1
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
2
|
O'Leary E, Jiang Y, Kristensen LS, Hansen TB, Kjems J. The therapeutic potential of circular RNAs. Nat Rev Genet 2025:10.1038/s41576-024-00806-x. [PMID: 39789148 DOI: 10.1038/s41576-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
Over the past decade, research into circular RNA (circRNA) has increased rapidly, and over the past few years, circRNA has emerged as a promising therapeutic platform. The regulatory functions of circRNAs, including their roles in templating protein translation and regulating protein and RNA functions, as well as their unique characteristics, such as increased stability and a favourable immunological profile compared with mRNAs, make them attractive candidates for RNA-based therapies. Here, we describe the properties of circRNAs, their therapeutic potential and technologies for their synthesis. We also discuss the prospects and challenges to be overcome to unlock the full potential of circRNAs as drugs.
Collapse
Affiliation(s)
| | - Yanyi Jiang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Margvelani G, Maquera K, Welden J, Rodgers D, Stamm S. Translation of circular RNAs. Nucleic Acids Res 2025; 53:gkae1167. [PMID: 39660652 PMCID: PMC11724312 DOI: 10.1093/nar/gkae1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more than the number of currently known mRNA isoforms. Most circRNAs are generated through backsplicing that depends on pre-mRNA structures, which are influenced by intronic elements, for example, primate-specific Alu elements, leading to species-specific circRNAs. CircRNAs are mostly cytosolic, stable and some were shown to influence cells by sequestering miRNAs and RNA-binding proteins. We review the increasing evidence that circRNAs are translated into proteins using several cap-independent translational mechanisms, that include internal ribosomal entry sites, N6-methyladenosine RNA modification, adenosine to inosine RNA editing and interaction with the eIF4A3 component of the exon junction complex. CircRNAs are translated under conditions that favor cap-independent translation, notably in cancer and generate proteins that are shorter than mRNA-encoded proteins, which can acquire new functions relevant in diseases.
Collapse
Affiliation(s)
- Giorgi Margvelani
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | | | - Justin Ralph Welden
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - David W Rodgers
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| |
Collapse
|
4
|
Xu Z, Li C, Liu X, Zhou Y, Zhang Y, Wang J, Wu H, Al-danakh A, Peng Y, Xiao Z. EIF4A3 Enhances the Proliferation and Cell Cycle Progression of Keloid Fibroblasts by Inducing the hsa_circ_0002198 Expression. Clin Cosmet Investig Dermatol 2024; 17:3045-3058. [PMID: 39759393 PMCID: PMC11698619 DOI: 10.2147/ccid.s475940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Background Recent evidence suggests a crucial biological role for Circular RNAs (circRNAs) in keloid diseases, yet the underlying mechanisms remain unclear. This study explored the biological effects and molecular mechanisms of hsa_circ_0002198 in keloid formation. Methods Real-time quantitative PCR (qRT-PCR) was employed to assess the expression of circ_0002198 in keloid tissues, normal skin tissues, keloid fibroblasts (KFs), and normal skin fibroblasts (NFs) from nine patients. To investigate the role of circ_0002198 in keloid pathogenesis, cell transfection technology was utilized to knock down circ_0002198. Various experiments including Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), Transwell, wound healing assay, flow cytometry, and others were conducted to explore the potential mechanisms associated with circ_0002198 expression. The RNA-binding protein Eukaryotic translation initiation factor 4A, isoform 3 (EIF4A3) binding to circ_0002198 was identified and confirmed through bioinformatics databases prediction and RNA immunoprecipitation (RIP) assay. Finally, the expression of EIF4A3 was assessed, and both silencing and overexpression were employed to verify its role in circ_0002198 regulation. Results The expression levels of circ_0002198 and EIF4A3 were notably elevated in keloid tissues and KFs compared to normal skin tissues and NFs. The reduction of circ_0002198 expression in KFs significantly impeded their proliferation, migration, and invasion. It also hindered the cell cycle process and the expression of associated proteins while concurrently promoting apoptosis in KFs. EIF4A3 was identified to bind to the flanks of circ_0002198, enhancing the occurrence of circ_0002198 and its role in regulating the progression of KFs. Conclusion Our study offers insights into how Circular RNA may contribute to the pathogenesis of keloid formation, highlighting Circ_0002198 as a potential novel biomarker for keloids in association with EIF4A3. Further research, involving larger study cohorts, is necessary to broaden our understanding of keloid mechanisms and potential treatment approaches.
