1
|
Kizhatil K, Clark GM, Sunderland DK, Bhandari A, Horbal LJ, Balasubramanian R, John SWM. FYN regulates aqueous humor outflow and IOP through the phosphorylation of VE-CADHERIN. Nat Commun 2025; 16:51. [PMID: 39746990 PMCID: PMC11696269 DOI: 10.1038/s41467-024-55232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Schlemm's canal endothelial cells (SECs) serve as the final barrier to aqueous humor (AQH) drainage from the eye. SECs adjust permeability to AQH outflow to modulate intraocular pressure (IOP). The broad identification of IOP-related genes implicates SECs in glaucoma. However, the molecular mechanisms by which SECs sense and respond to pressure changes to regulate fluid permeability and IOP remain largely undefined. We hypothesize that mechano-responsive phosphorylation of the cell adhesion molecule VE-CADHERIN (CDH5) in SECs, by FYN and possibly other SRC family kinases, regulates adherens junction (AJ) permeability to AQH in response to IOP. On experimentally raising IOP in mouse eyes, AJ permeability, CDH5 phosphorylation, and FYN activation at the AJ all increase. FYN null mutant mice display disrupted IOP regulation and reduced AQH outflow. These findings demonstrate an important role of mechanotransducive signaling within SECs in maintaining IOP homeostasis and implicate FYN as a potential target for developing IOP-lowering treatments.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State Medical Center, Columbus, Ohio, 43210, USA.
| | | | | | - Aakriti Bhandari
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Logan J Horbal
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Simon W M John
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Paul S, McCourt PM, Le LTM, Ryu J, Czaja W, Bode AM, Contreras-Galindo R, Dong Z. Fyn-mediated phosphorylation of Menin disrupts telomere maintenance in stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560876. [PMID: 37873235 PMCID: PMC10592958 DOI: 10.1101/2023.10.04.560876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. We found that Fyn knockdown prevented telomere erosion in human and mouse stem cells, validating the results with four telomere measurement techniques. We show that Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). Using mass spectrometry, immunoprecipitation, and immunofluorescence experiments we found that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.
Collapse
Affiliation(s)
- Souren Paul
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Preston M. McCourt
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Le Thi My Le
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Wioletta Czaja
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Rafael Contreras-Galindo
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Henan, China 450001
| |
Collapse
|
3
|
Kizhatil K, Clark G, Sunderland D, Bhandari A, Horbal L, Balasubramanian R, John S. FYN regulates aqueous humor outflow and IOP through the phosphorylation of VE-cadherin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556253. [PMID: 37886565 PMCID: PMC10602025 DOI: 10.1101/2023.09.04.556253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The exact sites and molecules that determine resistance to aqueous humor drainage and control intraocular pressure (IOP) need further elaboration. Proposed sites include the inner wall of Schlemms's canal and the juxtacanalicular trabecular meshwork ocular drainage tissues. The adherens junctions (AJs) of Schlemm's canal endothelial cells (SECs) must both preserve the blood-aqueous humor (AQH) barrier and be conducive to AQH drainage. How homeostatic control of AJ permeability in SC occurs and how such control impacts IOP is unclear. We hypothesized that mechano-responsive phosphorylation of the junctional molecule VE-CADHERIN (VEC) by SRC family kinases (SFKs) regulates the permeability of SEC AJs. We tested this by clamping IOP at either 16 mmHg, 25 mmHg, or 45 mmHg in mice and then measuring AJ permeability and VEC phosphorylation. We found that with increasing IOP: 1) SEC AJ permeability increased, 2) VEC phosphorylation was increased at tyrosine-658, and 3) SFKs were activated at the AJ. Among the two SFKs known to phosphorylate VEC, FYN, but not SRC, localizes to the SC. Furthermore, FYN mutant mice had decreased phosphorylation of VEC at SEC AJs, dysregulated IOP, and reduced AQH outflow. Together, our data demonstrate that increased IOP activates FYN in the inner wall of SC, leading to increased phosphorylation of AJ VEC and, thus, decreased resistance to AQH outflow. These findings support a crucial role of mechanotransduction signaling in IOP homeostasis within SC in response to IOP. These data strongly suggest that the inner wall of SC partially contributes to outflow resistance.
Collapse
|
4
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, Sotillo E, Weber EW, Rietberg SP, Dalton GN, Yin Y, Klysz D, Xu P, de la Serna EL, Dunn AR, Satpathy AT, Mackall CL, Majzner RG. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 2023; 615:507-516. [PMID: 36890224 PMCID: PMC10564584 DOI: 10.1038/s41586-023-05778-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.
Collapse
Affiliation(s)
- Aidan M Tousley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lea Wenting Rysavy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Lareau
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan W Weber
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Skyler P Rietberg
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Yajie Yin
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ansuman T Satpathy
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Xiao L, Salem JE, Clauss S, Hanley A, Bapat A, Hulsmans M, Iwamoto Y, Wojtkiewicz G, Cetinbas M, Schloss MJ, Tedeschi J, Lebrun-Vignes B, Lundby A, Sadreyev RI, Moslehi J, Nahrendorf M, Ellinor PT, Milan DJ. Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 2020; 142:2443-2455. [PMID: 33092403 DOI: 10.1161/circulationaha.120.049210] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ibrutinib is a Bruton tyrosine kinase inhibitor with remarkable efficacy against B-cell cancers. Ibrutinib also increases the risk of atrial fibrillation (AF), which remains poorly understood. METHODS We performed electrophysiology studies on mice treated with ibrutinib to assess inducibility of AF. Chemoproteomic analysis of cardiac lysates identified candidate ibrutinib targets, which were further evaluated in genetic mouse models and additional pharmacological experiments. The pharmacovigilance database, VigiBase, was queried to determine whether drug inhibition of an identified candidate kinase was associated with increased reporting of AF. RESULTS We demonstrate that treatment of mice with ibrutinib for 4 weeks results in inducible AF, left atrial enlargement, myocardial fibrosis, and inflammation. This effect was reproduced in mice lacking Bruton tyrosine kinase, but not in mice treated with 4 weeks of acalabrutinib, a more specific Bruton tyrosine kinase inhibitor, demonstrating that AF is an off-target side effect. Chemoproteomic profiling identified a short list of candidate kinases that was narrowed by additional experimentation leaving CSK (C-terminal Src kinase) as the strongest candidate for ibrutinib-induced AF. Cardiac-specific Csk knockout in mice led to increased AF, left atrial enlargement, fibrosis, and inflammation, phenocopying ibrutinib treatment. Disproportionality analyses in VigiBase confirmed increased reporting of AF associated with kinase inhibitors blocking Csk versus non-Csk inhibitors, with a reporting odds ratio of 8.0 (95% CI, 7.3-8.7; P<0.0001). CONCLUSIONS These data identify Csk inhibition as the mechanism through which ibrutinib leads to AF. Registration: URL: https://ww.clinicaltrials.gov; Unique identifier: NCT03530215.
