1
|
Rabot C, Grau MF, Entwistle R, Chiang YM, Zamora de Roberts Y, Ahuja M, Oakley CE, Wang CCC, Todd RB, Oakley BR. Transcription Factor Engineering in Aspergillus nidulans Leads to the Discovery of an Orsellinaldehyde Derivative Produced via an Unlinked Polyketide Synthase Gene. JOURNAL OF NATURAL PRODUCTS 2024; 87:2384-2392. [PMID: 39334518 DOI: 10.1021/acs.jnatprod.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Secondary metabolites are generally produced by enzymes encoded by genes within a biosynthetic gene cluster. Transcription factor genes are frequently located within these gene clusters. These transcription factors often drive expression of the other genes of the biosynthetic gene cluster, and overexpression of the transcription factor provides a facile approach to express all genes within a gene cluster, resulting in production of downstream metabolite(s). Unfortunately this approach is not always successful, leading us to engineer more effective hybrid transcription factors. Herein, we attempted to activate a putative cryptic biosynthetic gene cluster in Aspergillus nidulans using a combination of transcription factor engineering and overexpression approaches. This resulted in the discovery of a novel secondary metabolite we term triorsellinaldehyde. Surprisingly, deletion of the polyketide synthase gene within the gene cluster did not prevent triorsellinaldehyde production. However, targeted deletion of a polyketide synthase gene elsewhere in the genome revealed its role in triorsellinaldehyde biosynthesis.
Collapse
Affiliation(s)
- Chris Rabot
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Michelle F Grau
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | | | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
DelRosso N, Suzuki PH, Griffith D, Lotthammer JM, Novak B, Kocalar S, Sheth MU, Holehouse AS, Bintu L, Fordyce P. High-throughput affinity measurements of direct interactions between activation domains and co-activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608698. [PMID: 39229005 PMCID: PMC11370418 DOI: 10.1101/2024.08.19.608698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4 and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500 K ds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g. enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, and in vitro affinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.
Collapse
Affiliation(s)
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Kocalar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya U Sheth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Lacramioara Bintu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| |
Collapse
|
3
|
Budzyński MA, Wong AK, Faghihi A, Teves SS. A dynamic role for transcription factors in restoring transcription through mitosis. Biochem Soc Trans 2024; 52:821-830. [PMID: 38526206 PMCID: PMC11088908 DOI: 10.1042/bst20231022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Mitosis involves intricate steps, such as DNA condensation, nuclear membrane disassembly, and phosphorylation cascades that temporarily halt gene transcription. Despite this disruption, daughter cells remarkably retain the parent cell's gene expression pattern, allowing for efficient transcriptional memory after division. Early studies in mammalian cells suggested that transcription factors (TFs) mark genes for swift reactivation, a phenomenon termed 'mitotic bookmarking', but conflicting data emerged regarding TF presence on mitotic chromosomes. Recent advancements in live-cell imaging and fixation-free genomics challenge the conventional belief in universal formaldehyde fixation, revealing dynamic TF interactions during mitosis. Here, we review recent studies that provide examples of at least four modes of TF-DNA interaction during mitosis and the molecular mechanisms that govern these interactions. Additionally, we explore the impact of these interactions on transcription initiation post-mitosis. Taken together, these recent studies call for a paradigm shift toward a dynamic model of TF behavior during mitosis, underscoring the need for incorporating dynamics in mechanistic models for re-establishing transcription post-mitosis.
Collapse
Affiliation(s)
- Marek A. Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Alexander K.L. Wong
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Armin Faghihi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S. Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Avila-Lopez P, Lauberth SM. Exploring new roles for RNA-binding proteins in epigenetic and gene regulation. Curr Opin Genet Dev 2024; 84:102136. [PMID: 38128453 PMCID: PMC11245729 DOI: 10.1016/j.gde.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous biological processes. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Soto L, Li Z, Santoso CS, Berenson A, Ho I, Shen VX, Yuan S, Bass JIF. Compendium of human transcription factor effector domains. Mol Cell 2022; 82:514-526. [PMID: 34863368 PMCID: PMC8818021 DOI: 10.1016/j.molcel.2021.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA sequences and modulating transcriptional activity through their effector domains. Despite the central role of effector domains in TF function, there is a current lack of a comprehensive resource and characterization of effector domains. Here, we provide a catalog of 924 effector domains across 594 human TFs. Using this catalog, we characterized the amino acid composition of effector domains, their conservation across species and across the human population, and their roles in human diseases. Furthermore, we provide a classification system for effector domains that constitutes a valuable resource and a blueprint for future experimental studies of TF effector domain function.
Collapse
Affiliation(s)
- Luis Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Perú
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston MA 02215
| | - Clarissa S Santoso
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Anna Berenson
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Isabella Ho
- Biology Department, Boston University, Boston MA 02215
| | - Vivian X Shen
- Biology Department, Boston University, Boston MA 02215
| | - Samson Yuan
- Biology Department, Boston University, Boston MA 02215
| | - Juan I Fuxman Bass
- Bioinformatics Program, Boston University, Boston MA 02215,Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215,correspondence:
| |
Collapse
|
6
|
Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast. Int J Mol Sci 2021; 22:ijms22168538. [PMID: 34445244 PMCID: PMC8395189 DOI: 10.3390/ijms22168538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/25/2023] Open
Abstract
Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.
Collapse
|
7
|
Perez-Borrajero C, Heinkel F, Gsponer J, McIntosh LP. Conformational Plasticity and DNA-Binding Specificity of the Eukaryotic Transcription Factor Pax5. Biochemistry 2021; 60:104-117. [PMID: 33398994 DOI: 10.1021/acs.biochem.0c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eukaryotic transcription factor Pax5 has a DNA-binding Paired domain composed of two independent helical bundle subdomains joined by a flexible linker. Previously, we showed distinct biophysical properties of the N-terminal (NTD) and C-terminal (CTD) subdomains, with implications for how these two regions cooperate to distinguish nonspecific and cognate DNA sites [Perez-Borrajero, C., et al. (2016) J. Mol. Biol. 428, 2372-2391]. In this study, we combined experimental methods and molecular dynamics (MD) simulations to dissect the mechanisms underlying the functional differences between the Pax5 subdomains. Both subdomains showed a similar dependence of DNA-binding affinity on ionic strength. However, due to a greater contribution of non-ionic interactions, the NTD bound its cognate DNA half-site with an affinity approximately 10-fold higher than that of the CTD with its half-site. These interactions involve base-mediated contacts as evidenced by nuclear magnetic resonance spectroscopy-monitored chemical shift perturbations. Isothermal titration calorimetry revealed that favorable enthalpic and compensating unfavorable entropic changes were substantially larger for DNA binding by the NTD than by the CTD. Complementary MD simulations indicated that the DNA recognition helix H3 of the NTD is particularly flexible in the absence of DNA and undergoes the largest changes in conformational dynamics upon binding. Overall, these data suggest that the differences observed for the subdomains of Pax5 are due to the coupling of DNA binding with dampening of motions in the NTD required for specific base contacts. Thus, the conformational plasticity of the Pax5 Paired domain underpins the differing roles of its subdomains in association with nonspecific versus cognate DNA sites.