Collapse
Affiliation(s)
- Zidi Xu
- Department of Medical Cosmetology, the Second Affiliated Hospital of Xi an Medical University, Xi ‘an,People’s Republic of China
| | - Chang Li
- Shenzhen Pingshan Central Hospital, Shenzhen, People’s Republic of China
| | - Xueyi Liu
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Yongting Zhou
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Yingbo Zhang
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Jie Wang
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Hao Wu
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Abdullah Al-danakh
- Department of Urology, the First affiliated hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yixuan Peng
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Zhibo Xiao
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| |
Collapse
|
5
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
6
|
Zharova AMD, Perenkov AD, Vedunova MV. Circular RNAs as multifaceted molecular regulators of vital activity and potential biomarkers of aging. Epigenomics 2024; 16:1465-1475. [PMID: 39589864 PMCID: PMC11622801 DOI: 10.1080/17501911.2024.2430165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Aging presents a significant challenge to health and social care systems due to the increasing proportion of the elderly population. The identification of reliable biomarkers to assess the progression of aging remains an unresolved question. Circular RNAs (circRNAs) are single-stranded covalently closed RNAs. They have been found to regulate various biological processes. CircRNAs are present in human biological fluids, are relatively stable, and accumulate with age, making them promising as biomarkers of aging. Current information on the expression of circRNAs in aging was analyzed using scientific databases. In this review, we have identified key stages in the study of circRNAs during aging and summarized the current understanding of their biogenesis. By focusing on the role of circRNAs in processes that contribute to aging - such as genomic stability, metabolism, cell death, and signaling pathways - we hypothesize that circRNAs may drive the aging process through their age-related accumulation and resultant deregulation. Examples of age-related differential expression of circRNAs in various species, including humans, are provided. This review highlights the importance of finding novel epigenetic biomarkers of aging, beyond the already identified molecules (circFOXO3, circRNA100783, circPVT1), and highlights circRNAs as a potential therapeutic target for the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Anna-Maria D. Zharova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Sun T, Huang J, Li Y, Wu S, Zhao L, Kang Y. Identification and characterization of circular RNAs in the skin of rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101277. [PMID: 38943979 DOI: 10.1016/j.cbd.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an economically significant freshwater-farmed fish worldwide, and the frequent outbreaks of infectious hematopoietic necrosis (IHN) in recent years have gravely compromised the healthy growth of the rainbow trout aquaculture industry. Fish skin is an essential immune barrier against the invasion of external pathogens, but it is poorly known about the role of circRNAs in rainbow trout skin. Therefore, we examined the expression profiles of circRNAs in rainbow trout skin following IHNV infection using RNA-seq. A total of 6607 circRNAs were identified, of which 34 circRNAs were differentially expressed (DE) and these DE circRNA source genes were related to immune-related pathways such as Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, Cytokine-cytokine receptor interaction, ubiquitin mediated proteolysis, and ferroptosis. We used qRT-PCR, Sanger sequencing, and subcellular localization to validate the chosen DE circRNAs, confirming their localization and expression patterns in rainbow trout skin. Further, 12 DE circRNAs were selected to construct the circRNA-miRNA-mRNA regulatory network, finding one miRNA could connect one or more circRNAs and mRNAs, and some miRNAs were reported to be associated with antiviral immunity. The functional prediction findings revealed that novel_circ_002779 and novel_circ_004118 may act as sponges for miR-205-z and miR-155-y to regulate the expression of target genes TLR8 and PIK3R1, respectively, and participated in the antiviral immune responses in rainbow trout. These results shed light on the immunological mechanism of circRNAs in rainbow trout skin and offer fundamental information for further research on the innate immune system and breeding rainbow trout resistant to disease.
Collapse
Affiliation(s)
- Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Romero B, Hoque P, Robinson KG, Lee SK, Sinha T, Panda A, Shrader MW, Parashar V, Akins RE, Batish M. The circular RNA circNFIX regulates MEF2C expression in muscle satellite cells in spastic cerebral palsy. J Biol Chem 2024; 300:107987. [PMID: 39542245 PMCID: PMC11697776 DOI: 10.1016/j.jbc.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Cerebral palsy (CP) is a pediatric onset disorder with poorly understood molecular causes and progression, making early diagnosis difficult. Circular RNAs are regulatory RNAs that show promise as biomarkers in various diseases but the role of circular RNAs in CP is beginning to be understood. This study identified the role of circNFIX in regulating the expression of myocyte-specific enhancer factor 2C (MEF2C), an important transcription factor for sarcomere development. We found that circNFIX is downregulated in the muscle cells of individuals with CP, and its localization shifts toward the nucleus as visualized using single-molecule resolution imaging. The decreased expression of circNFIX, MEF2C, and MEF2C targets persisted throughout myoblasts to myotubes differentiation, and in the skeletal muscle tissue. Bioinformatic and experimental validation confirmed that circNFIX acts as a sponge for miR373-3p, a microRNA that represses MEF2C translation. In normal muscle, circNFIX derepresses MEF2C translation by sponging miR373-3p, allowing for normal sarcomere generation. In CP, reduced circNFIX expression results in loss of miRNA sponging, leading to lower MEF2C expression and downregulation of sarcomere genes, potentially causing shortened and dysfunctional muscle fibers. Knockdown (KD) of circNFIX reduced myogenic capacity of myoblasts to fuse and form myotubes similar to CP cells evident from the lower fusion index in CP and KD as compared to control myotubes. This is the first study reporting reduction of MEF2C in CP and single-molecule resolution imaging of circNFIX's subcellular distribution and its role in CP, suggesting circNFIX as a potential therapeutic target and biomarker for early CP diagnosis.