Collapse
Affiliation(s)
- Ling Xiao
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joe-Elie Salem
- Clinical Pharmacology, Sorbonne University, INSERM, APHP, UNICO-GRECO Cardio-oncology Program (J-E.S., B.L-V.), Sorbonne University, ISERM, APHP, UNICO-GRECO Cardio-oncology Program, Hospital Pitié-Salpêtrière, Paris, France.,Clinical Investigation Center, Paris, France (J-E.S.).,Vanderbilt University Medical Center, Cardio-Oncology Program, Division of Cardiovascular Medicine, Nashville, TN (J-E.S., J.M.)
| | - Sebastian Clauss
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Medicine I, Klinikum Grosshadern, University of Munich, Germany (S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, Germany (S.C.)
| | - Alan Hanley
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Aneesh Bapat
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Maarten Hulsmans
- Center for Systems Biology, Department of Radiology (M.H., Y.I., G.W., M.J.S., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Department of Radiology (M.H., Y.I., G.W., M.J.S., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Department of Radiology (M.H., Y.I., G.W., M.J.S., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Murat Cetinbas
- Department of Molecular Biology(M.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA (M.C.)
| | - Maximilian J Schloss
- Center for Systems Biology, Department of Radiology (M.H., Y.I., G.W., M.J.S., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Justin Tedeschi
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Bénédicte Lebrun-Vignes
- Clinical Pharmacology, Sorbonne University, INSERM, APHP, UNICO-GRECO Cardio-oncology Program (J-E.S., B.L-V.), Sorbonne University, ISERM, APHP, UNICO-GRECO Cardio-oncology Program, Hospital Pitié-Salpêtrière, Paris, France.,Clinical Pharmacology and Regional Pharmacovigilance Center (B.L-V.), Sorbonne University, ISERM, APHP, UNICO-GRECO Cardio-oncology Program, Hospital Pitié-Salpêtrière, Paris, France.,Université Paris Est (UPEC), IRMB- EA 7379 EpiDermE (Epidemiology in Dermatology and Evaluation of Therapeutics), F-94010, Créteil, France (B.L-V.)
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences and NNF Center for Protein Research, Københavns Universitet, Copenhagen, Denmark (A.L.)
| | - Ruslan I Sadreyev
- Department of Pathology (R.I.S.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Javid Moslehi
- Vanderbilt University Medical Center, Cardio-Oncology Program, Division of Cardiovascular Medicine, Nashville, TN (J-E.S., J.M.)
| | - Matthias Nahrendorf
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Center for Systems Biology, Department of Radiology (M.H., Y.I., G.W., M.J.S., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Patrick T Ellinor
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (P.T.E.)
| | - David J Milan
- Cardiovascular Research Center (L.X., S.C., A.H., A.B., J.T., M.N., P.T.E., D.J.M.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Leducq Foundation, Boston, MA (D.J.M.)
| |
Collapse
|
8
|
Bais SS, Chheda MG. A Fyn romance: tumor cell Fyn kinase suppresses the immune microenvironment. Neuro Oncol 2020; 22:746-747. [PMID: 32227231 DOI: 10.1093/neuonc/noaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sachendra S Bais
- Department of Medicine, Washington University in St Louis, St Louis, Missouri.,Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri
| | - Milan G Chheda
- Department of Medicine, Washington University in St Louis, St Louis, Missouri.,Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri.,Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
9
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
10
|
Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar HI, Wang Q, Council A, Berg A, Freeman GJ, Boussiotis VA. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol 2020; 3:128. [PMID: 32184441 PMCID: PMC7078208 DOI: 10.1038/s42003-020-0845-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death-1 (PD-1) inhibits T cell responses. This function relies on interaction with SHP-2. PD-1 has one immunoreceptor tyrosine-based inhibitory motif (ITIM) at Y223 and one immunoreceptor tyrosine-based switch motif (ITSM) at Y248. Only ITSM-Y248 is indispensable for PD-1-mediated inhibitory function but how SHP-2 enzymatic activation is mechanistically regulated by one PD-1 phosphotyrosine remains a puzzle. We found that after PD-1 phosphorylation, SHP-2 can bridge phosphorylated ITSM-Y248 residues on two PD-1 molecules via its amino terminal (N)-SH2 and carboxyterminal (C)-SH2 domains forming a PD-1: PD-1 dimer in live cells. The biophysical ability of SHP-2 to interact with two ITSM-pY248 residues was documented by isothermal titration calorimetry. SHP-2 interaction with two ITSM-pY248 phosphopeptides induced robust enzymatic activation. Our results unravel a mechanism of PD-1: SHP-2 interaction that depends only on ITSM-Y248 and explain how a single docking site within the PD-1 cytoplasmic tail can activate SHP-2 and PD-1-mediated inhibitory function.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Halil-Ibrahim Aksoylar
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qi Wang
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Asia Council
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Anders Berg
- Department of Pathology Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Shao B, Yago T, Panicker SR, Zhang N, Liu Z, McEver RP. Th1 Cells Rolling on Selectins Trigger DAP12-Dependent Signals That Activate Integrin αLβ2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:37-48. [PMID: 31757864 PMCID: PMC6920551 DOI: 10.4049/jimmunol.1900680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022]
Abstract
During inflammation, both neutrophils and effector T cells use selectins to roll and integrins to arrest in postcapillary venules. In both cell types, chemokines can transduce signals that convert integrin αLβ2 to a high-affinity conformation, which interacts with ICAM-1 to mediate arrest. In neutrophils, selectins also trigger an immunoreceptor-like signaling cascade that converts integrin αLβ2 to an intermediate-affinity conformation, which interacts with ICAM-1 to slow rolling. It is not known whether selectins induce similar signaling events in T cells. Ag engagement causes phosphorylation of ITAMs on the TCR; these motifs recruit kinases and adaptors that lead to the activation of αLβ2. We found that mouse Th1 cells rolling on P- or E-selectin triggered signals that promoted αLβ2-dependent slow rolling on ICAM-1 in vitro and in vivo. The selectin signaling cascade resembled that used by the TCR, except that unexpectedly, Th1 cells employed the ITAM-bearing protein DAP12, which was not known to be expressed in these cells. Importantly, outside-in signaling through ligand-occupied αLβ2 also required DAP12. Cooperative selectin and chemokine signaling in Th1 cells promoted αLβ2-dependent slow rolling and arrest in vitro and in vivo and migration into Ag-challenged tissues in vivo. Our findings reveal an important function for DAP12 in Th1 cells and a new mechanism to recruit effector T cells to sites of inflammation.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
