concentrations of sucrose (10 %) and salicylate (8 mM). In addition, when multiple conditions were tested, temperature had the predominant effect, followed by pH. In this study, it was found that the MicF regulatory mechanism does not play a role in the osmoregulation of the ompF and ompC genes, whereas MicF does repress OmpF expression in the presence of salicylate and high growth temperature, and under low pH conditions.
Collapse
Affiliation(s)
- Sanela Begic
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Elizabeth A Worobec
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
38
|
Colla E, Lee S, Sheen M, Woo S, Kwon H. TonEBP is inhibited by RNA helicase A via interaction involving the E'F loop. Biochem J 2006; 393:411-9. [PMID: 16173919 PMCID: PMC1383700 DOI: 10.1042/bj20051082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TonEBP [TonE (tonicity-responsive enhancer)-binding protein] is a transcriptional activator of the Rel family like NF-kappaB (nuclear factor kappaB) and NFAT (nuclear factor of activated T-cells). TonEBP plays a key role in the protection of cells in the kidney medulla from the deleterious effects of hyperosmolality. This is achieved by enhancing expression of HSP70 (heat-shock protein 70) and other genes whose products drive cellular accumulation of organic osmolytes. TonEBP is stimulated by ambient hypertonicity via multiple pathways that regulate nuclear translocation and transactivation. In the present paper, we report that TonEBP is associated in vivo with RHA (RNA helicase A). The N- and C-termini of RHA bound the E'F loop of the DNA-binding domain of TonEBP. The interaction was not affected by DNA binding or dimerization of TonEBP. Overexpression of RHA inhibited the activity of TonEBP; however, catalytic activity of RHA was dispensable for the inhibition. When the ambient tonicity was raised, the TonEBP-RHA interaction decreased, suggesting that dissociation of RHA is a pathway to stimulate TonEBP. We conclude that the E'F loop of TonEBP interacts with RHA like NFAT and NF-kappaB interact with AP1 (activator protein 1) and the high-mobility group protein HMG-I(Y) respectively. While RHA interacts with and stimulates other transcription factors such as CREB (cAMP-response-element-binding protein), NF-kappaB and mineralocorticoid receptor, it inhibits TonEBP.
Collapse
Affiliation(s)
- Emanuela Colla
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - Sang D. Lee
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - Mee R. Sheen
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - Seung K. Woo
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
| | - H. Moo Kwon
- Department of Medicine, University of Maryland, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Coombes BK, Wickham ME, Lowden MJ, Brown NF, Finlay BB. Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proc Natl Acad Sci U S A 2005; 102:17460-5. [PMID: 16301528 PMCID: PMC1297660 DOI: 10.1073/pnas.0505401102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica relies on a type III secretion system encoded in Salmonella pathogenicity island-2 (SPI-2) to survive and replicate within macrophages at systemic sites during typhoid. SPI-2 virulence is induced upon entry into macrophages, but the mechanisms of SPI-2 gene control in vivo remain unclear, particularly with regard to negative regulators that control the contextual activation of SPI-2. Here, we identified and characterized YdgT as a negative modulator of the SPI-2 pathogenicity island and established that this negative regulation is central to systemic pathogenesis because ydgT mutants overexpressing typhoid virulence genes were ultimately attenuated during infection. ydgT mutants displayed a biphasic virulence phenotype during in vivo competitive infections that consisted of an early "gain-of-virulence" dependent on SPI-2 activation, followed by attenuation later in infection indicating that proper contextual regulation of SPI-2 by YdgT is necessary for full virulence during systemic colonization. These data suggest that overexpression of virulence-associated type III secretion genes can have an adverse effect on bacterial pathogenesis in vivo.
Collapse
Affiliation(s)
- Brian K Coombes
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
40
|
Park KS, Arita M, Iida T, Honda T. vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio parahaemolyticus TH3996. Infect Immun 2005; 73:5754-61. [PMID: 16113292 PMCID: PMC1231141 DOI: 10.1128/iai.73.9.5754-5761.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A histone-like nucleoid structure (H-NS) is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Here, we cloned and characterized the gene for the H-NS-like protein VpaH in Vibrio parahaemolyticus. vpaH encodes a protein of 134 amino acids that shows approximately 55%, 54%, and 41% identities with VicH in Vibrio cholerae, H-NS in V. parahaemolyticus, and H-NS in Escherichia coli, respectively. The vpaH gene was found in only trh-positive V. parahaemolyticus strains and not in Kanagawa-positive or in trh-negative environmental strains. Moreover, the G+C content of the vpaH gene was 38.6%, which is lower than the average G+C content of the whole genome of this bacterium (45.4%). These data suggest that vpaH was transmitted to trh-possessing V. parahaemolyticus strains by lateral transfer. The vpaH gene was located about 2.6 kb downstream of the trh gene, in the convergent direction of the trh transcription. An in-frame deletion mutant of vpaH lacked motility on semisolid motility assay plates. Western blot analysis and electron microscopy observations revealed that the mutant was deficient in lateral flagella biogenesis, whereas there was no defect in the expression of polar flagella. Additionally, the vpaH mutant showed a decreased adherence to HeLa cells and a decrease in biofilm formation compared with the wild-type strain. Introduction of the vpaH gene in the vpaH-negative strain increased the expression of lateral flagella compared with the wild-type strain. In conclusion, our findings suggest that VpaH affects lateral flagellum biogenesis in trh-positive V. parahaemolyticus strain TH3996.