Collapse
Affiliation(s)
- Cecilia Perez-Borrajero
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Florian Heinkel
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
8
|
Trishla VS, Kirti PB. Structure-function relationship of Gossypium hirsutum NAC transcription factor, GhNAC4 with regard to ABA and abiotic stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110718. [PMID: 33288024 DOI: 10.1016/j.plantsci.2020.110718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 05/28/2023]
Abstract
Our previous study demonstrated that the expression of GhNAC4, a NAC transcription factor from cotton, was induced by abiotic stresses and abscisic acid (ABA). In the present study, we investigated the molecular mechanisms underlying ABA and stress response of GhNAC4. Overexpression of GhNAC4 in transgenic tobacco conferred tolerance to salinity and drought treatments with associated enhanced expression of several stress-responsive marker genes. GhNAC4 is a protein that is translocated to the nucleus where it exhibits transcriptional activation property and also forms homo-dimers. In this study, we also investigated the domains essential for the biochemical functions of GhNAC4. We developed transgenic tobacco plants overexpressing the GhNAC4 NAC-domain and the transcriptional regulatory (TR) domain separately. NAC-domain transgenics showed hypersensitivity to exogenous ABA while TR-domain transgenics exhibited reduced sensitivity. Abiotic stress assays indicated that transgenic plants expressing both the domains separately were more tolerant than wild type plants with the NAC-domain transgenics showing increased tolerance as compared to TR-domain transgenics. Expression analysis revealed that various stress-responsive genes were upregulated in both NAC-domain and TR-domain transgenics under salinity and drought treatments. These results suggest that the stress tolerance ability of GhNAC4 is associated with both the component domains while the ABA responsiveness is largely associated with N-terminal NAC-domain.
Collapse
Affiliation(s)
- Vikas Shalibhadra Trishla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Pulugurtha Bharadwaja Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India; Agri Biotech Foundation, P.J.T.S.Agricultural University Campus, Rajendranagar, Hyderabad, 500030, Telangana, India
| |
Collapse
|
9
|
Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED, Nettels D, Sottini A. Binding without folding - the biomolecular function of disordered polyelectrolyte complexes. Curr Opin Struct Biol 2019; 60:66-76. [PMID: 31874413 DOI: 10.1016/j.sbi.2019.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Recent evidence shows that oppositely charged intrinsically disordered proteins (IDPs) can form high-affinity complexes that involve neither the formation of secondary or tertiary structure nor site-specific interactions between individual residues. Similar electrostatically dominated interactions have also been identified for positively charged IDPs binding to nucleic acids. These highly disordered polyelectrolyte complexes constitute an extreme case within the spectrum of biomolecular interactions involving disorder. Such interactions are likely to be widespread, since sequence analysis predicts proteins with highly charged disordered regions to be surprisingly numerous. Here, we summarize the insights that have emerged from the highly disordered polyelectrolyte complexes identified so far, and we highlight recent developments and future challenges in (i) establishing models for the underlying highly dynamic structural ensembles, (ii) understanding the novel binding mechanisms associated with them, and (iii) identifying the functional consequences.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Switzerland; Department of Physics, University of Zurich, Switzerland.
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Madeleine B Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside, Lawrence, KS 66045, USA; Department of Chemistry, University of Kansas, 1200 Sunnyside, Lawrence, KS 66045, USA
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Switzerland
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
10
|
Brown ZZ, Mapelli C, Farasat I, Shoultz AV, Johnson SA, Orvieto F, Santoprete A, Bianchi E, McCracken AB, Chen K, Zhu X, Demma MJ, Lacey BM, Canada KA, Garbaccio RM, O'Neil J, Walji A. Multiple Synthetic Routes to the Mini-Protein Omomyc and Coiled-Coil Domain Truncations. J Org Chem 2019; 85:1466-1475. [PMID: 31660743 DOI: 10.1021/acs.joc.9b02467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Myc transcription factor represents an "undruggable" target of high biological interest due to its central role in various cancers. An abbreviated form of the c-Myc protein, called Omomyc, consists of the Myc DNA-binding domain and a coiled-coil region to facilitate dimerization of the 90 amino acid polypeptide. Here we present our results to evaluate the synthesis of Omomyc using three complementary strategies: linear Fmoc solid-phase peptide synthesis (SPPS) using several advancements for difficult sequences, native chemical ligation from smaller peptide fragments, and a high-throughput bacterial expression and assay platform for rapid mutagenesis. This multifaceted approach allowed access to up to gram quantities of the mini-protein and permitted in vitro and in vivo SAR exploration of this modality. DNA-binding results and cellular activity confirm that Omomyc and analogues presented here, are potent binders of the E-box DNA engaged by Myc for transcriptional activation and that this 90-amino acid mini-protein is cell permeable and can inhibit proliferation of Myc-dependent cell lines. We also present additional results on covalent homodimerization through disulfide formation of the full-length mini-protein and show the coiled-coil region can be truncated while preserving both DNA binding and cellular activity. Altogether, our results highlight the ability of advanced peptide synthesis to achieve SAR tractability in a challenging synthetic modality.
Collapse
Affiliation(s)
- Zachary Z Brown
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Claudio Mapelli
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Iman Farasat
- Protein Engineering , Merck & Co., Inc. , 126 East Lincoln Avenue , Rahway , New Jersey 07065 , United States
| | - Alycia V Shoultz
- Protein Engineering , Merck & Co., Inc. , 126 East Lincoln Avenue , Rahway , New Jersey 07065 , United States
| | - Scott A Johnson
- Discovery Chemistry , Merck & Co. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Federica Orvieto
- Peptide Chemistry , IRBM, SpA , Via Pontina km 30 600 , 00071 Pomezia (RM) , Italy
| | - Alessia Santoprete
- Peptide Chemistry , IRBM, SpA , Via Pontina km 30 600 , 00071 Pomezia (RM) , Italy
| | - Elisabetta Bianchi
- Peptide Chemistry , IRBM, SpA , Via Pontina km 30 600 , 00071 Pomezia (RM) , Italy
| | - Amy Bittner McCracken
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Kuanchang Chen
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Xiaohong Zhu
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Mark J Demma
- Oncology Discovery , Merck & Co., Inc. 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Brian M Lacey
- Pharmacology , Merck & Co., Inc. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Keith A Canada
- Protein Engineering , Merck & Co., Inc. , 126 East Lincoln Avenue , Rahway , New Jersey 07065 , United States
| | - Robert M Garbaccio
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Jennifer O'Neil
- Oncology Discovery , Merck & Co., Inc. 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Abbas Walji
- Discovery Chemistry , Merck & Co., Inc. , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| |
Collapse
|
11
|
Drake JA, Pettitt BM. Thermodynamics of Conformational Transitions in a Disordered Protein Backbone Model. Biophys J 2019; 114:2799-2810. [PMID: 29925017 DOI: 10.1016/j.bpj.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Conformational entropy is expected to contribute significantly to the thermodynamics of structural transitions in intrinsically disordered proteins or regions in response to protein/ligand binding, posttranslational modifications, and environmental changes. We calculated the backbone (dihedral) conformational entropy of oligoglycine (GlyN), a protein backbone mimic and model intrinsically disordered region, as a function of chain length (N=3, 4, 5, 10, and 15) from simulations using three different approaches. The backbone conformational entropy scales linearly with chain length with a slope consistent with the entropy of folding of well-structured proteins. The entropic contributions of second-order dihedral correlations are predominantly through intraresidue ϕ-ψ pairs, suggesting that oligoglycine may be thermodynamically modeled as a system of independent glycine residues. We find the backbone conformational entropy to be largely independent of global structural parameters, like the end-to-end distance and radius of gyration. We introduce a framework referred to herein as "ensemble confinement" to estimate the loss (gain) of conformational free energy and its entropic component when individual residues are constrained to (released from) particular regions of the ϕ-ψ map. Quantitatively, we show that our protein backbone model resists ordering/folding with a significant, unfavorable ensemble confinement free energy because of the loss of a substantial portion of the absolute backbone entropy. Proteins can couple this free-energy reservoir to distal binding events as a regulatory mechanism to promote or suppress binding.