12
|
Liu G, Thangavel R, Rysted J, Kim Y, Francis MB, Adams E, Lin Z, Taugher RJ, Wemmie JA, Usachev YM, Lee G. Loss of tau and Fyn reduces compensatory effects of MAP2 for tau and reveals a Fyn-independent effect of tau on calcium. J Neurosci Res 2019; 97:1393-1413. [PMID: 31452242 PMCID: PMC6850396 DOI: 10.1002/jnr.24517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Microtubule-associated protein tau associates with Src family tyrosine kinase Fyn and is tyrosine phosphorylated by Fyn. The presence of tyrosine phosphorylated tau in AD and the involvement of Fyn in AD has drawn attention to the tau-Fyn complex. In this study, a tau-Fyn double knockout (DKO) mouse was generated to investigate the role of the complex. DKO mice resembled Fyn KO in novel object recognition and contextual fear conditioning tasks and resembled tau KO mice in the pole test and protection from pentylenetetrazole-induced seizures. In glutamate-induced Ca2+ response, Fyn KO was decreased relative to WT and DKO had a greater reduction relative to Fyn KO, suggesting that tau may have a Fyn-independent role. Since tau KO resembled WT in its Ca2+ response, we investigated whether microtubule-associated protein 2 (MAP2) served to compensate for tau, since the MAP2 level was increased in tau KO but decreased in DKO mice. We found that like tau, MAP2 increased Fyn activity. Moreover, tau KO neurons had increased density of dendritic MAP2-Fyn complexes relative to WT neurons. Therefore, we hypothesize that in the tau KO, the absence of tau would be compensated by MAP2, especially in the dendrites, where tau-Fyn complexes are of critical importance. In the DKO, decreased levels of MAP2 made compensation more difficult, thus revealing the effect of tau in the Ca2+ response.
Collapse
Affiliation(s)
- Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ramasamy Thangavel
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jacob Rysted
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yohan Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan B Francis
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric Adams
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhihong Lin
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rebecca J Taugher
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John A Wemmie
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yuriy M Usachev
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. EMBO J 2017; 36:3120-3138. [PMID: 28864542 DOI: 10.15252/embj.201797724] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
The cause of protein accumulation in neurodegenerative disease is incompletely understood. In Alzheimer's disease (AD), the axonally enriched protein Tau forms hyperphosphorylated aggregates in the somatodendritic domain. Consequently, a process of subcellular relocalization driven by Tau phosphorylation and detachment from microtubules has been proposed. Here, we reveal an alternative mechanism of de novo protein synthesis of Tau and its hyperphosphorylation in the somatodendritic domain, induced by oligomeric amyloid-β (Aβ) and mediated by the kinase Fyn that activates the ERK/S6 signaling pathway. Activation of this pathway is demonstrated in a range of cellular systems, and in vivo in brains from Aβ-depositing, Aβ-injected, and Fyn-overexpressing mice with Tau accumulation. Both pharmacological inhibition and genetic deletion of Fyn abolish the Aβ-induced Tau overexpression via ERK/S6 suppression. Together, these findings present a more cogent mechanism of Tau aggregation in disease. They identify a prominent role for neuronal Fyn in integrating signal transduction pathways that lead to the somatodendritic accumulation of Tau in AD.
Collapse
Affiliation(s)
- Chuanzhou Li
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
14
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Espada J, Martín-Pérez J. An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:83-122. [DOI: 10.1016/bs.ircmb.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Adam AP, Lowery AM, Martino N, Alsaffar H, Vincent PA. Src Family Kinases Modulate the Loss of Endothelial Barrier Function in Response to TNF-α: Crosstalk with p38 Signaling. PLoS One 2016; 11:e0161975. [PMID: 27603666 PMCID: PMC5014308 DOI: 10.1371/journal.pone.0161975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023] Open
Abstract
Activation of Src Family Kinase (SFK) signaling is required for the increase in endothelial permeability induced by a variety of cytokines and growth factors. However, we previously demonstrated that activation of endogenous SFKs by expression of dominant negative C-terminal Src Kinase (DN-Csk) is not sufficient to decrease endothelial adherens junction integrity. Basal SFK activity has been observed in normal venular endothelia and was not associated with increased basal permeability. The basal SFK activity however was found to contribute to increased sensitivity of the venular endothelium to inflammatory mediator-induced leakage. How SFK activation achieves this is still not well understood. Here, we show that SFK activation renders human dermal microvascular endothelial cells susceptible to low doses of TNF-α. Treatment of DN-Csk-expressing cells with 50 pg/ml TNF-α induced a loss of TEER as well as drastic changes in the actin cytoskeleton and focal adhesion proteins. This synergistic effect was independent of ROCK or NF-κB activity. TNF-α-induced p38 signaling was required for the synergistic effect on barrier function, and activation of the p38 MAPK alone was also able to induce changes in permeability only in monolayers with active SFKs. These results suggest that the activation of endogenous levels of SFK renders the endothelial barrier more susceptible to low, physiologic doses of TNF-α through activation of p38 which leads to a loss of endothelial tight junctions.