Collapse
Affiliation(s)
- Kwon-Sam Park
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
41
|
Perron K, Comte R, van Delden C. DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters. Mol Microbiol 2005; 56:1087-102. [PMID: 15853892 DOI: 10.1111/j.1365-2958.2005.04597.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Escherichia coli transcription of ribosomal RNA (rRNA) is regulated by the H-NS and Fis proteins, as well as by the small signal molecule ppGpp and the initiating nucleotides. During amino acid starvation, the concentration of ppGpp increases, and binding of this alarmone to RNA polymerase (RNAP) leads to inhibition of rRNA transcription, a regulatory event called stringent response. Here we show that in Pseudomonas aeruginosa DksA, a protein with pleiotropic effects, is a negative regulator of rRNA transcription both during exponential growth and stringent conditions. A dksA mutant overexpresses rRNA, without being affected in the production of ppGpp. Cell-fractionation and chromosome immunoprecipitation experiments demonstrate that DksA is associated with DNA, in particular with promoters of ribosomal genes in vivo. The binding to rRNA promoters specifically increases during stringent response, and correlates with the binding of RNAP to these regions. Moreover DksA can be copurified with RNAP subunits in vivo. DNA band shift experiments show that DksA, in synergy with ppGpp, increases the binding of RNAP to ribosomal promoters. Therefore DksA might be a new regulator of rRNA transcription in P. aeruginosa.
Collapse
Affiliation(s)
- Karl Perron
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
42
|
Hansen AM, Qiu Y, Yeh N, Blattner FR, Durfee T, Jin DJ. SspA is required for acid resistance in stationary phase by downregulation of H-NS inEscherichia coli. Mol Microbiol 2005; 56:719-34. [PMID: 15819627 DOI: 10.1111/j.1365-2958.2005.04567.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stringent starvation protein A (SspA) is a RNA polymerase-associated protein and is required for transcriptional activation of bacteriophage P1 late promoters. However, the role of SspA in gene expression in Escherichia coli is essentially unknown. In this work, we show that SspA is essential for cell survival during acid-induced stress. Apparently, SspA inhibits stationary-phase accumulation of H-NS, a global regulator which functions mostly as a repressor, thereby derepressing multiple stress defence systems including those for acid stress and nutrient starvation. Consequently, the gene expression pattern of the H-NS regulon is altered in the sspA mutant, leading to acid-sensitive and hypermotile phenotypes. Thus, our study indicates that SspA is a global regulator, which acts upstream of H-NS, and thereby plays an important role in the stress response of E. coli during stationary phase. In addition, our results indicate that the expression of the H-NS regulon is sensitive to small changes in the cellular level of H-NS, enabling the cell to response rapidly to environment cues. As SspA and H-NS are highly conserved among Gram-negative bacteria, of which many are pathogenic, the global role of SspA in the stress response and pathogenesis is discussed.
Collapse
Affiliation(s)
- Anne-Marie Hansen
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Bldg. 469, PO Box B, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- A A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| |
Collapse
|
44
|
Franzon JH, Santos DS. A role for histone-like protein H1 (H-NS) in the regulation of hemolysin expression by Serratia marcescens. Braz J Med Biol Res 2004; 37:1763-9. [PMID: 15558182 DOI: 10.1590/s0100-879x2004001200001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The histone-like protein H1 (H-NS) is an abundant structural component of the bacterial nucleoid and influences many cellular processes including recombination, transcription and transposition. Mutations in the hns gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes. We have studied the role of H-NS on the regulation of hemolysin gene expression in Serratia marcescens. The Escherichia coli hns mutant carrying S. marcescens hemolysin genes on a plasmid constructed by ligation of the 3.2-kb HindIII-SacI fragment of pR02 into pBluescriptIIKS, showed a high level of expression of this hemolytic factor. To determine the osmoregulation of wild-type and hns defective mutants the cells were grown to mid-logarithmic phase in LB medium with 0.06 or 0.3 M NaCl containing ampicillin and kanamycin, whereas to analyze the effect of pH on hemolysin expression, the cells were grown to late-logarithmic phase in LB medium buffered with 0.1 M Tris-HCl, pH 4.5 to 8.0. To assay growth phase-related hemolysin production, bacterial cells were grown in LB medium supplemented with ampicillin and kanamycin. The expression of S. marcescens hemolysin genes in wild-type E. coli and in an hns-defective derivative at different pH and during different growth phases indicated that, in the absence of H-NS, the expression of hemolysin did not vary with pH changes or growth phases. Furthermore, the data suggest that H-NS may play an important role in the regulation of hemolysin expression in S. marcescens and its effect may be due to changes in DNA topology influencing transcription and thus the amount of hemolysin expression. Implications for the mechanism by which H-NS influences gene expression are discussed.