Collapse
Affiliation(s)
- Justin A Drake
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
12
|
Gutiérrez-González M, Latorre Y, Zúñiga R, Aguillón JC, Molina MC, Altamirano C. Transcription factor engineering in CHO cells for recombinant protein production. Crit Rev Biotechnol 2019; 39:665-679. [PMID: 31030575 DOI: 10.1080/07388551.2019.1605496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The continuous increase of approved biopharmaceutical products drives the development of more efficient recombinant protein expression systems. Chinese hamster ovary (CHO) cells are the mainstay for this purpose but have some drawbacks, such as low levels of expression. Several strategies have been applied to increase the productivity of CHO cells with different outcomes. Transcription factor (TF) engineering has emerged as an interesting and successful approach, as these proteins can act as master regulators; the expression and function of a TF can be controlled by small molecules, and it is possible to design tailored TFs and promoters with desired features. To date, the majority of studies have focused on the use of TFs with growth, metabolic, cell cycle or endoplasmic reticulum functions, although there is a trend to develop new, synthetic TFs. Moreover, new synthetic biological approaches are showing promising advances for the development of specific TFs, even with tailored ligand sensitivity. In this article, we summarize the strategies to increase recombinant protein expression by modulating and designing TFs and with advancements in synthetic biology. We also illustrate how this class of proteins can be used to develop more robust expression systems.
Collapse
Affiliation(s)
| | - Yesenia Latorre
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Roberto Zúñiga
- a Centro de InmunoBiotecnología, Universidad de Chile , Santiago , Chile
| | | | | | - Claudia Altamirano
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| |
Collapse
|
13
|
FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes. Proc Natl Acad Sci U S A 2017; 115:E253-E262. [PMID: 29269391 DOI: 10.1073/pnas.1718599115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are a central element of immunological tolerance. FoxP3 is the key determining transcription factor of the Treg lineage, interacting with numerous cofactors and transcriptional targets to determine the many facets of Treg function. Its absence leads to devastating lymphoproliferation and autoimmunity in scurfy mutant mice and immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) patients. To finely map transcriptionally active regions of the protein, with respect to disease-causing variation, we performed a systematic alanine-scan mutagenesis of FoxP3, assessing mutational impacts on DNA binding and transcriptional activation or repression. The mutations affected transcriptional activation and repression in a variegated manner involving multiple regions of the protein and varying between different transcriptional targets of FoxP3. There appeared to be different modalities for target genes related to classic immunosuppressive function vs. those related to atypical or tissue-Treg functions. Relevance to in vivo Treg biology was established by introducing some of the subtle Foxp3 mutations into the mouse germline by CRISPR-based genome editing. The resulting mice showed Treg populations in normal numbers and exhibited no overt autoimmune manifestations. However, Treg functional defects were revealed upon competition or by system stress, manifest as a strikingly heightened susceptibility to provoked colitis, and conversely by greater resistance to tumors. These observations suggest that some of the missense mutations that segregate in human populations, but do not induce IPEX manifestations, may have unappreciated consequences in other diseases.
Collapse
|
14
|
Kohlgrüber S, Upadhye A, Dyballa-Rukes N, McNamara CA, Altschmied J. Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxid Redox Signal 2017; 26:679-699. [PMID: 27841660 PMCID: PMC5421514 DOI: 10.1089/ars.2016.6946] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cardiovascular diseases are the main cause of death worldwide and pose an immense economical burden. In most cases, the underlying problem is vascular occlusion by atherosclerotic plaques. Importantly, different cell types of the vascular wall and the immune system play crucial roles in atherosclerosis at different stages of the disease. Furthermore, atherosclerosis and conditions recognized as risk factors are characterized by a reduced availability of the vasoprotective molecule nitric oxide and an increase in reactive oxygen species, so-called oxidative stress. Transcription factors function as intracellular signal integrators and relays and thus, play a central role in cellular responses to changing conditions. Recent Advances: Work on specific transcriptional regulators has uncovered many of their functions and the upstream pathways modulating their activity in response to reactive oxygen and nitrogen species. Here, we have reviewed for a few selected examples how this can contribute not only to protection against atherosclerosis development but also to disease progression and the occurrence of clinical manifestations, such as plaque rupture. CRITICAL ISSUES Transcription factors have pleiotropic outputs and often also divergent functions in different cell types and tissues. Thus, in light of potential severe adverse side effects, a global activation or inhibition of particular transcriptions factors does not seem a feasible therapeutic option. FUTURE DIRECTIONS A further in-depth characterization of the cell- and stage-specific actions and regulation of transcription factors in atherosclerosis with respect to protein-protein interactions and target genes could open up new avenues for prevention or therapeutic interventions in this vascular disease. Antioxid. Redox Signal. 26, 679-699.
Collapse
Affiliation(s)
- Stefanie Kohlgrüber
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Aditi Upadhye
- 2 Department of Microbiology, Immunology, Cancer Biology, University of Virginia , Charlottesville, Virginia
| | - Nadine Dyballa-Rukes
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Coleen A McNamara
- 3 Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine , Charlottesville, Virginia
| | - Joachim Altschmied
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| |
Collapse
|
15
|
Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, Simon I, Prives C. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2016; 57:1034-1046. [PMID: 25794615 DOI: 10.1016/j.molcel.2015.02.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/23/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
Abstract
DNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments. Our results provide several unanticipated and interconnected findings. First, the CTD enables DNA binding in a sequence-dependent manner that is drastically altered by either its modification or deletion. Second, dependence on the CTD correlates with the extent to which the p53 binding site deviates from the canonical consensus sequence. Third, the CTD enables stable formation of p53-DNA complexes to divergent binding sites via DNA-induced conformational changes within the DBD itself.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Idit Shiff
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Will Freed-Pastor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Andrew Zupnick
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melissa Mattia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ella Freulich
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Noam Kadouri
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Tamar Kahan
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - James Manfredi
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Herrera MG, Zamarreño F, Costabel M, Ritacco H, Hütten A, Sewald N, Dodero VI. Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed secondary structure transition and supramolecular organization. Biopolymers 2016; 101:96-106. [PMID: 23703327 DOI: 10.1002/bip.22288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders.