Collapse
Affiliation(s)
- Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Parsa Hoque
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Karyn G Robinson
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Stephanie K Lee
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Tanvi Sinha
- Institute of Life Science (ILS), Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh Panda
- Institute of Life Science (ILS), Nalco Square, Bhubaneswar, Odisha, India
| | - Michael W Shrader
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Robert E Akins
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
9
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
10
|
Yin M, Wang J, Zhang X. Immune infiltration related circular RNA, circGLIS2, facilitated progression of endometriosis through miR-4731-5p/IL-1β axis. Int J Biol Macromol 2024; 281:136318. [PMID: 39370077 DOI: 10.1016/j.ijbiomac.2024.136318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Aberrantly expressed circRNAs affects various anti-tumour immune responses and immune cell regulation. However, the exact function of circGLIS2 on the pathogenesis of EMs remains unclear. In this study, we found that circGLIS2 was upregulated in EMs tissues and intimately related to clinicopathologic characteristics of EMs patients. Functionally, IHC and mouse model of EMs proved that circGLIS2 recruited immune cells infiltrated into ectopic endometrial microenvironment. RNA-seq, ELISA, RT-qPCR, and western blot results indicated that circGLIS2 influenced immune infiltration by regulating IL-1β. Besides, expression of circGLIS2 and IL-1β was also closely correlated in 284 human endometrium tissues. Mechanistically, RNA sequencing and intermolecular interaction prediction established "circGLIS2-miR-4731-5p-IL-1β" network. RNA pull down, RIP, dual luciferase reporter assay and expression regulation analysis confirmed the interaction among "circGLIS2-miR-4731-5p-IL-1β" axis. In summary, our findings demonstrated that circGLIS2 facilitated EMs progression by increasing immune cell infiltration via miR-4731-5p/IL-1β axis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
11
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
12
|
Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: From mechanisms to clinical implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102286. [PMID: 39188305 PMCID: PMC11345389 DOI: 10.1016/j.omtn.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Circular RNAs (circRNAs) represent a distinct class of covalently closed RNA species lacking conventional 5' to 3' polarity. Derived predominantly from pre-mRNA transcripts of protein-coding genes, circRNAs arise through back-splicing events of exon-exon or exon-intron junctions. They exhibit tissue- and cell-specific expression patterns and play crucial roles in regulating fundamental cellular processes such as cell cycle dynamics, proliferation, apoptosis, and differentiation. CircRNAs modulate gene expression through a plethora of mechanisms at epigenetic, transcriptional, and post-transcriptional levels, and some can even undergo translation into functional proteins. Recently, aberrant expression of circRNAs has emerged as a significant molecular aberration within the intricate regulatory networks governing hallmarks of cancer. The tumor-specific expression patterns and remarkable stability of circRNAs have profound implications for cancer diagnosis, prognosis, and therapy. This review comprehensively explores the multifaceted roles of circRNAs across cancer hallmarks in various tumor types, underscoring their growing significance in cancer diagnosis and therapeutic interventions. It also details strategies for leveraging circRNA-based therapies and discusses the challenges in using circRNAs for cancer management, emphasizing the need for further research to overcome these obstacles.
Collapse
Affiliation(s)
- Indira Kundu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivani Varshney
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
13
|
Hedayati N, Mafi A, Farahani A, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A, Farahani N. The importance of the circRNA/Wnt axis in gliomas: Biological functions and clinical opportunities. Pathol Res Pract 2024; 261:155510. [PMID: 39116573 DOI: 10.1016/j.prp.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/β-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
15
|
Liu L, Wei Y, Tan Z, Zhang Q, Sun J, Zhao Q. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network. Interdiscip Sci 2024; 16:635-648. [PMID: 38381315 DOI: 10.1007/s12539-024-00616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs generated by reverse splicing. They are involved in biological process and human diseases by interacting with specific RNA-binding proteins (RBPs). Due to traditional biological experiments being costly, computational methods have been proposed to predict the circRNA-RBP interaction. However, these methods have problems of single feature extraction. Therefore, we propose a novel model called circ-FHN, which utilizes only circRNA sequences to predict circRNA-RBP interactions. The circ-FHN approach involves feature coding and a hybrid deep learning model. Feature coding takes into account the physicochemical properties of circRNA sequences and employs four coding methods to extract sequence features. The hybrid deep structure comprises a convolutional neural network (CNN) and a bidirectional gated recurrent unit (BiGRU). The CNN learns high-level abstract features, while the BiGRU captures long-term dependencies in the sequence. To assess the effectiveness of circ-FHN, we compared it to other computational methods on 16 datasets and conducted ablation experiments. Additionally, we conducted motif analysis. The results demonstrate that circ-FHN exhibits exceptional performance and surpasses other methods. circ-FHN is freely available at https://github.com/zhaoqi106/circ-FHN .
Collapse
Affiliation(s)
- Liwei Liu
- College of Science, Dalian Jiaotong University, Dalian, 116028, China
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, 571158, China
| | - Yixin Wei
- College of Science, Dalian Jiaotong University, Dalian, 116028, China
| | - Zhebin Tan
- College of Software, Dalian Jiaotong University, Dalian, 116028, China
| | - Qi Zhang
- College of Science, Dalian Jiaotong University, Dalian, 116028, China
| | - Jianqiang Sun
- School of Information Science and Engineering, Linyi University, Linyi, 276000, China.
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| |
Collapse
|
16
|
Farhadi E, Khomeijani-Farahani M, Nikbakhsh R, Azizan A, Soltani S, Barekati H, Mahmoudi M. The potential role of circular RNAs in regulating p53 in different types of cancers. Pathol Res Pract 2024; 261:155488. [PMID: 39088876 DOI: 10.1016/j.prp.2024.155488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
P53 tumor suppressor is a major regulator of various cellular processes and functions. It has been reported that mutation or inactivation of p53 plays a crucial role in tumorigenesis in different types of cancers. Circular RNAs (circRNAs) are single-stranded non-coding RNAs that have significant post-transcriptional effects on the regulation of gene expression in various ways. These molecules can alter the expression and function of multiple genes and proteins. In the present study, we aimed to review circRNAs that regulate the expression, function, and stability of p53 and the possible interactions between these molecules and p53. Considering the importance of p53 in cancer and the network between p53 and circRNAs, future clinical trials targeting these circRNAs as therapeutic agents deserve worthy of attention.