Collapse
Affiliation(s)
- J H Franzon
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
45
|
Grieshaber NA, Fischer ER, Mead DJ, Dooley CA, Hackstadt T. Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc Natl Acad Sci U S A 2004; 101:7451-6. [PMID: 15123794 PMCID: PMC409939 DOI: 10.1073/pnas.0400754101] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Indexed: 11/18/2022] Open
Abstract
The chlamydial developmental cycle is characterized by an intracellular replicative form, termed the reticulate body, and an extracellular form called the elementary body. Elementary bodies are characterized by a condensed chromatin, which is maintained by a histone H1-like protein, Hc1. Differentiation of elementary bodies to reticulate bodies is accompanied by dispersal of the chromatin as chlamydiae become transcriptionally active, although the mechanisms of Hc1 release from DNA have remained unknown. Dissociation of the nucleoid requires chlamydial transcription and translation with negligible loss of Hc1. A genetic screen was therefore designed to identify chlamydial genes rescuing Escherichia coli from the lethal effects of Hc1 overexpression. CT804, a gene homologous to ispE, which encodes an intermediate enzyme of the non-mevalonate methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, was selected. E. coli coexpressing CT804 and Hc1 grew normally, although they expressed Hc1 to a level equivalent to that which condensed the chromatin of parent Hc1-expressing controls. Inhibition of the MEP pathway with fosmidomycin abolished IspE rescue of Hc1-expressing E. coli. Deproteinated extract from IspE-expressing bacteria caused dispersal of purified chlamydial nucleoids, suggesting that chlamydial histone-DNA interactions are disrupted by a small metabolite within the MEP pathway rather than by direct action of IspE. By partial reconstruction of the MEP pathway, we determined that 2-C-methylerythritol 2,4-cyclodiphosphate dissociated Hc1 from chlamydial chromatin. These results suggest that chlamydial histone-DNA interactions are disrupted upon germination by a small metabolite in the MEP pathway of isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Nicole A Grieshaber
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
46
|
Trun N, Johnston D. Folding chromosomes in bacteria: examining the role of Csp proteins and other small nucleic acid-binding proteins. Curr Top Dev Biol 2004; 55:173-201. [PMID: 12959196 DOI: 10.1016/s0070-2153(03)01004-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nancy Trun
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | |
Collapse
|
47
|
Gallant CV, Ponnampalam T, Spencer H, Hinton JCD, Martin NL. H-NS represses Salmonella enterica serovar Typhimurium dsbA expression during exponential growth. J Bacteriol 2004; 186:910-8. [PMID: 14761985 PMCID: PMC344225 DOI: 10.1128/jb.186.4.910-918.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Disulfide bond formation catalyzed by disulfide oxidoreductases occurs in the periplasm and plays a major role in the proper folding and integrity of many proteins. In this study, we were interested in elucidating factors that influence the regulation of dsbA, a gene coding for the primary disulfide oxidoreductase found in Salmonella enterica serovar Typhimurium. Strains with mutations created by transposon mutagenesis were screened for strains with altered expression of dsbA. A mutant (NLM2173) was found where maximal expression of a dsbA::lacZ transcriptional fusion occurred in the exponential growth phase in contrast to that observed in the wild type where maximal expression occurs in stationary phase. Sequence analysis of NLM2173 demonstrated that the transposon had inserted upstream of the gene encoding H-NS. Western immunoblot analysis using H-NS and StpA antibodies showed decreased amounts of H-NS protein in NLM2173, and this reduction in H-NS correlated with an increase of StpA protein. Northern blot analysis with a dsbA-specific probe showed an increase in dsbA transcript during exponential phase of growth. Direct binding of H-NS to the dsbA promoter region was verified using purified H-NS in electrophoretic mobility shift assays. Thus, a reduction in H-NS protein is correlated with a derepression of dsbA in NLM2173, suggesting that H-NS normally plays a role in suppressing the expression of dsbA during exponential phase growth.