Collapse
Affiliation(s)
- María G Herrera
- Department of Chemistry, INQUISUR, National University of South, CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | | | | | | | | | | | | |
Collapse
|
17
|
Hauser K, Essuman B, He Y, Coutsias E, Garcia-Diaz M, Simmerling C. A human transcription factor in search mode. Nucleic Acids Res 2015; 44:63-74. [PMID: 26673724 PMCID: PMC4705650 DOI: 10.1093/nar/gkv1091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.
Collapse
Affiliation(s)
- Kevin Hauser
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Yiqing He
- Great Neck South High School, Great Neck, NY 11023, USA
| | - Evangelos Coutsias
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Hornsby M, Paduch M, Miersch S, Sääf A, Matsuguchi T, Lee B, Wypisniak K, Doak A, King D, Usatyuk S, Perry K, Lu V, Thomas W, Luke J, Goodman J, Hoey RJ, Lai D, Griffin C, Li Z, Vizeacoumar FJ, Dong D, Campbell E, Anderson S, Zhong N, Gräslund S, Koide S, Moffat J, Sidhu S, Kossiakoff A, Wells J. A High Through-put Platform for Recombinant Antibodies to Folded Proteins. Mol Cell Proteomics 2015; 14:2833-47. [PMID: 26290498 PMCID: PMC4597156 DOI: 10.1074/mcp.o115.052209] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 01/09/2023] Open
Abstract
Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade.
Collapse
Affiliation(s)
- Michael Hornsby
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Marcin Paduch
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Shane Miersch
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Annika Sääf
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Tet Matsuguchi
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Brian Lee
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Karolina Wypisniak
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Allison Doak
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Daniel King
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Svitlana Usatyuk
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Kimberly Perry
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Vince Lu
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - William Thomas
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Judy Luke
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Jay Goodman
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Robert J Hoey
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Darson Lai
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Carly Griffin
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Zhijian Li
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Franco J Vizeacoumar
- **Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, S7N 4H4, Canada
| | - Debbie Dong
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Elliot Campbell
- ‖Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Stephen Anderson
- ‖Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Nan Zhong
- ‡‡Structural Genomics Consortium, Toronto, M5G Il7, Canada
| | | | - Shohei Koide
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Jason Moffat
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Sachdev Sidhu
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada;
| | - Anthony Kossiakoff
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - James Wells
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158;
| |
Collapse
|
19
|
Abstract
Engineered transcription activator-like effectors, or TALEs, have emerged as a new class of designer DNA-binding proteins. Their DNA recognition sites can be specified with great flexibility. When fused to appropriate transcriptional regulatory domains, they can serve as designer transcription factors, modulating the activity of targeted promoters. We created tet operator (tetO)-specific TALEs (tetTALEs), with an identical DNA-binding site as the Tet repressor (TetR) and the TetR-based transcription factors that are extensively used in eukaryotic transcriptional control systems. Different constellations of tetTALEs and tetO modified chromosomal transcription units were analyzed for their efficacy in mammalian cells. We find that tetTALE-silencers can entirely abrogate expression from the strong human EF1α promoter when binding upstream of the transcriptional control sequence. Remarkably, the DNA-binding domain of tetTALE alone can effectively counteract trans-activation mediated by the potent tettrans-activator and also directly interfere with RNA polymerase II transcription initiation from the strong CMV promoter. Our results demonstrate that TALEs can act as highly versatile tools in genetic engineering, serving as trans-activators, trans-silencers and also competitive repressors.
Collapse
Affiliation(s)
- Jeannette Werner
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| | - Manfred Gossen
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| |
Collapse
|
20
|
Ré DA, Capella M, Bonaventure G, Chan RL. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC PLANT BIOLOGY 2014; 14:150. [PMID: 24884528 PMCID: PMC4064807 DOI: 10.1186/1471-2229-14-150] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arabidopsis AtHB7 and AtHB12 transcription factors (TFs) belong to the homeodomain-leucine zipper subfamily I (HD-Zip I) and present 62% amino acid identity. These TFs have been associated with the control of plant development and abiotic stress responses; however, at present it is not completely understood how AtHB7 and AtHB12 regulate these processes. RESULTS By using different expression analysis approaches, we found that AtHB12 is expressed at higher levels during early Arabidopsis thaliana development whereas AtHB7 during later developmental stages. Moreover, by analysing gene expression in single and double Arabidopsis mutants and in transgenic plants ectopically expressing these TFs, we discovered a complex mechanism dependent on the plant developmental stage and in which AtHB7 and AtHB12 affect the expression of each other. Phenotypic analysis of transgenic plants revealed that AtHB12 induces root elongation and leaf development in young plants under standard growth conditions, and seed production in water-stressed plants. In contrast, AtHB7 promotes leaf development, chlorophyll levels and photosynthesis and reduces stomatal conductance in mature plants. Moreover AtHB7 delays senescence processes in standard growth conditions. CONCLUSIONS We demonstrate that AtHB7 and AtHB12 have overlapping yet specific roles in several processes related to development and water stress responses. The analysis of mutant and transgenic plants indicated that the expression of AtHB7 and AtHB12 is regulated in a coordinated manner, depending on the plant developmental stage and the environmental conditions. The results suggested that AtHB7 and AtHB12 evolved divergently to fine tune processes associated with development and responses to mild water stress.
Collapse
Affiliation(s)
- Delfina A Ré
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| | | | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| |
Collapse
|
21
|
Ahmad E, Rabbani G, Zaidi N, Khan MA, Qadeer A, Ishtikhar M, Singh S, Khan RH. Revisiting ligand-induced conformational changes in proteins: essence, advancements, implications and future challenges. J Biomol Struct Dyn 2013; 31:630-48. [DOI: 10.1080/07391102.2012.706081] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Mol Cell Biol 2012; 32:4780-93. [PMID: 23007159 DOI: 10.1128/mcb.00206-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription factors regulate eukaryotic RNA polymerase II (Pol II) activity by assembling and remodeling complexes at multiple steps in the transcription cycle. In HIV, we previously proposed a two-step model where the viral Tat protein first preassembles at the promoter with an inactive P-TEFb:7SK snRNP complex and later transfers P-TEFb to TAR on the nascent transcript, displacing the inhibitory snRNP and resulting in Pol II phosphorylation and stimulation of elongation. It is unknown how the Tat:P-TEFb complex transitions to TAR to activate the P-TEFb kinase. Here, we show that P-TEFb artificially recruited to the nascent transcript is not competent for transcription but rather remains inactive due to its assembly with the 7SK snRNP. Tat supplied in trans is able to displace the kinase inhibitor Hexim1 from the snRNP and activate P-TEFb, thereby uncoupling Tat requirements for kinase activation and TAR binding. By combining comprehensive mutagenesis of Tat with multiple cell-based reporter assays that probe the activity of Tat in different arrangements, we genetically defined a transition step in which preassembled Tat:P-TEFb complexes switch to TAR. We propose that a conserved network of residues in Tat has evolved to control this transition and thereby switch the host elongation machinery to viral transcription.