Collapse
Affiliation(s)
- Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- Department of Ophthalmology, Albany Medical College, Albany, New York, United States of America
- * E-mail: (PAV); (APA)
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Hiba Alsaffar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- * E-mail: (PAV); (APA)
| |
Collapse
|
17
|
Chiang YJ, Hodes RJ. T-cell development is regulated by the coordinated function of proximal and distal Lck promoters active at different developmental stages. Eur J Immunol 2016; 46:2401-2408. [PMID: 27469439 DOI: 10.1002/eji.201646440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
Expression of Lck, a T-cell lineage-specific tyrosine kinase critical for T-cell development and activation, can be mediated by either proximal or distal lck promoter. We generated BAC transgenic mice in which BAC lck promoter was deleted and bred these transgenes to an Lck knockout background. Lck-PROX mice, in which only the proximal promoter is functional, have maximal Lck protein and normal thymic development through CD4- CD8- double negative (DN) and CD4+ CD8+ double positive (DP) stages, but undetectable Lck later in development and reduced mature single positive thymocytes. In contrast, Lck-DIST mice, in which only distal promoter was functional, are deficient in Lck protein in DN and DP thymocytes and severely defective in early T-cell development, with a block at the DN3-DN4 beta checkpoint equivalent to complete Lck knockouts. The ability of the proximal lck promoter to support thymic development is independent of Fyn; while, in contrast, the distal lck promoter alone is completely unable to support development in the absence of Fyn. Notably, normal thymocyte development is restored by presence of both proximal and distal promoters, even when independently expressed on different lck genes. These results define distinct and complementary requirements for proximal and distal lck promoters during T-cell development.
Collapse
Affiliation(s)
- Y Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA. .,National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, Ito A, Ogata T, Terada N, Tanoue A, Yamauchi J. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 2015. [PMID: 26224309 PMCID: PMC4591693 DOI: 10.1091/mbc.e14-05-1020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through Tyro3 receptor tyrosine kinase and its binding partner, Fyn nonreceptor cytoplasmic tyrosine kinase, is involved in myelination by Schwann cells. Impaired formation of myelin segments is observed in Schwann cell neuronal cultures established from Tyro3-knockout mouse dorsal root ganglia (DRG). Indeed, Tyro3-knockout mice exhibit reduced myelin thickness. By affinity chromatography, Fyn was identified as the binding partner of the Tyro3 intracellular domain, and activity of Fyn is down-regulated in Tyro3-knockout mice, suggesting that Tyro3, acting through Fyn, regulates myelination. Ablating Fyn in mice results in reduced myelin thickness. Decreased myelin formation is observed in cultures established from Fyn-knockout mouse DRG. Furthermore, decreased kinase activity levels and altered expression of myelination-associated transcription factors are observed in these knockout mice. These results suggest the involvement of Tyro3 receptor and its binding partner Fyn in Schwann cell myelination. This constitutes a newly recognized receptor-linked signaling mechanism that can control Schwann cell myelination.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Nobuhiko Ohno
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yurika Saitoh
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akihito Ito
- Research Center, Nissei Bilis, Koga, Shiga 528-0052, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, National Rehabilitation Center for Persons with Disabilities Research Institute, Tokorozawa, Saitama 359-8555, Japan
| | - Nobuo Terada
- Graduate School of Medicine, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan )
| |
Collapse
|
19
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
20
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
21
|
Pseudophosphorylation of Tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines. Biochim Biophys Acta Mol Basis Dis 2015; 1852:913-24. [PMID: 25558816 DOI: 10.1016/j.bbadis.2014.12.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ) and Tau in the brain. In mature neurons, Tau is concentrated in the axon and found at lower levels in the dendrite where it is required for targeting Fyn to the spines. Here Fyn mediates Aβ toxicity, which is vastly abrogated when Tau is either deleted or a truncated form of Tau (Tau(1-255)) is co-expressed. Interestingly, MAP2, a microtubule-binding protein with mainly dendritic localization that shares Fyn-binding motifs with Tau, does not mediate Aβ's synaptic toxicity in the absence of Tau. Here we show in hippocampal neurons that endogenous Tau enters the entire spine, albeit at low levels, whereas MAP2 only enters its neck or is restricted to the dendritic shaft. Based on an extensive mutagenesis study, we also reveal that the spine localization of Tau is facilitated by deletion of the microtubule-binding repeat domain. When distinct phosphorylation sites (AT180-T231/S235, 12E8-S262/S356, PHF1-S396/S404) were pseudophosphorylated (with glutamic acid, using alanine replacements as controls), Tau targeting to spines was markedly increased, whereas the pseudophosphorylation of the late phospho-epitope S422 had no effect. In determining the role physiological Fyn has in the spine localization of Tau, we found that neither were endogenous Tau levels reduced in Fyn knockout compared with wild-type synaptosomal brain fractions nor was the spine localization of over-expressed pseudophosphorylated or P301L Tau. This demonstrates that although Fyn targeting to the spine is Tau dependent, elevated levels of phosphorylated Tau or P301L Tau can enter the spine in a Fyn-independent manner.
Collapse
|
22
|
Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NRJ, Lanier LL. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 2014; 40:225-34. [PMID: 24440149 DOI: 10.1016/j.immuni.2013.12.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/27/2013] [Indexed: 01/22/2023]
Abstract
Recent studies demonstrate that natural killer (NK) cells have adaptive immune features. Here, we investigated the role of the costimulatory molecule DNAM-1 in the differentiation of NK cells in a mouse model of cytomegalovirus (MCMV) infection. Antibody blockade of DNAM-1 suppressed the expansion of MCMV-specific Ly49H(+) cells during viral infection and inhibited the generation of memory NK cells. Similarly, DNAM-1-deficient (Cd226(-/-)) Ly49H(+) NK cells exhibited intrinsic defects in expansion and differentiation into memory cells. Src-family tyrosine kinase Fyn and serine-threonine protein kinase C isoform eta (PKCη) signaling through DNAM-1 played distinct roles in the generation of MCMV-specific effector and memory NK cells. Thus, cooperative signaling through DNAM-1 and Ly49H are required for NK cell-mediated host defense against MCMV infection.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minoru Kanaya
- Department of Immunology, Division of Biomedical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Division of Biomedical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Zhong MC, Veillette A. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis. J Biol Chem 2013; 288:31423-36. [PMID: 24045941 DOI: 10.1074/jbc.m113.473736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- From the Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | |
Collapse
|
24
|
CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei. PLoS One 2013; 8:e71010. [PMID: 23967147 PMCID: PMC3744507 DOI: 10.1371/journal.pone.0071010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36−/− mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb) compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36−/− mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS). To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC) from WT and CD36−/− mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER) from H2O2 indicating loss of barrier function, CD36−/− MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36−/− endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36−/− lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn−/− mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our results demonstrate that CD36 and Fyn kinase are critical mediators of the increased lung endothelial fluid conductance caused by malaria infection.