Collapse
Affiliation(s)
- Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Khomeijani-Farahani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rambod Nikbakhsh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amin Azizan
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Barekati
- School of Nursing & Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hou G, Alissa M, Alsuwat MA, Ali Alarjany HM, Alzahrani KJ, Althobaiti FM, Mujalli HM, Alotaiby MM, Al-Doaiss AA, Anthony S. The art of healing hearts: Mastering advanced RNA therapeutic techniques to shape the evolution of cardiovascular medicine in biomedical science. Curr Probl Cardiol 2024; 49:102627. [PMID: 38723793 DOI: 10.1016/j.cpcardiol.2024.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are associated with increasing financial health burden that requires research into novel therapeutic approaches. Since the early 2000s, the availability of next-generation sequencing techniques such as microRNAs, circular RNAs, and long non-coding RNAs have been proven as potential therapeutic targets for treating various CVDs. Therapeutics based on RNAs have become a viable option for addressing the intricate molecular pathways that underlie the pathophysiology of CVDs. We provide an in-depth analysis of the state of RNA therapies in the context of CVDs, emphasizing various approaches that target the various stages of the basic dogma of molecular biology to effect temporary or long-term changes. In this review, we summarize recent methodologies used to screen for novel coding and non-coding RNA candidates with diagnostic and treatment possibilities in cardiovascular diseases. These methods include single-cell sequencing techniques, functional RNA screening, and next-generation sequencing.Lastly, we highlighted the potential of using oligonucleotide-based chemical products such as modified RNA and RNA mimics/inhibitors for the treatment of CVDs. Moreover, there will be an increasing number of potential RNA diagnostic and therapeutic for CVDs that will progress to expand for years to come.
Collapse
Affiliation(s)
- Guoliang Hou
- Department of Cardiology, Tengzhou Central People's Hospital, Shandong 277599, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | | | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Fahad M Althobaiti
- Department of Nursing Leadership and Education, Nursing College, Taif University, Taif 21974, Saudi Arabia
| | | | - Monearah M Alotaiby
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, China.
| |
Collapse
|
19
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Papaioannou D, Urs AP, Buisson R, Petri A, Kulkarni R, Nicolet D, Woodward L, Goda C, Mrózek K, Behbehani GK, Kauppinen S, Eisfeld AK, Aifantis I, Singh G, Dorrance AM, Garzon R. circPCMTD1 : A protein-coding circular RNA that regulates DNA damage response in BCR/ABL -positive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601046. [PMID: 39005285 PMCID: PMC11244931 DOI: 10.1101/2024.06.27.601046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Circular RNAs are a novel class of RNA transcripts, which regulate important cellular functions in health and disease. Herein, we report on the functional relevance of the circPCMTD1 transcript in acute leukemias. In screening experiments, we found that circPCMTD1 depletion strongly inhibited the proliferative capacity of leukemic cells with BCR-ABL translocations. Mass cytometry experiments identified the aberrant activation of the DNA damage response as an early downstream event of circPCMTD1 depletion. In in vivo experiments, circPCMTD1 targeting prolonged the survival of mice engrafted with leukemic blasts harboring the Philadelphia chromosome. Mechanistically, we found that circPCMTD1 was enriched in the cytoplasm and associated with the ribosomes of the leukemic cells. We detected a cryptic open reading frame within the circPCMTD1 sequence and found that circPCMTD1 could generate a peptide product. The circPCMTD 1-derived peptide interacted with proteins of the BTR complex and enhanced BTR complex formation, thereby increasing tolerance to genotoxic stress.
Collapse
|
21
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
22
|
Shi Y, Shen F, Chen X, Sun M, Zhang P. Current understanding of circular RNAs in preeclampsia. Hypertens Res 2024; 47:1607-1619. [PMID: 38605141 DOI: 10.1038/s41440-024-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia (PE) is a multiple organ and system disease that seriously threatens the safety of the mother and infant during pregnancy, and has a profound impact on the morbidity and mortality of the mother and new babies. Presently, there are no remedies for cure of PE as to the mechanisms of PE are still unclear, and the only way to eliminate the symptoms is to deliver the placenta. Thus, new therapeutic targets for PE are urgently needed. Approximately 95% of human transcripts are thought to be non-coding RNAs, and the roles of them are to be increasingly recognized of great importance in various biological processes. Circular RNAs (circRNAs) are a class of non-coding RNAs, with no 5' caps and 3' polyadenylated tails, commonly produced by back-splicing of exons. The structure of circRNAs makes them more stable than their counterparts. Increasing evidence shows that circRNAs are involved in the pathogenesis of PE, but the biogenesis, functions, and mechanisms of circRNAs in PE are poorly understood. In the present review, we mainly summarize the biogenesis, functions, and possible mechanisms of circRNAs in the development and progression of PE, as well as opportunities and challenges in the treatment and prevention of PE.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xionghui Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Trauma Medicine, Soochow University, Suzhou, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China.
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
24
|
Digby B, Finn S, Ó Broin P. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 2024; 25:527. [PMID: 38807085 PMCID: PMC11134749 DOI: 10.1186/s12864-024-10420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.