Collapse
|
23
|
Lee HJ, Lang PT, Fortune SM, Sassetti CM, Alber T. Cyclic AMP regulation of protein lysine acetylation in Mycobacterium tuberculosis. Nat Struct Mol Biol 2012; 19:811-8. [PMID: 22773105 PMCID: PMC3414669 DOI: 10.1038/nsmb.2318] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/06/2012] [Indexed: 11/16/2022]
Abstract
Protein lysine acetylation networks can regulate central processes such as carbon metabolism and gene expression in bacteria. In Escherichia coli, cyclic-AMP (cAMP) regulates protein lysine acetyltransferase (PAT) activity at the transcriptional level, but in Mycobacterium tuberculosis, fusion of a cyclic-nucleotide binding domain to a Gcn5-like PAT domain enables direct cAMP control of protein acetylation. Here we describe the allosteric activation mechanism of M. tuberculosis PAT. The crystal structures of the auto-inhibited and cAMP-activated PAT reveal that cAMP binds to a cryptic site in the regulatory domain over 32 Å from the catalytic site. An extensive conformational rearrangement relieves auto-inhibition by a substrate-mimicking lid that covers the protein-substrate binding surface. A steric double latch couples the domains by harnessing a classic, cAMP-mediated, conformational switch. The structures suggest general features that enable the evolution of long-range communication between linked domains.
Collapse
Affiliation(s)
- Ho Jun Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
24
|
Thyme SB, Baker D, Bradley P. Improved modeling of side-chain--base interactions and plasticity in protein--DNA interface design. J Mol Biol 2012; 419:255-74. [PMID: 22426128 DOI: 10.1016/j.jmb.2012.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/09/2012] [Accepted: 03/09/2012] [Indexed: 12/30/2022]
Abstract
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed "motifs") was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein-DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent.
Collapse
Affiliation(s)
- Summer B Thyme
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
25
|
Kumar R, Thompson EB. Folding of the glucocorticoid receptor N-terminal transactivation function: dynamics and regulation. Mol Cell Endocrinol 2012; 348:450-6. [PMID: 21501657 DOI: 10.1016/j.mce.2011.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/14/2011] [Accepted: 03/31/2011] [Indexed: 11/25/2022]
Abstract
The glucocorticoid receptor (GR) mediates biological effects of glucocorticoids at the level of gene regulation, and plays important roles in many aspects of physiology. In recent years, it has become quite evident that GR behaves very dynamically, controlled by its reversible interactions with a variety of coregulatory proteins at various DNA and non-DNA sites. The N-terminal activation function domain (AF1) of the GR exists in an intrinsically disordered (ID) state, which promotes molecular recognition by providing surfaces capable of binding specific target molecules. Several studies suggest that when in action, the GR AF1 gains structure. Thus, it is hypothesized that the GR AF1 domain may be structured in vivo, at least when directly involved in transcriptional activation. Our recent work supports this conclusion. We propose that by allowing AF1 to rapidly and reversibly adopt various configurations through structural arrangements, AF1 can create protein surfaces that are readily available for selective binding to coregulatory proteins, resulting in GR-mediated transcriptional regulation of target genes.
Collapse
Affiliation(s)
- R Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA-18510, USA.
| | | |
Collapse
|
26
|
Emamzadah S, Tropia L, Halazonetis TD. Crystal structure of a multidomain human p53 tetramer bound to the natural CDKN1A (p21) p53-response element. Mol Cancer Res 2011; 9:1493-9. [PMID: 21933903 DOI: 10.1158/1541-7786.mcr-11-0351] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p53 tumor suppressor protein is a sequence-specific DNA-binding transcription factor. Structures of p53 bound to DNA have been described, but, so far, no structure has been determined of p53 bound to a natural p53-response element. We describe here the structure of a human p53 homotetramer encompassing both the DNA-binding and homo-oligomerization domains in complex with the natural p53-response element present upstream of the promoter of the CDKN1A (p21) gene. Similar to our previously described structures of human p53 tetramers bound to an artificial consensus DNA site, p53 DNA binding proceeds via an induced fit mechanism with loops L1 of two subunits adopting recessed conformations. Interestingly, the conformational change involving loop L1 is even more extreme than the one previously observed with the artificial consensus DNA site. In fact, the previously determined loop L1 conformation seems to be a transition intermediate between the non-DNA-bound and CDKN1A-bound states. Thus, the new structure further supports our model that recognition of specific DNA by p53 is associated with conformational changes within the DNA-binding domain of p53.
Collapse
Affiliation(s)
- Soheila Emamzadah
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
27
|
Xue B, Oldfield CJ, Van YY, Dunker AK, Uversky VN. Protein intrinsic disorder and induced pluripotent stem cells. MOLECULAR BIOSYSTEMS 2011; 8:134-50. [PMID: 21761058 DOI: 10.1039/c1mb05163f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Induced pluripotent stem (iPS) cells can be obtained from terminally differentiated somatic cells by overexpression of defined sets of reprogramming transcription factors. These protein sets have been called the Yamanaka factors, namely Sox2, Oct3/4 (Pou5f1), Klf4, and c-Myc, and the Thomson factors, namely Sox2, Oct3, Lin28, and Nanog. Other sets of proteins, while not essential for the formation of iPS cells, are important for improving the efficiency of the induction and still other sets of proteins are important as markers for embryonic stem cells. Structural information about most of these important proteins is very sparse. Our bioinformatics analysis herein reveals that these reprogramming factors and most of the efficiency-improving and embryonic stem cell markers are highly enriched in intrinsic disorder. As is typical for transcription factors, these proteins are modular. Specific sites for interaction with other proteins and DNA are dispersed in the long regions of intrinsic disorder. These highly dynamic interaction sites are evidently responsible for the delicate interplay among various molecules. The bioinformatics analysis given herein should facilitate the investigation of the roles and organization of these modular interaction sites, thereby helping to shed further light on the pathways that underlie the mechanism(s) by which terminally differentiated cells are converted to iPS cells.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
|
29
|
Nakano S, Nakata E, Morii T. Facile conversion of RNA aptamers to modular fluorescent sensors with tunable detection wavelengths. Bioorg Med Chem Lett 2011; 21:4503-6. [PMID: 21719284 DOI: 10.1016/j.bmcl.2011.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022]
Abstract
A GTP aptamer was converted to a modular fluorescent GTP sensor by conjugation of RRE (Rev responsive element) RNA and successive complex formation with a fluorophore-modified Rev peptide. Structural changes associated with substrate binding in the RNA aptamer were successfully transduced into changes in fluorescence intensity because of the modular structure of ribonucleopeptides. A simple modular strategy involving conjugation of a fluorophore-modified ribonucleopeptide to the stem region of an RNA aptamer deduced from secondary structural information helps produce fluorescent sensors, which allow tuning of excitation and detection wavelengths through the replacement of the fluorophore at the N-terminal of the Rev peptide.