Collapse
Affiliation(s)
- C V Gallant
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
48
|
Yoon JW, Minnich SA, Ahn JS, Park YH, Paszczynski A, Hovde CJ. Thermoregulation of the Escherichia coli O157:H7 pO157 ecf operon and lipid A myristoyl transferase activity involves intrinsically curved DNA. Mol Microbiol 2004; 51:419-35. [PMID: 14756783 DOI: 10.1046/j.1365-2958.2003.03827.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Escherichia coli O157:H7 survives in diverse environments from the ruminant gastrointestinal tract to cool nutrient-dilute water. We hypothesized that the gene regulation required for this flexibility includes intrinsically curved DNA that responds to environmental changes. Three intrinsically curved DNAs were cloned from the E. coli O157:H7 virulence plasmid (pO157), sequenced and designated Bent 1 through Bent 3 (BNT1, BNT2 and BNT3). Compared to BNT1 and BNT3, BNT2 had characteristics typical of intrinsically curved DNA including electrophoretic gel retardation at 4 degrees C, six partially phased adenine:thymine tracts and transcriptional activation. BNT2::lacZ operon fusions showed that BNT2 activated transcription at 24 degrees C compared to 37 degrees C and was partially repressed by a bacterial nucleoid-associated protein H-NS. BNT2 regulated the E. coli attaching and effacing gene-positive conserved fragments 1-4 (ecf1-4) that are conserved in Shiga toxin-producing E. coli associated with human disease. Experimental analyses showed that ecf1-4 formed an operon. ecf1, 2 and 3 encoded putative proteins associated with bacterial surface polysaccharide biosynthesis and invasion and ecf4 complemented a chromosomal deletion of lpxM encoding lipid A myristoyl transferase. Mass spectrometric analysis of lipid A from ecf and lpxM single and double mutants showed that myristoylation was altered at lower temperature.
Collapse
Affiliation(s)
- Jang W Yoon
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
49
|
Soutourina OA, Bertin PN. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 2003; 27:505-23. [PMID: 14550943 DOI: 10.1016/s0168-6445(03)00064-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flagellar motility helps bacteria to reach the most favourable environments and to successfully compete with other micro-organisms. These complex organelles also play an important role in adhesion to substrates, biofilm formation and virulence process. In addition, because their synthesis and functioning are very expensive for the cell (about 2% of biosynthetic energy expenditure in Escherichia coli) and may induce a strong immune response in the host organism, the expression of flagellar genes is highly regulated by environmental conditions. In the past few years, many data have been published about the regulation of motility in polarly and laterally flagellated bacteria. However, the mechanism of motility control by environmental factors and by some regulatory proteins remains largely unknown. In this respect, recent experimental data suggest that the master regulatory protein-encoding genes at the first level of the cascade are the main target for many environmental factors. This mechanism might require DNA topology alterations of their regulatory regions. Finally, despite some differences the polar and lateral flagellar cascades share many functional similarities, including a similar hierarchical organisation of flagellar systems. The remarkable parallelism in the functional organisation of flagellar systems suggests an evolutionary conservation of regulatory mechanisms in Gram-negative bacteria.
Collapse
Affiliation(s)
- Olga A Soutourina
- Laboratoire de Biochimie, UMR 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
50
|
Esposito D, Petrovic A, Harris R, Ono S, Eccleston JF, Mbabaali A, Haq I, Higgins CF, Hinton JCD, Driscoll PC, Ladbury JE. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J Mol Biol 2002; 324:841-50. [PMID: 12460581 DOI: 10.1016/s0022-2836(02)01141-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
H-NS plays a role in condensing DNA in the bacterial nucleoid. This 136 amino acid protein comprises two functional domains separated by a flexible linker. High order structures formed by the N-terminal oligomerization domain (residues 1-89) constitute the basis of a protein scaffold that binds DNA via the C-terminal domain. Deletion of residues 57-89 or 64-89 of the oligomerization domain precludes high order structure formation, yielding a discrete dimer. This dimerization event represents the initial event in the formation of high order structure. The dimers thus constitute the basic building block of the protein scaffold. The three-dimensional solution structure of one of these units (residues 1-57) has been determined. Activity of these structural units is demonstrated by a dominant negative effect on high order structure formation on addition to the full length protein. Truncated and site-directed mutant forms of the N-terminal domain of H-NS reveal how the dimeric unit self-associates in a head-to-tail manner and demonstrate the importance of secondary structure in this interaction to form high order structures. A model is presented for the structural basis for DNA packaging in bacterial cells.
Collapse
Affiliation(s)
- Diego Esposito
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|