Collapse
Affiliation(s)
- Barry Digby
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
| | - Stephen Finn
- Discipline of Histopathology, School of Medicine, Trinity College Dublin and Cancer Molecular Diagnostic Laboratory, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
25
|
Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, Zimprich A, Becker L, Gimeno ML, Lukin J, Merino FL, Pardi MB, Pedroncini O, Di Mauro GC, Durner VG, Fuchs H, de Angelis MH, Patop IL, Turck CW, Deussing JM, Vogt Weisenhorn DM, Jahn O, Kadener S, Hölter SM, Brose N, Giesert F, Wurst W, Marin-Burgin A, Refojo D. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. SCIENCE ADVANCES 2024; 10:eadj8769. [PMID: 38787942 PMCID: PMC11122670 DOI: 10.1126/sciadv.adj8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Collapse
Affiliation(s)
- Sebastian A. Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S. Pino
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Camila Pannunzio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mora B. Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Maria L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jeronimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia L. Merino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Belen Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Giuliana C. Di Mauro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela M. Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
26
|
Ares M, Igel H, Katzman S, Donohue JP. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev 2024; 38:322-335. [PMID: 38724209 PMCID: PMC11146597 DOI: 10.1101/gad.351764.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - John P Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
27
|
Liao C, He ZW, Yu R, Yu YJ, Liu XR, Kong DL, Wang Y. CircRNA: a rising therapeutic strategy for lung injury induced by pulmonary toxicants. Arch Toxicol 2024; 98:1297-1310. [PMID: 38498160 DOI: 10.1007/s00204-024-03706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Lung injury has been a serious medical problem that requires new therapeutic approaches and biomarkers. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) that exist widely in eukaryotes. CircRNAs are single-stranded RNAs that form covalently closed loops. CircRNAs are significant gene regulators that have a role in the development, progression, and therapy of lung injury by controlling transcription, translating into protein, and sponging microRNAs (miRNAs) and proteins. Although the study of circRNAs in lung injury caused by pulmonary toxicants is just beginning, several studies have revealed their expression patterns. The function that circRNAs perform in relation to pulmonary toxicants (severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2), drug abuse, PM2.5, and cigarette smoke) is the main topic of this review. A variety of circRNAs can serve as potential biomarkers of lung injury. In this review, the biogenesis, properties, and biological functions of circRNAs were concluded, and the relationship between circRNAs and pulmonary toxicants was discussed. It is expected that the new ideas and potential treatment targets that circRNAs provide would be beneficial to research into the molecular mechanisms behind lung injury.
Collapse
Affiliation(s)
- Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110000, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
28
|
Sun X, Zhao X, Xu Y, Yan Y, Han L, Wei M, He M. Potential therapeutic strategy for cancer: Multi-dimensional cross-talk between circRNAs and parental genes. Cancer Lett 2024; 588:216794. [PMID: 38453043 DOI: 10.1016/j.canlet.2024.216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
In many ways, circular RNAs (circRNAs) have been demonstrated to be crucial in the onset and advancement of cancer throughout the last ten years and have become a new focus of intense research in the field of RNAs. Accumulating studies have demonstrated that circRNAs can regulate parental gene expression via a variety of biological pathways. Furthermore, research into the complex interactions between circRNAs and their parental genes will shed light on their biological roles and open up new avenues for circRNAs' potential clinical translational uses. However, to date, multi-dimensional cross-talk between circRNAs and parental genes have not been systematically elucidated. Particularly intriguing is circRNA's exploration of tumor targeting, and potential therapeutic uses based on the parental gene regulation perspective. Here, we discuss their biogenesis, take a fresh look at the molecular mechanisms through which circRNAs control the expression of their parental genes in cancer. We further highlight We further highlight the latest circRNA clinical translational applications, including prognostic diagnostic markers, cancer vaccines, gDNA, and so on. Demonstrating the potential benefits and future applications of circRNA therapy.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Xinyi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
29
|
Ma A, Yang Y, Lu L, Zhang Y, Zhang X, Zheng J, Zheng X. Emerging roles of circular RNAs in nasopharyngeal carcinoma: functions and implications. Cell Death Discov 2024; 10:192. [PMID: 38664370 PMCID: PMC11045839 DOI: 10.1038/s41420-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy primarily prevalent in Southern China and Southeast Asia. Circular RNAs (circRNAs), a class of non-coding RNAs, are evolutionarily conserved and exhibit remarkable stability. Their dysregulation has been observed in various cancers, including NPC. In this review, we investigate the pivotal role of circRNAs in NPC, focusing specifically on their involvement in tumor proliferation, apoptosis, metastasis, angiogenesis, stemness, metabolism, and the tumor microenvironment. We highlight the diagnostic and prognostic potential of circRNAs in NPC, emphasizing their utility as biomarkers for early detection, disease monitoring, and prediction of treatment outcomes. Additionally, we explore the therapeutic implications of circRNAs in NPC, highlighting their potential for targeted therapies.
Collapse
Affiliation(s)
- Aiyu Ma
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lu Lu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinhua Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
30
|
Westemeier-Rice ES, Winters MT, Rawson TW, Martinez I. More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease. Noncoding RNA 2024; 10:21. [PMID: 38668379 PMCID: PMC11054740 DOI: 10.3390/ncrna10020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| |
Collapse
|
31
|
Ares M, Igel H, Katzman S, Donohue JP. Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586863. [PMID: 38585890 PMCID: PMC10996645 DOI: 10.1101/2024.03.26.586863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rare, full length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envision and test a hypothesis for their formation using Saccharomyces cerevisiae, documenting full length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron-lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full length and processed circles. Post-splicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - John P. Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| |
Collapse
|
32
|
He H, Chen Y, Liang H, Che W, Chen H, Chen Y, Peng F, Wu B. Circular RNA circCHSY1 silencing inhibits the malignant progression of esophageal squamous cell carcinoma. Discov Oncol 2024; 15:84. [PMID: 38514579 PMCID: PMC10957834 DOI: 10.1007/s12672-024-00935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND CircRNAs play a crucial role in the regulation of various cancers. This study aims to investigate the involvement of circCHSY1 in the development of esophageal squamous cell carcinoma (ESCC). METHODS RNA levels were quantified using qRT-PCR, and protein levels were measured by western blot. The stability of circCHSY1 was analyzed using RNase R. The functional effect of circCHSY1 on cell behavior was evaluated by CCK-8, EdU, flow cytometry, transwell, tube formation, and xenograft tumor model assays. The associations among circCHSY1, miR-1229-3p, and Tectonic-1 (TCTN1) were certified by bioinformatics analysis, dual-luciferase reporter assay, and RNA pull-down assay. RESULTS CircCHSY1 was up-regulated in both ESCC tissues and cell lines in comparison with the control groups. Knockdown of circCHSY1 inhibited the proliferation, migration, invasion, and tube formation and promoted apoptosis of ESCC cells. Mechanistically, circCHSY1 targeted miR-1229-3p, which was downregulated in ESCC tissues and cells. Inhibition of miR-1229-3p attenuated the effects mediated by circCHSY1 suppression. Besides, miR-1229-3p bound to TCTN1, and TCTN1 overexpression restored miR-1229-3p-induced effects in ESCC cells. Animal experiments revealed that circCHSY1 silencing suppressed tumor tumorigenesis in vivo. CONCLUSION CircCHSY1 contributed to ESCC cell malignancy, and the underlying mechanism involved the circCHSY1/miR-1229-3p/TCTN1 axis, providing potential therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Haiquan He
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Hanping Liang
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Weibi Che
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Huilong Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Fengyuan Peng
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Bomeng Wu
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China.