Collapse
|
25
|
Yamane H, Paul WE. Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets. Immunol Rev 2013; 252:12-23. [PMID: 23405892 DOI: 10.1111/imr.12032] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD4(+) T-helper (Th) cells are a major cell population that play an important role in governing acquired immune responses to a variety of foreign antigens as well as inducing some types of autoimmune diseases. There are at least four distinct Th cell subsets (Th1, Th2, Th17, and inducible T-regulatory cells), each of which has specialized functions to control immune responses. Each of these cell types emerge from naive CD4(+) T cells after encounter with foreign antigens presented by dendritic cells (DCs). Each Th cell subset expresses a unique set of transcription factors and produces hallmark cytokines. Both T-cell receptor (TCR)-mediated stimulation and the cytokine environment created by activated CD4(+) T cells themselves, by 'partner' DCs, and/or other cell types during the course of differentiation, play an important role in the fate decisions toward distinct Th subsets. Here, we review how TCR-mediated signals in collaboration with the cytokine environment influence the fate decisions of naive CD4(+) T cells toward distinct Th subsets at the early stages of activation. We also discuss the roles of TCR-proximal signaling intermediates and of the Notch pathway in regulating the differentiation to distinct Th phenotypes.
Collapse
Affiliation(s)
- Hidehiro Yamane
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
26
|
Das R, Bassiri H, Guan P, Wiener S, Banerjee PP, Zhong MC, Veillette A, Orange JS, Nichols KE. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood 2013; 121:3386-95. [PMID: 23430111 PMCID: PMC3637014 DOI: 10.1182/blood-2012-11-468868] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.
Collapse
Affiliation(s)
- Rupali Das
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
SEMA3A signaling controls layer-specific interneuron branching in the cerebellum. Curr Biol 2013; 23:850-61. [PMID: 23602477 DOI: 10.1016/j.cub.2013.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/01/2013] [Accepted: 04/02/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND GABAergic interneurons regulate the balance and dynamics of neural circuits, in part, by elaborating their strategically placed axon branches that innervate specific cellular and subcellular targets. However, the molecular mechanisms that regulate target-directed GABAergic axon branching are not well understood. RESULTS Here we show that the secreted axon guidance molecule, SEMA3A, expressed locally by Purkinje cells, regulates cerebellar basket cell axon branching through its cognate receptor Neuropilin-1 (NRP1). SEMA3A was specifically localized and enriched in the Purkinje cell layer (PCL). In sema3A(-/-) and nrp1(sema-/sema-) mice lacking SEMA3A-binding domains, basket axon branching in PCL was reduced. We demonstrate that SEMA3A-induced axon branching was dependent on local recruitment of soluble guanylyl cyclase (sGC) to the plasma membrane of basket cells, and sGC subcellular trafficking was regulated by the Src kinase FYN. In fyn-deficient mice, basket axon terminal branching was reduced in PCL, but not in the molecular layer. CONCLUSIONS These results demonstrate a critical role of local SEMA3A signaling in layer-specific axonal branching, which contributes to target innervation.
Collapse
|
28
|
Src inhibits midline axon crossing independent of Frazzled/Deleted in Colorectal Carcinoma (DCC) receptor tyrosine phosphorylation. J Neurosci 2013; 33:305-14. [PMID: 23283343 DOI: 10.1523/jneurosci.2756-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The phylogenetically conserved Netrin family of chemoattractants signal outgrowth and attractive turning of commissural axons through the Deleted in Colorectal Carcinoma (DCC) family of receptors. Src family kinases are thought to be major signaling effectors of Netrin/DCC. In vertebrates, Src and the closely related Fyn kinases phosphorylate DCC and form a receptor-bound signaling complex leading to activation of downstream effectors. Here we show that, in the Drosophila embryonic CNS, Src kinases are dispensable for midline attraction of commissural axons. Consistent with this observation, tyrosine phosphorylation of the Netrin receptor DCC or its Drosophila ortholog, Frazzled, is not necessary for attraction to Netrin. Moreover, we uncover an unexpected function of Src kinases: inhibition of midline axon crossing through a novel mechanism. We propose that distinct signaling outputs must exist for midline axon crossing independent of Src kinases in commissural neurons.
Collapse
|
29
|
Borger JG, Filby A, Zamoyska R. Differential polarization of C-terminal Src kinase between naive and antigen-experienced CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3089-99. [PMID: 23427257 DOI: 10.4049/jimmunol.1202408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In CD8(+) T cells, engagement of the TCR with agonist peptide:MHC molecules causes dynamic redistribution of surface molecules including the CD8 coreceptor to the immunological synapse. CD8 associates with the Src-family kinase (SFK) Lck, which, in turn, initiates the rapid tyrosine phosphorylation events that drive cellular activation. Compared with naive T cells, Ag-experienced CD8(+) T cells make shorter contacts with APC, are less dependent on costimulation, and are triggered by lower concentrations of Ag, yet the molecular basis of this more efficient response of memory T cells is not fully understood. In this article, we show differences between naive and Ag-experienced CD8(+) T cells in colocalization of the SFKs and their negative regulator, C-terminal Src kinase (Csk). In naive CD8(+) T cells, there was pronounced colocalization of SFKs and Csk at the site of TCR triggering, whereas in Ag-experienced cells, Csk displayed a bipolar distribution with a proportion of the molecules sequestered within a cytosolic area in the distal pole of the cell. The data show that there is differential redistribution of a key negative regulator away from the site of TCR engagement in Ag-experienced CD8(+) T cells, which might be associated with the more efficient responses of these cells on re-exposure to Ag.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | |
Collapse
|
30
|
Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity. Mol Cell Biol 2013; 33:1223-32. [PMID: 23319045 DOI: 10.1128/mcb.01591-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.