Collapse
Affiliation(s)
- Shun Nakano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
30
|
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J 2011; 30:2167-76. [PMID: 21522129 DOI: 10.1038/emboj.2011.127] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/24/2011] [Indexed: 01/23/2023] Open
Abstract
The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence-specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off-rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence-specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off-rates, than on differences in affinities, to recognize their specific DNA sites.
Collapse
|
31
|
Arce AL, Raineri J, Capella M, Cabello JV, Chan RL. Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC PLANT BIOLOGY 2011; 11:42. [PMID: 21371298 PMCID: PMC3060862 DOI: 10.1186/1471-2229-11-42] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/03/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant HD-Zip transcription factors are modular proteins in which a homeodomain is associated to a leucine zipper. Of the four subfamilies in which they are divided, the tested members from subfamily I bind in vitro the same pseudopalindromic sequence CAAT(A/T)ATTG and among them, several exhibit similar expression patterns. However, most experiments in which HD-Zip I proteins were over or ectopically expressed under the control of the constitutive promoter 35S CaMV resulted in transgenic plants with clearly different phenotypes. Aiming to elucidate the structural mechanisms underlying such observation and taking advantage of the increasing information in databases of sequences from diverse plant species, an in silico analysis was performed. In addition, some of the results were also experimentally supported. RESULTS A phylogenetic tree of 178 HD-Zip I proteins together with the sequence conservation presented outside the HD-Zip domains allowed the distinction of six groups of proteins. A motif-discovery approach enabled the recognition of an activation domain in the carboxy-terminal regions (CTRs) and some putative regulatory mechanisms acting in the amino-terminal regions (NTRs) and CTRs involving sumoylation and phosphorylation. A yeast one-hybrid experiment demonstrated that the activation activity of ATHB1, a member of one of the groups, is located in its CTR. Chimerical constructs were performed combining the HD-Zip domain of one member with the CTR of another and transgenic plants were obtained with these constructs. The phenotype of the chimerical transgenic plants was similar to the observed in transgenic plants bearing the CTR of the donor protein, revealing the importance of this module inside the whole protein. CONCLUSIONS The bioinformatical results and the experiments conducted in yeast and transgenic plants strongly suggest that the previously poorly analyzed NTRs and CTRs of HD-Zip I proteins play an important role in their function, hence potentially constituting a major source of functional diversity among members of this subfamily.
Collapse
Affiliation(s)
- Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| |
Collapse
|
32
|
Abstract
How do complex gene regulatory circuits evolve? These circuits involve many interacting components, which work together to specify patterns of gene expression. They typically include many subtle mechanistic features, but in most cases it is unclear whether these features are essential for the circuit to work at all, or if instead they make a functional circuit work better. In the latter case, such a feature is here termed 'dispensable', and it is plausible that the feature has been added at a late stage in the evolution of the circuit. This review describes experimental tests of this question, using the phage λ gene regulatory circuit. Several features of this circuit are found to be dispensable, in the sense that the circuitry works without these features, though not as well as the wild type. In some cases, second-site suppressor mutations are needed to confer near-normal behavior in the absence of such a feature. These findings are discussed here in the context of a two-stage model for evolution of gene regulatory circuits. In this model, a circuit evolves by assembly of a primitive or basic form, followed by adjustment of parameters and addition of qualitatively new features. Pathways are suggested for the addition of such features to a more basic form. Selected examples in other systems are described. Some of the dispensable features of phage λ may be evolutionary refinements. Finding that a feature is dispensable, however, does not prove that it is a late addition - it is possible that it was essential early in evolution, and became dispensable as the circuit evolved. Conversely, a late addition might have become essential. As ongoing work provides additional examples of dispensable features, it may become clearer how often they represent refinements.
Collapse
|
33
|
Fenley MO, Harris RC, Jayaram B, Boschitsch AH. Revisiting the association of cationic groove-binding drugs to DNA using a Poisson-Boltzmann approach. Biophys J 2010; 99:879-86. [PMID: 20682266 DOI: 10.1016/j.bpj.2010.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022] Open
Abstract
Proper modeling of nonspecific salt-mediated electrostatic interactions is essential to understanding the binding of charged ligands to nucleic acids. Because the linear Poisson-Boltzmann equation (PBE) and the more approximate generalized Born approach are applied routinely to nucleic acids and their interactions with charged ligands, the reliability of these methods is examined vis-à-vis an efficient nonlinear PBE method. For moderate salt concentrations, the negative derivative, SK(pred), of the electrostatic binding free energy, DeltaG(el), with respect to the logarithm of the 1:1 salt concentration, [M(+)], for 33 cationic minor groove drugs binding to AT-rich DNA sequences is shown to be consistently negative and virtually constant over the salt range considered (0.1-0.4 M NaCl). The magnitude of SK(pred) is approximately equal to the charge on the drug, as predicted by counterion condensation theory (CCT) and observed in thermodynamic binding studies. The linear PBE is shown to overestimate the magnitude of SK(pred), whereas the nonlinear PBE closely matches the experimental results. The PBE predictions of SK(pred) were not correlated with DeltaG(el) in the presence of a dielectric discontinuity, as would be expected from the CCT. Because this correlation does not hold, parameterizing the PBE predictions of DeltaG(el) against the reported experimental data is not possible. Moreover, the common practice of extracting the electrostatic and nonelectrostatic contributions to the binding of charged ligands to biopolyelectrolytes based on the simple relation between experimental SK values and the electrostatic binding free energy that is based on CCT is called into question by the results presented here. Although the rigid-docking nonlinear PB calculations provide reliable predictions of SK(pred), at least for the charged ligand-nucleic acid complexes studied here, accurate estimates of DeltaG(el) will require further development in theoretical and experimental approaches.
Collapse
Affiliation(s)
- Marcia O Fenley
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| | | | | | | |
Collapse
|
34
|
Little JW, Michalowski CB. Stability and instability in the lysogenic state of phage lambda. J Bacteriol 2010; 192:6064-76. [PMID: 20870769 PMCID: PMC2976446 DOI: 10.1128/jb.00726-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/11/2010] [Indexed: 12/26/2022] Open
Abstract
Complex gene regulatory circuits exhibit emergent properties that are difficult to predict from the behavior of the components. One such property is the stability of regulatory states. Here we analyze the stability of the lysogenic state of phage λ. In this state, the virus maintains a stable association with the host, and the lytic functions of the virus are repressed by the viral CI repressor. This state readily switches to the lytic pathway when the host SOS system is induced. A low level of SOS-dependent switching occurs without an overt stimulus. We found that the intrinsic rate of switching to the lytic pathway, measured in a host lacking the SOS response, was almost undetectably low, probably less than 10(-8)/generation. We surmise that this low rate has not been selected directly during evolution but results from optimizing the rate of switching in a wild-type host over the natural range of SOS-inducing conditions. We also analyzed a mutant, λprm240, in which the promoter controlling CI expression was weakened, rendering lysogens unstable. Strikingly, the intrinsic stability of λprm240 lysogens depended markedly on the growth conditions; lysogens grown in minimal medium were nearly stable but switched at high rates when grown in rich medium. These effects on stability likely reflect corresponding effects on the strength of the prm240 promoter, measured in an uncoupled assay system. Several derivatives of λprm240 with altered stabilities were characterized. This mutant and its derivatives afford a model system for further analysis of stability.