| |
Collapse
|
33
|
Ferreira HJ, Stevenson BJ, Pak H, Yu F, Almeida Oliveira J, Huber F, Taillandier-Coindard M, Michaux J, Ricart-Altimiras E, Kraemer AI, Kandalaft LE, Speiser DE, Nesvizhskii AI, Müller M, Bassani-Sternberg M. Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides. Nat Commun 2024; 15:2357. [PMID: 38490980 PMCID: PMC10943130 DOI: 10.1038/s41467-024-46408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs lacking the 5' cap and the poly-A tail. Nevertheless, it has been demonstrated that certain circRNAs can undergo active translation. Therefore, aberrantly expressed circRNAs in human cancers could be an unexplored source of tumor-specific antigens, potentially mediating anti-tumor T cell responses. This study presents an immunopeptidomics workflow with a specific focus on generating a circRNA-specific protein fasta reference. The main goal of this workflow is to streamline the process of identifying and validating human leukocyte antigen (HLA) bound peptides potentially originating from circRNAs. We increase the analytical stringency of our workflow by retaining peptides identified independently by two mass spectrometry search engines and/or by applying a group-specific FDR for canonical-derived and circRNA-derived peptides. A subset of circRNA-derived peptides specifically encoded by the region spanning the back-splice junction (BSJ) are validated with targeted MS, and with direct Sanger sequencing of the respective source transcripts. Our workflow identifies 54 unique BSJ-spanning circRNA-derived peptides in the immunopeptidome of melanoma and lung cancer samples. Our approach enlarges the catalog of source proteins that can be explored for immunotherapy.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Almeida Oliveira
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Emma Ricart-Altimiras
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Anne I Kraemer
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Markus Müller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
34
|
Babayev M, Silveyra P. Role of circular RNAs in lung cancer. Front Genet 2024; 15:1346119. [PMID: 38501058 PMCID: PMC10944888 DOI: 10.3389/fgene.2024.1346119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Lung cancer remains a global public health concern with significant research focus on developing better diagnosis/prognosis biomarkers and therapeutical targets. Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that covalently closed and have ubiquitous expression. These molecules have been implicated in a variety of disease mechanisms, including lung cancer, as they exhibit oncogenic or tumor suppressor characteristics. Recent research has shown an important role that circRNAs play at different stages of lung cancer, particularly in lung adenocarcinoma. In this review, we summarize the latest research on circRNAs and their roles within lung cancer diagnosis, as well as on disease mechanisms. We also discuss the knowledge gaps on these topics and possible future research directions.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, Bloomington, IN, United States
| |
Collapse
|
35
|
Cao SQ, Xue ST, Li WJ, Hu GS, Wu ZG, Zheng JC, Zhang SL, Lin X, Chen C, Liu W, Zheng B. CircHIPK3 regulates fatty acid metabolism through miR-637/FASN axis to promote esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:110. [PMID: 38431720 PMCID: PMC10908791 DOI: 10.1038/s41420-024-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
The oncogenic role of circRNA in cancers including esophageal cancer (EC) has been well studied. However, whether and how circRNAs are involved in cancer cell metabolic processes remains largely unknown. Here, we reported that circRNA, circHIPK3, is highly expressed in ESCC cell lines and tissues. Knockdown of circHIPK3 significantly restrained cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, circHIPK3 was found to act as a ceRNA by sponging miR-637 to regulate FASN expression and fatty acid metabolism in ESCC cells. Anti-sense oligonucleotide (ASO) targeting circHIPK3 substantially inhibited ESCC both in vitro and in vivo. Therefore, these results uncover a modulatory axis constituting of circHIPK3/miR-637/FASN may be a potential biomarker and therapeutic target for ESCC in the clinic.
Collapse
Affiliation(s)
- Shi-Qiang Cao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Song-Tao Xue
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wen-Juan Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zhi-Gang Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jian-Cong Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Shu-Liang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Xiao Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
36
|
Yaghoobi Z, Seyed Bagher Nazeri SS, Asadi A, Derafsh E, Talebi Taheri A, Tamtaji Z, Dadgostar E, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-coding RNAs and Aquaporin 4: Their Role in the Pathogenesis of Neurological Disorders. Neurochem Res 2024; 49:583-596. [PMID: 38114727 DOI: 10.1007/s11064-023-04067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.
Collapse
Affiliation(s)
- Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | | | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, School of Medicine, Addiction Institute, and Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, St Kitts and Nevis
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
37
|
Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies. Cancer Metastasis Rev 2024; 43:5-27. [PMID: 37552389 DOI: 10.1007/s10555-023-10129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.