Collapse
|
31
|
Xiao X, Mruk DD, Cheng FL, Cheng CY. C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:295-317. [PMID: 23397631 DOI: 10.1007/978-1-4614-4711-5_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Src family kinases (SFKs), in particular c-Src and c-Yes, are nonreceptor protein tyrosine kinases that mediate integrin signaling at focal adhesion complex at the cell-extracellular matrix interface to regulate cell adhesion, cell cycle progression, cell survival, proliferation and differentiation, most notably in cancer cells during tumorigenesis and metastasis. Interestingly, recent studies have shown that these two proto-oncogenes are integrated components of the stem cell niche and the cell-cell actin-based anchoring junction known as ectoplasmic specialization (ES) at the: (1) Sertoli cell-spermatid interface known as apical ES and (2) Sertoli-Sertoli cell interface known as basal ES which together with tight junctions (TJ), gap junctions and desmosomes constitute the blood-testis barrier (BTB). At the stem cell niche, these SFKs regulate spermatogonial stem cell (SSC) renewal to maintain the proper population of SSC/spermatogonia for spermatogenesis. At the apical ES and the BTB, c-Src and c-Yes confer cell adhesion either by maintaining the proper phosphorylation status of integral membrane proteins at the site which in turn regulates protein-protein interactions between integral membrane proteins and their adaptors, or by facilitating androgen action on spermatogenesis via a nongenomic pathway which also modulates cell adhesion in the seminiferous epithelium. Herein, we critically evaluate recent findings in the field regarding the roles of these two unlikely partners of spermatogenesis. We also propose a hypothetical model on the mechanistic functions of c-Src and c-Yes in spermatogenesis so that functional experiments can be designed in future studies.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Biomedical Research, Population Council, New York New York, USA
| | | | | | | |
Collapse
|
32
|
Ridgway RA, Serrels B, Mason S, Kinnaird A, Muir M, Patel H, Muller WJ, Sansom OJ, Brunton VG. Focal adhesion kinase is required for β-catenin-induced mobilization of epidermal stem cells. Carcinogenesis 2012; 33:2369-76. [PMID: 22971575 DOI: 10.1093/carcin/bgs284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates signals downstream of integrin and growth factor activation. Previously, we have shown that skin-specific loss of fak prevents chemically induced skin carcinogenesis in mice following phorbol ester treatment. In this study, we show that skin-specific deletion of fak prevents mobilization of stem cells within the bulge region of the hair follicle, which are the precursors of papillomas following phorbol ester treatment. We also show that phorbol ester treatment results in activation of-catenin within the skin and that FAK is required for β-catenin-induced stem cell mobilization. In addition, inhibition of Src kinase activity, a major binding partner of FAK also prevents stem cell mobilization. We show that FAK is required for the nuclear localization of β-catenin in the skin following phorbol ester treatment and the transcriptional activation of the β-catenin target gene c-Myc. This provides the first evidence of cross-talk between integrin and Wnt signalling pathways in the control of epidermal stem cells and the early events associated with skin carcinogenesis.
Collapse
Affiliation(s)
- Rachel A Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012:512926. [PMID: 23209344 PMCID: PMC3504478 DOI: 10.1155/2012/512926] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.
Collapse
|
34
|
Mice lacking protein tyrosine kinase fyn develop a T helper-type 1 response and resistLeishmania major infection. Environ Health Prev Med 2012; 6:132-5. [PMID: 21432251 DOI: 10.1007/bf02897960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Accepted: 04/20/2001] [Indexed: 10/22/2022] Open
Abstract
Fyn is a Src family protein tyrosine kinase associated with TCR/CD3 complex. Fyn appears to play a role in the activation of T cells based on its enzymatic activation and tyrosine phosphorylation following the ligation of TCR/CD3, and it also plays a critical role in the calcium flux and interleukin-2 (IL-2) production. The protective response against murineLeishmania major infection is associated with the T helper-type 1 (Th1) responses and the ability to modulate Th1 cytokines such as IL-2 and interferon-γ, respectively. The role of Fyn tyrosine kinasein vivo was directly examined by the response to infection withL. major in C57BL/6fyn-deficient mice. Despite the absence of Fyn, the mice remained resistant to this infection with only mild lesion development, and, they demonstrated Th1 responses as assessed by the delayed-type hyper-sensitivity response and cytokine milieu. The findings in thefyn-deficient mice failed to support a relationship between the anticipated functions of Fynin vitro and the immune response toL. major infectionin vivo. As a result, in leishmanial disease, Fyn probably plays a minor role in the protective immune response and is, therefore, not a key factor in such a response.
Collapse
|
35
|
Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 2012; 15:1227-35. [PMID: 22820466 PMCID: PMC3431439 DOI: 10.1038/nn.3178] [Citation(s) in RCA: 506] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer’s disease (AD) pathophysiology. Cellular Prion Protein (PrPC) selectively binds oligomeric Aβ and can mediate AD-related phenotypes. Here, we examined the specificity, distribution and signaling from Aβ/PrP complexes, seeking to explain how they might alter the function of NMDA receptors in neurons. PrPC is enriched in post-synaptic densities, and Aβ/PrPC interaction leads to Fyn kinase activation. Soluble Aβ assemblies derived from human AD brain interact with PrPC to activate Fyn. Aβ engagement of PrPC/Fyn signaling yields phosphorylation of the NR2B subunit of NMDA-receptors, which is coupled to an initial increase and then loss of surface NMDA-receptors. Aβ-induced LDH release and dendritic spine loss require both PrPC and Fyn, and human familial AD transgene-induced convulsive seizures do not occur in mice lacking PrPC. These results delineate an Aβ oligomer signal transduction pathway requiring PrPC and Fyn to alter synaptic function with relevance to AD.
Collapse
Affiliation(s)
- Ji Won Um
- Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Van Laethem F, Tikhonova AN, Singer A. MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends Immunol 2012; 33:437-41. [PMID: 22771139 DOI: 10.1016/j.it.2012.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Mature αβ T cells recognize foreign antigenic peptides presented by MHC molecules but do not recognize native antigenic proteins; features known as MHC restriction. How MHC restriction is imposed on αβ T cells has intrigued immunologists for several decades. One model proposes that germline-encoded elements in the T cell receptor (TCR) variable regions are evolutionarily conserved to only recognize MHC. However, we propose an alternative model that posits that MHC restriction is imposed by CD4 and CD8 co-receptors during thymic selection. Thus, we think that TCRs are structurally able to recognize a huge diversity of ligands but only TCRs with MHC specificity survive thymic selection.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
37
|
Lee WT, Prasad A, Watson ARO. Anergy in CD4 memory T lymphocytes. II. Abrogation of TCR-induced formation of membrane signaling complexes. Cell Immunol 2012; 276:26-34. [PMID: 22663768 DOI: 10.1016/j.cellimm.2012.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 01/15/2023]
Abstract
Memory and naive CD4 T cells have unique regulatory pathways for self/non-self discrimination. A memory cell specific regulatory pathway was revealed using superantigens to trigger the TCR. Upon stimulation by bacterial superantigens, like staphylococcal enterotoxin B (SEB), TCR proximal signaling is impaired leading to clonal tolerance (anergy). In the present report, we show that memory cell anergy results from the sequestration of the protein tyrosine kinase ZAP-70 away from the TCR/CD3ζ chain. During SEB-induced signaling, ZAP-70 is excluded from both detergent-resistant membrane microdomains and the immunological synapse, thus blocking downstream signaling. We also show that the mechanism underlying memory cell anergy must involve Fyn kinase, given that the suppression of Fyn activity restores the movement of ZAP-70 to the immunological synapse, TCR proximal signaling, and cell proliferation. Thus, toleragens, including microbial toxins, may modulate memory responses by targeting the organizational structure of memory cell signaling complexes.