Collapse
Affiliation(s)
- John W Little
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
35
|
Peterson-Kaufman KJ, Carlson CD, Rodríguez-Martínez JA, Ansari AZ. Nucleating the assembly of macromolecular complexes. Chembiochem 2010; 11:1955-62. [PMID: 20812316 PMCID: PMC4176617 DOI: 10.1002/cbic.201000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 12/23/2022]
Abstract
Nature constructs intricate complexes containing numerous binding partners in order to direct a variety of cellular processes. Researchers have taken a cue from these events to develop synthetic molecules that can nucleate natural and unnatural interactions for a diverse set of applications. These molecules can be designed to drive protein dimerization or to modulate the interactions between proteins, lipids, DNA, or RNA and thereby alter cellular pathways. A variety of components within the cellular machinery can be recruited with or replaced by synthetic compounds. Directing the formation of multicomponent complexes with new synthetic molecules can allow unprecedented control over the cellular machinery.
Collapse
Affiliation(s)
| | - Clayton D. Carlson
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| | - José A. Rodríguez-Martínez
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| | - Aseem Z. Ansari
- Department of Biochemistry and the Genome Center, University of Wisconsin, 433 Babcock Drive. Madison, WI 53706
| |
Collapse
|
36
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
37
|
Gsponer J, Madan Babu M. The rules of disorder or why disorder rules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:94-103. [DOI: 10.1016/j.pbiomolbio.2009.03.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
A conserved domain in the transcription factor ITF-2B attenuates its activity. Biochem Biophys Res Commun 2008; 370:327-31. [DOI: 10.1016/j.bbrc.2008.03.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022]
|
39
|
|
40
|
Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription factors. Biochemistry 2006; 45:6873-88. [PMID: 16734424 PMCID: PMC2538555 DOI: 10.1021/bi0602718] [Citation(s) in RCA: 548] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for the general prevalence of intrinsic disorder in transcriptional regulation, we used the predictor of natural disorder regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13 to 82.63% of transcription factors possess extended regions of intrinsic disorder, relative to 54.51 and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors to intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that (a) the AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) the degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) the degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; and (d) the level of alpha-MoRF (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
- Bioinformatics Group, Lilly Research Laboratories, Eli Lilly and Company, DC GL54, Greenfield, IN 46140, USA
| | - Narayanan B. Perumal
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
| | - Christopher J. Oldfield
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 N Senate Ave, suite 250, Indianapolis, IN 46202, USA
| | - Eric W. Su
- Bioinformatics Group, Lilly Research Laboratories, Eli Lilly and Company, DC GL54, Greenfield, IN 46140, USA
| | - Vladimir N. Uversky
- Department of Biochemistry and Molecular Biology, and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 N Senate Ave, suite 250, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
- Molecular Kinetics, Inc., 6201 La Pas Trail, Suite 160, Indianapolis, Indiana 46268, USA
- To whom correspondence should be addressed at Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University - Purdue University at Indianapolis, 714 N. Senate St., Suite 250, Indianapolis, IN 46202. Phone: 317-278-9650; fax: 317-278-9217; E-mail:
| | - A. Keith Dunker
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 N Senate Ave, suite 250, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2005; 21:3369-76. [PMID: 15947016 DOI: 10.1093/bioinformatics/bti534] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Recent studies have found many proteins containing regions that do not form well-defined three-dimensional structures in their native states. The study and detection of such disordered regions is important both for understanding protein function and for facilitating structural analysis since disordered regions may affect solubility and/or crystallizability. RESULTS We have developed the regional order neural network (RONN) software as an application of our recently developed 'bio-basis function neural network' pattern recognition algorithm to the detection of natively disordered regions in proteins. The results of blind-testing a panel of nine disorder prediction tools (including RONN) against 80 protein sequences derived from the Protein Data Bank shows that, based on the probability excess measure, RONN performed the best.
Collapse
Affiliation(s)
- Zheng Rong Yang
- School of Engineering and Computer Science, Exeter University, Exeter EX4 4QF, UK
| | | | | | | |
Collapse
|
42
|
Hirata A, Ueno M, Aizawa Y, Ohkubo K, Morii T, Yoshikawa S. Dual DNA recognition codes of a short peptide derived from the basic leucine zipper protein EmBP1. Bioorg Med Chem 2005; 13:3107-16. [PMID: 15809146 DOI: 10.1016/j.bmc.2005.02.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 12/01/2022]
Abstract
Sequence-specific DNA binding of short peptide dimers derived from a plant basic leucine zipper protein EmBP1 was studied. A homodimer of the EmBP1 basic region peptide recognized a palindromic DNA sequence, and a heterodimer of EmBP1 and GCN4 basic region peptides targets a non-palindromic DNA sequence when a beta-cyclodextrin/adamantane complex is utilized as a dimerization domain. A homodimer of the EmBP1 basic region peptide binds the native EmBP1 binding 5'-GCCACGTGGC-3' and the native GCN4 binding 5'-ATGACGTCAT-3' sequences with almost equal affinity in the alpha-helical conformation, indicating that the basic region of EmBP1 by itself has a dual recognition codes for the DNA sequences. The GCN4 basic region peptide binds 5'-ATGAC-3' in the alpha-helical conformation, but it neither shows affinity nor helix formation with 5'-GCCAC-3'. Because native EmBP1 forms 100 times more stable complex with 5'-GCCACGTGGC-3' over 5'-ATGACGTCAT-3', our results suggest that the sequence-selectivity of native EmBP1 is dictated by the structure of leucine zipper dimerization domain including the hinge region spanning between the basic region and the leucine zipper.
Collapse
Affiliation(s)
- Akiyoshi Hirata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Rebar EJ. Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. Expert Opin Investig Drugs 2005; 13:829-39. [PMID: 15212621 DOI: 10.1517/13543784.13.7.829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapies that use engineered transcription factors to regulate a patient's own endogenous genetic loci offer several advantages over cDNA-based approaches, including the capacity to upregulate all splice variants of a therapeutic gene. Currently, two engineered transcription factors are being developed for use in gene-mediated revascularisation therapies of cardiovascular disease. Both proteins target a powerful, constitutive transcriptional activation module to a defined sequence in the promoter region of vascular endothelial growth factor-A via linkage to an appropriately specific DNA-binding domain, either the basic helix-loop-helix motif of hypoxia-inducible factor-1alpha (HIF-1alpha) or a designed zinc finger protein. Both factors activate the expression of vascular endothelial growth factor-A in cellular studies and induce angiogenesis in animal models of cardiovascular disease. Phase I studies are underway for the HIF-1alpha-based factor and are expected to commence for the zinc finger protein-based factor by the second half of 2004.