Collapse
Affiliation(s)
- Sabrean Farhan Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences, University of Cairo, Giza, 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India.
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| | | |
Collapse
|
38
|
Tang C, He X, Jia L, Zhang X. Circular RNAs in glioma: Molecular functions and pathological implications. Noncoding RNA Res 2024; 9:105-115. [PMID: 38075205 PMCID: PMC10700123 DOI: 10.1016/j.ncrna.2023.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2025] Open
Abstract
Circular RNAs (circRNAs) are a special class of non-coding RNAs with the ring structure. They are stable, abundant and conservative across mammals. The biogenesis and molecular properties of circRNAs are being elucidated, which exert regulatory functions not only through miRNA and protein sponge, but also via translation and exosomal interaction. Accumulating studies have demonstrated that circRNAs are aberrantly expressed in various diseases, especially in cancer. Glioma is one of the most common malignant cerebral neoplasms with poor prognosis. The accurate diagnosis and effective therapies of glioma have always been challenged, there is an urgent need for developing promising therapeutic intervention. Therefore, exploring novel biomarkers is crucial for diagnosis, treatment and prognosis of the glioma which can provide better assistance in guiding treatment. Recent findings found that circRNAs are systematically altered in glioma and may play critical roles in glioma tumorigenesis, proliferation, invasion and metastasis. Due to their distinct functional properties, they are considered as the potential therapeutic targets, diagnostic and prognostic biomarkers. This review elaborates on current advances towards the biogenesis, translation and interaction of circRNAs in many diseases and focused on the role of their involvement in glioma progression, highlighting the potential value of circRNAs in glioma.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
39
|
Ngo LH, Bert AG, Dredge BK, Williams T, Murphy V, Li W, Hamilton WB, Carey KT, Toubia J, Pillman KA, Liu D, Desogus J, Chao JA, Deans AJ, Goodall GJ, Wickramasinghe VO. Nuclear export of circular RNA. Nature 2024; 627:212-220. [PMID: 38355801 DOI: 10.1038/s41586-024-07060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.
Collapse
Affiliation(s)
- Linh H Ngo
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tobias Williams
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Murphy
- Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Wanqiu Li
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine and Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - William B Hamilton
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirstyn T Carey
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Dawei Liu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jessica Desogus
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
40
|
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A, Vakili O. Circular RNAs and cervical cancer: friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal 2024; 22:107. [PMID: 38341592 PMCID: PMC10859032 DOI: 10.1186/s12964-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/β-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
42
|
Zhong S, Xu H, Wang D, Yang S, Li H, Zhang H, Feng J, Zhou S. circNFIB decreases synthesis of arachidonic acid and inhibits breast tumor growth and metastasis. Eur J Pharmacol 2024; 963:176221. [PMID: 38128869 DOI: 10.1016/j.ejphar.2023.176221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
We identified circNFIB (hsa_circ_0086376) as a down-regulated circRNA in breast cancer but its effect is unclear. We aimed to explore the roles of circNFIB in breast cancer. The expression levels of circNFIB in breast cancer tissues and cells were detected. Both in vitro and in vivo experiments were used to assess the effects and mechanisms of circNFIB. circNFIB was down-regulated in 29 breast cancer tissues compared to adjacent normal tissues. circNFIB is a highly conserved circRNA and mainly located in cytoplasm of breast cancer cells. In vitro experiments showed that overexpression of circNFIB inhibited proliferation and invasion of breast cancer cells, whereas knockdown of circNFIB induced proliferation and invasion. Animal experiments indicated that circNFIB inhibited tumor growth and metastasis in vivo. Bioinformatics analysis showed that circNFIB contained an open reading frame (ORF) spanning its spliced junction, an internal ribosome entry site (IRES) and a N6-methyladenosine (m6A) site, suggesting circNFIB had the potential to encode a 56 amino acid (aa) protein, which was then confirmed by experiments. Metabonomics analysis results indicated that circNFIB may inhibit synthesis of arachidonic acid (AA) by regulating phospholipase. EIF4A3 and U2AF65 may regulate circNFIB expression by binding to the flanking sequence of circNFIB. In conclusion, circNFIB is a down-regulated circRNA in breast cancer tissues and encodes a 56 aa protein. circNFIB down-regulates AA in breast cancer cells, thus decreasing AA metabolites. Based on reported evidences of AA metabolites on cancer, we speculated that circNFIB may inhibit breast tumor growth and metastasis partly by inhibiting AA.
Collapse
Affiliation(s)
- Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Dandan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Huixin Li
- Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Heda Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Siying Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215168, China.
| |
Collapse
|
43
|
Diallo LH, Mariette J, Laugero N, Touriol C, Morfoisse F, Prats AC, Garmy-Susini B, Lacazette E. Specific Circular RNA Signature of Endothelial Cells: Potential Implications in Vascular Pathophysiology. Int J Mol Sci 2024; 25:680. [PMID: 38203852 PMCID: PMC10779679 DOI: 10.3390/ijms25010680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Circular RNAs (circRNAs) are a recently characterized family of gene transcripts forming a covalently closed loop of single-stranded RNA. The extent of their potential for fine-tuning gene expression is still being discovered. Several studies have implicated certain circular RNAs in pathophysiological processes within vascular endothelial cells and cancer cells independently. However, to date, no comparative study of circular RNA expression in different types of endothelial cells has been performed and analysed through the lens of their central role in vascular physiology and pathology. In this work, we analysed publicly available and original RNA sequencing datasets from arterial, veinous, and lymphatic endothelial cells to identify common and distinct circRNA expression profiles. We identified 4713 distinct circRNAs in the compared endothelial cell types, 95% of which originated from exons. Interestingly, the results show that the expression profile of circular RNAs is much more specific to each cell type than linear RNAs, and therefore appears to be more suitable for distinguishing between them. As a result, we have discovered a specific circRNA signature for each given endothelial cell type. Furthermore, we identified a specific endothelial cell circRNA signature that is composed four circRNAs: circCARD6, circPLXNA2, circCASC15 and circEPHB4. These circular RNAs are produced by genes that are related to endothelial cell migration pathways and cancer progression. More detailed studies of their functions could lead to a better understanding of the mechanisms involved in physiological and pathological (lymph)angiogenesis and might open new ways to tackle tumour spread through the vascular system.