Collapse
Affiliation(s)
- William T Lee
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, New York 12201-0509, United States.
| | | | | |
Collapse
|
38
|
Abstract
The development of T cell in the thymus and the activation of mature T cells in the secondary lymphoid tissues require T cell to make adaptive responses to signaling molecules of environment. The activation of T cell receptor (TCR) signaling pathway could be induced by the interaction of the TCR and its co-receptor CD4 and CD8 with MHC/peptide complex. This process involves co-stimulatory molecules and signals mediated by cytokine receptors, which eventually leads to the occurrence of T cell immune response. The Src-family kinases lymphocyte-specific protein tyrosine kinase (Lck) and proto-oncogene tyrosine-protein kinase (Fyn) are expressed in T cells and serve as the signaling molecules that are activated downstream of TCR. These signaling molecules play key roles in development, positive selection, and peripheral maintenance of naive T cells and lymphopenia-induced proliferation of peripheral T cells. Both Lck and Fyn are required for each of these TCR-based signaling pathways, and Lck seems to be the major contributor, while Fyn can only supplement some functions of Lck. In this review, we discussed the mechanisms by which these two proteins perform functions in T cell development based on our current understanding.
Collapse
|
39
|
Watson ARO, Janik DK, Lee WT. Superantigen-induced CD4 memory T cell anergy. I. Staphylococcal enterotoxin B induces Fyn-mediated negative signaling. Cell Immunol 2012; 276:16-25. [PMID: 22386537 DOI: 10.1016/j.cellimm.2012.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/15/2011] [Accepted: 02/07/2012] [Indexed: 12/15/2022]
Abstract
Memory CD4 T cells must provide robust protection for an organism while still maintaining self-tolerance. Superantigens reveal a memory cell-specific regulatory pathway, by which signaling through the TCR can lead to clonal tolerance (anergy). Here we show that the src kinase Fyn is a critical regulator of anergy in murine memory CD4 T cells induced by the bacterial superantigen staphylococcal enterotoxin B (SEB). Exposure to SEB results in impaired TCR signaling due to failed CD3/ZAP-70 complex formation. Further, signal transduction through the TCR remains similarly blocked when anergic memory cells are subsequently exposed to agonist peptide antigen. Pharmacological inhibition or genetic elimination of Fyn kinase reverses memory cell anergy, resulting in SEB-induced cell proliferation. The mechanism underlying impaired TCR signaling and subsequent memory cell anergy must involve a Fyn signaling pathway given that the suppression of Fyn activity restores CD3/ZAP-70 complex formation and TCR proximal signaling.
Collapse
Affiliation(s)
- Andrew R O Watson
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, NY 12201-0509, United States
| | | | | |
Collapse
|
40
|
Luo J, Gupta V, Kern B, Tash JS, Sanchez G, Blanco G, Kinsey WH. Role of FYN kinase in spermatogenesis: defects characteristic of Fyn-null sperm in mice. Biol Reprod 2012; 86:1-8. [PMID: 21918125 DOI: 10.1095/biolreprod.111.093864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
FYN kinase is highly expressed in the testis and has been implicated in testis and sperm function, yet specific roles for this kinase in testis somatic and germ cells have not been defined. The purpose of the present investigation was to identify aspects of spermatogenesis, spermiation, or sperm fertilizing capacity that required FYN for normal reproductive function. Matings between Fyn-null males and wild-type females resulted in normal litter sizes, despite the fact that Fyn-null males exhibited reduced epididymal size and sperm count. Morphological analysis revealed a high frequency of abnormal sperm morphology among Fyn-null sperm, and artificial insemination competition studies demonstrated that Fyn-null sperm possessed reduced fertilizing capacity. Fyn-null sperm exhibited nearly normal motility during capacitation in vitro but reduced ability to undergo the acrosome reaction and fertilize oocytes. The typical pattern of capacitation-induced protein tyrosine phosphorylation was slightly modified in Fyn-null sperm, with reduced abundance of several minor phosphoproteins. These findings are consistent with a model in which FYN kinase plays an important role in proper shaping of the head and acrosome within the testis and possibly an additional role in the sperm acrosome reaction, events required for development of full fertilizing capacity in sperm.
Collapse
Affiliation(s)
- Jinping Luo
- Interdisciplinary Center for Male Contraceptive Research and Drug Development, University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Niediek V, Born S, Hampe N, Kirchgessner N, Merkel R, Hoffmann B. Cyclic stretch induces reorientation of cells in a Src family kinase- and p130Cas-dependent manner. Eur J Cell Biol 2011; 91:118-28. [PMID: 22178114 DOI: 10.1016/j.ejcb.2011.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 10/23/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Recognition of external mechanical signals by cells is an essential process for life. One important mechanical signal experienced by various cell types, e.g. around blood vessels, within the lung epithelia or around the intestine, is cyclic stretch. As a response, many cell types reorient their actin cytoskeleton and main cell axis almost perpendicular to the direction of stretch. Despite the vital necessity of cellular adaptation to cyclic stretch, the underlying mechanosensory signal cascades are far from being understood. Here we show an important function of Src-family kinase activity in cellular reorientation upon cyclic stretch. Deletion of all three family members, namely c-Src, Yes and Fyn (SYF), results in a strongly impaired cell reorientation of mouse embryonic fibroblasts with an only incomplete reorientation upon expression of c-Src. We further demonstrate that this reorientation phenotype of SYF-depleted cells is not caused by affected protein exchange dynamics within focal adhesions or altered cell force generation. Instead, Src-family kinases regulate the reorientation in a mechanotransduction-dependent manner, since knock-down and knock-out of p130Cas, a putative stretch sensor known to be phosphorylated by Src-family kinases, also reduce cellular reorientation upon cyclic stretch. This impaired reorientation is identical in intensity upon mutating stretch-sensitive tyrosines of p130Cas only. These statistically highly significant data pinpoint early events in a Src family kinase- and p130Cas-dependent mechanosensory/mechanotransduction pathway.