Collapse
|
44
|
Yang ZR, Berry EA. Reduced bio-basis function neural networks for protease cleavage site prediction. J Bioinform Comput Biol 2005; 2:511-31. [PMID: 15359424 DOI: 10.1142/s0219720004000715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2003] [Revised: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022]
Abstract
This paper presents a new neural learning algorithm for protease cleavage site prediction. The basic idea is to replace the radial basis function used in radial basis function neural networks by a so-called bio-basis function using amino acid similarity matrices. Mutual information is used to select bio-bases and a corresponding selection algorithm is developed. The algorithm has been applied to the prediction of HIV and Hepatitis C virus protease cleavage sites in proteins with success.
Collapse
Affiliation(s)
- Zheng Rong Yang
- Department of Computer Science, Exeter University, Exeter EX4 4QF, UK.
| | | |
Collapse
|
45
|
Shewmaker F, Kerner MJ, Hayer-Hartl M, Klein G, Georgopoulos C, Landry SJ. A mobile loop order-disorder transition modulates the speed of chaperonin cycling. Protein Sci 2004; 13:2139-48. [PMID: 15238634 PMCID: PMC2279813 DOI: 10.1110/ps.04773204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular machines order and disorder polypeptides as they form and dissolve large intermolecular interfaces, but the biological significance of coupled ordering and binding has been established in few, if any, macromolecular systems. The ordering and binding of GroES co-chaperonin mobile loops accompany an ATP-dependent conformational change in the GroEL chaperonin that promotes client protein folding. Following ATP hydrolysis, disordering of the mobile loops accompanies co-chaperonin dissociation, reversal of the GroEL conformational change, and release of the client protein. "High-affinity" GroEL mutants were identified by their compatibility with "low-affinity" co-chaperonin mutants and incompatibility with high-affinity co-chaperonin mutants. Analysis of binding kinetics using the intrinsic fluorescence of tryptophan-containing co-chaperonin variants revealed that excessive affinity causes the chaperonin to stall in a conformation that forms in the presence of ATP. Destabilizing the beta-hairpins formed by the mobile loops restores the normal rate of dissociation. Thus, the free energy of mobile-loop ordering and disordering acts like the inertia of an engine's flywheel by modulating the speed of chaperonin conformational changes.
Collapse
Affiliation(s)
- Frank Shewmaker
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The rapid accumulation of genetic information and advancement of experimental techniques have opened a new frontier in biomedical engineering. With the availability of well-characterized components from natural gene networks, the stage has been set for the engineering of artificial gene regulatory networks with sophisticated computational and functional capabilities. In these efforts, the ability to construct, analyze, and interpret qualitative and quantitative models is becoming increasingly important. In this review, we consider the current state of gene network engineering from a combined experimental and modeling perspective. We discuss how networks with increased complexity are being constructed from simple modular components and how quantitative deterministic and stochastic modeling of these modules may provide the foundation for accurate in silico representations of gene regulatory network function in vivo.
Collapse
Affiliation(s)
- Mads Kaern
- Center for BioDynamics, Department of Biomedical Engineering, and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
47
|
Uprichard SL, Knipe DM. Conformational changes in the herpes simplex virus ICP8 DNA-binding protein coincident with assembly in viral replication structures. J Virol 2003; 77:7467-76. [PMID: 12805446 PMCID: PMC164794 DOI: 10.1128/jvi.77.13.7467-7476.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The herpes simplex virus (HSV) single-stranded DNA-binding protein, ICP8, is required for viral DNA synthesis. Before viral DNA replication, ICP8 colocalizes with other replication proteins at small punctate foci called prereplicative sites. With the onset of viral genome amplification, these proteins become redistributed into large globular replication compartments. Here we present the results of immunocytochemical and biochemical analysis of ICP8 showing that various antibodies recognize distinct forms of ICP8. Using these ICP8-specific antibodies as probes for ICP8 structure, we detected a time-dependent appearance and disappearance of ICP8 epitopes in immunoprecipitation assays. Immunofluorescence staining of ICP8 in cells infected with different HSV mutant viruses as well as cells transfected with a limited number of viral genes demonstrated that these and other antigenic changes occur coincident with ICP8 assembly at intranuclear replication structures. Genetic analysis has revealed a correlation between the ability of various ICP8 mutant proteins to form the 39S epitope and their ability to bind to DNA. These results support the hypothesis that ICP8 undergoes a conformational change upon binding to other HSV proteins and/or to DNA coincident with assembly into viral DNA replication structures.
Collapse
Affiliation(s)
- Susan L Uprichard
- Committee on Virology and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
48
|
Abstract
NF-Y, also referred to as CCAAT-binding factor, is a major CCAAT-binding transcription factor. The present study demonstrated that the 3'-flanking region of the CCAAT box is involved in the formation of a stable NF-Y.DNA complex. An electrophoretic mobility shift assay showed that the interaction of NF-Y with DNA 15 bp downstream of the CCAAT box alters not only the affinity of NF-Y for its binding site but also the electrophoretic mobility of the NF-Y.DNA complex. This interaction is accompanied by a conformational change of NF-Y as demonstrated by a change in the reactivity of an anti-NF-YA antibody to the NF-Y.DNA complex.
Collapse
Affiliation(s)
- Naoaki Sugiura
- Department of Biochemistry I, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | | |
Collapse
|
49
|
Flaugh SL, Lumb KJ. Effects of macromolecular crowding on the intrinsically disordered proteins c-Fos and p27(Kip1). Biomacromolecules 2003; 2:538-40. [PMID: 11749217 DOI: 10.1021/bm015502z] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A number of biologically active proteins exhibit intrinsic structural disorder in vitro under thermodynamically ideal conditions. In vivo, however, proteins exist in a crowded, thermodynamically nonideal environment. We tested the hypothesis that intrinsically disordered proteins adopt stable structure under crowded conditions in which excluded volume is predicted to stabilize compact, native conformations. In the presence of macromolecular crowding agents, neither the intrinsically disordered C-terminal activation domain of c-Fos nor the kinase-inhibition domain of p27(Kip1) undergoes any significant conformational change that is detected by changes in either circular dichroism or fluorescence spectra. We conclude that molecular crowding effects are not necessarily sufficient to induce ordered structure in intrinsically disordered proteins.
Collapse
Affiliation(s)
- S L Flaugh
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1870, USA
| | | |
Collapse
|
50
|
Hegde RS. The papillomavirus E2 proteins: structure, function, and biology. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:343-60. [PMID: 11988474 DOI: 10.1146/annurev.biophys.31.100901.142129] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nearly twenty years after the first high-resolution crystal structures of specific protein-DNA complexes were determined, the stereo-chemical basis for protein-DNA recognition remains an active area of investigation. One outstanding question is, how are proteins able to detect noncontacted sequences in their binding sites? The papillomavirus E2 proteins represent a particularly suitable group of proteins in which to examine the mechanisms of "indirect readout." Coordinated structural and thermodynamic studies of the E2-DNA interaction conducted over the past five years are summarized in this review. The data support a model in which the electrostatic properties of the individual E2 proteins correlate with their affinities for intrinsically flexible or rigidly prebent DNA targets.
Collapse
Affiliation(s)
- Rashmi S Hegde
- Division of Developmental Biology, Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|