Collapse
Affiliation(s)
- Leïla Halidou Diallo
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Jérôme Mariette
- MIAT, University of Toulouse, INRAE, 31326 Castanet-Tolosan, France;
| | - Nathalie Laugero
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Christian Touriol
- UMR1037 INSERM, University of Toulouse, 2 Avenue Hubert Curien, 31100 Toulouse, France;
| | - Florent Morfoisse
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| | - Eric Lacazette
- U1297-I2MC, INSERM, University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse, France; (L.H.D.); (N.L.); (F.M.); (A.-C.P.); (B.G.-S.)
| |
Collapse
|
44
|
Wu H, Chen LL. The Functional Circular RNA Screening via RfxCas13d/BSJ-gRNA System. Methods Mol Biol 2024; 2765:173-191. [PMID: 38381340 DOI: 10.1007/978-1-0716-3678-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Although discovered decades ago, functions of circular RNAs (circRNAs) produced from exon(s) back-splicing of pre-mRNAs have only been unveiled recently. As circRNAs share overlapping sequences with their cognate linear RNAs, except for the back-splicing junction sites, it is difficult to distinguish circRNAs from cognate mRNAs in functional studies. In this chapter, we describe a programmable method for the large-scale functional circRNA screening based on the RNA-guided, RNA-targeting CRISPR-Cas13 (RfxCas13d) system. This method can be applied both in vivo and in cell to explore highly expressed circRNAs that may influence cell growth, either under natural conditions or in response to environmental stimulation, without disturbing cognate linear mRNAs.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
45
|
Xie J, Ye F, Deng X, Tang Y, Liang JY, Huang X, Sun Y, Tang H, Lei J, Zheng S, Zou Y. Circular RNA: A promising new star of vaccine. J Transl Int Med 2023; 11:372-381. [PMID: 38130633 PMCID: PMC10732498 DOI: 10.2478/jtim-2023-0122] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with covalently closed structures. Owing to their not having 3' or 5' ends, circRNAs are highly durable and insusceptible to exonuclease-mediated degradation. Moreover, some circRNAs with certain structures are translatable, making them novel vaccines. Vaccines are efficient tools for immunotherapy, such as for the prevention of infectious diseases and cancer treatment. The immune system is activated during immunotherapy to fight against abnormal allies or invaders. CircRNA vaccines represent a potential new avenue in the vaccine era. Recently, several circRNA vaccines have been synthesized and tested in vitro and in vivo. Our review briefly introduces the current understanding of the biology and function of translatable circRNAs, molecular biology, synthetic methods, delivery of circRNA, and current circRNA vaccines. We also discussed the challenges and future directions in the field by summarizing the developments in circRNA vaccines in the past few years.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Fengxi Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, Guangdong Province, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Xufeng Huang
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jinsong Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Shaoquan Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| |
Collapse
|
46
|
Zhu W, Huang Y, Yu C. The emerging role of circRNAs on skeletal muscle development in economical animals. Anim Biotechnol 2023; 34:2778-2792. [PMID: 36052979 DOI: 10.1080/10495398.2022.2118130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CircRNAs are a novel type of closed circular molecules formed through a covalent bond lacking a 5'cap and 3' end tail, which mainly arise from mRNA precursor. They are widely distributed in plants and animals and are characterized by stable structure, high conservativeness in cells or tissues, and showed the expression specificity at different stages of development in different tissues. CircRNAs have been gradually attracted wide attention with the development of RNA sequencing, which become a new research hotspot in the field of RNA. CircRNAs play an important role in gene expression regulation. Presently, the related circRNAs research in the regulation of animal muscle development is still at the initial stage. In this review, the formation, properties, biological functions of circRNAs were summarized. The recent research progresses of circRNAs in skeletal muscle growth and development from economic animals including livestock, poultry and fishes were introduced. Finally, we proposed a prospective for further studies of circRNAs in muscle development, and we hope our research could provide new ideas, some theoretical supports and helps for new molecular genetic markers exploitation and animal genetic breeding in future.
Collapse
Affiliation(s)
- Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
47
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
48
|
Ma XK, Zhai SN, Yang L. Approaches and challenges in genome-wide circular RNA identification and quantification. Trends Genet 2023; 39:897-907. [PMID: 37839990 DOI: 10.1016/j.tig.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Numerous circular RNAs (circRNAs) produced from back-splicing of exon(s) have been recently revealed on a genome-wide scale across species. Although generally expressed at a low level, some relatively abundant circRNAs can play regulatory roles in various biological processes, prompting continuous profiling of circRNA in broader conditions. Over the past decade, distinct strategies have been applied in both transcriptome enrichment and bioinformatic tools for detecting and quantifying circRNAs. Understanding the scope and limitations of these strategies is crucial for the subsequent annotation and characterization of circRNAs, especially those with functional potential. Here, we provide an overview of different transcriptome enrichment, deep sequencing and computational approaches for genome-wide circRNA identification, and discuss strategies for accurate quantification and characterization of circRNA.
Collapse
Affiliation(s)
- Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Si-Nan Zhai
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
50
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|