Collapse
Affiliation(s)
- Verena Niediek
- Institute of Complex Systems 7, Biomechanics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Gascoigne NRJ, Casas J, Brzostek J, Rybakin V. Initiation of TCR phosphorylation and signal transduction. Front Immunol 2011; 2:72. [PMID: 22566861 PMCID: PMC3342367 DOI: 10.3389/fimmu.2011.00072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/21/2011] [Indexed: 01/14/2023] Open
Abstract
Recent data with CD8+ T cells show that the initial phase of T cell receptor (TCR) binding to MHC–peptide (MHCp) is quickly followed by a second, stronger, binding phase representing the binding of CD8 to the MHCp. This second phase requires signaling by a Src-family kinase such as Lck. These data point out two aspects of the initial stage of TCR signaling that have not yet been clearly resolved. Firstly, how and by which Src-family kinase, is the initial phosphorylation of CD3ζ accomplished, given that the Lck associated with the co-receptors (CD4 or CD8) is not yet available. Secondly, what is the mechanism by which the co-receptor is brought close to the bound TCR before the co-receptor binds to MHCp?
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA.
| | | | | | | |
Collapse
|
43
|
Fukunishi S, Tsuda Y, Takeshita A, Fukui H, Miyaji K, Fukuda A, Higuchi K. p59fyn is associated with the development of hepatic steatosis due to chronic ethanol consumption. J Clin Biochem Nutr 2011; 49:20-4. [PMID: 21765602 PMCID: PMC3128361 DOI: 10.3164/jcbn.10-115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/20/2010] [Indexed: 01/12/2023] Open
Abstract
p59fyn, a protein tyrosine kinase belonging to the src-family, is involved in the regulatory mechanism of acute response to ethanol in the central nervous system. A previous report showed an association between src-family kinase activity and fatty acid oxidation, and it also reported that hepatic free fatty acid levels were low in Fyn-/- mice. We examined, using Fyn-/- mice whether Fyn is also involved in fatty acid metabolism and the development of pathological changes in the liver in response to chronic ethanol consumption. C57BL/6J Fyn-/- and Fyn+/+ mice were fed for 8 weeks with either a liquid diet comprising ethanol or one in which the calories from ethanol were replaced with carbohydrates. Chronic ethanol consumption for 8 weeks resulted in remarkable hepatic steatosis in Fyn+/+ mice but not in Fyn-/- mice. Chronic ethanol consumption induced a significant decrease in hepatic FFA and triglyceride levels in Fyn-/- mice. Levels of interleukin-6, which is associated with the enhancement of fatty acid oxidation, was also increased significantly in the livers of ethanol-fed Fyn-/- mice. The results suggest that Fyn is involved in the enhancement of fatty acid oxidation and the development of hepatic steatosis caused by chronic ethanol consumption.
Collapse
Affiliation(s)
- Shinya Fukunishi
- Department of Gastroenteroloy and Hepatology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, Liu XD, Wang SG, Bie P, Jiang P, Dong JH, Li XW. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis 2011; 32:1419-26. [PMID: 21642356 DOI: 10.1093/carcin/bgr088] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The Src family kinase Fyn, heterogenous nuclear ribonucleoprotein (HnRNP) A2B1 and Sam68 are thought to be associated with the metastasis of tumors, but their roles in the regulation of apoptosis remain unclear. This study investigated the role of Fyn and its potential relationship with HnRNPA2B1 and Sam68 in the regulation of apoptosis in pancreatic cancer. Experimental design. We examined both the activity of Fyn and the expression of HnRNPA2B1 in human pancreatic cancer tissues and systematically investigated the apoptotic mechanisms induced by Fyn activity using multiple experimental approaches. RESULTS We found that Fyn activity was increased in metastatic pancreatic cancer tissues. In the pancreatic cancer BxPc3 cell line, the inhibition of Fyn activity by kinase-dead Fyn downregulated HnRNPA2B1 expression. Further analysis showed that HnRNPA2B1 expression was associated with pancreatic cancer progression. In BxPc3 cells, HnRNPA2B1 bound to Bcl-x messenger RNA (mRNA), which affected splicing and therefore, the formation of Bcl-x(s). Downregulation of HnRNPA2B1 by RNA interference (RNAi) resulted in the increased formation of the pro-apoptotic Bcl-x(s) and promoted apoptosis of BxPc3 cells. In addition, deactivation of Fyn in BxPc3 cells reduced Sam68 phosphorylation. This resulted in increased binding between Sam68 and Bcl-x mRNA, promoting the formation of the anti-apoptotic Bcl-x(L). The knockdown of Sam68 by RNAi also increased the formation of Bcl-x(L). Finally, HnRNPA2B1 overexpression or Sam68 knockdown could rescue pancreatic cancer cells from apoptosis. CONCLUSION Our results suggest a mechanism by which Fyn requires HnRNPA2B1 and Sam68 to coordinate and regulate apoptosis, thus promoting the proliferation and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Department of Hepatobiliary Surgery Institute, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci U S A 2011; 108:6579-84. [PMID: 21464326 DOI: 10.1073/pnas.1103904108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Src family kinases (SFKs) are pleiotropic activators that are responsible for integrating signal transduction for multiple receptors that regulate cellular proliferation, invasion, and metastasis in a variety of human cancers. Independent groups have identified increased expression of individual SFK members during prostate cancer progression, raising the question of whether SFKs display functional equivalence. Here, we show that Src kinase, followed by Fyn kinase and then Lyn kinase, exhibit ranked tumorigenic potential during both paracrine-induced and cell-autonomous-initiated prostate cancer. This quantitative variation in transformation potential appears to be regulated in part by posttranslational palmitoylation. Our data indicate that development of inhibitors against specific SFK members could provide unique targeted therapeutic strategies.
Collapse
|
46
|
Kim HJ, Warren JT, Kim SY, Chappel JC, DeSelm CJ, Ross FP, Zou W, Teitelbaum SL. Fyn promotes proliferation, differentiation, survival and function of osteoclast lineage cells. J Cell Biochem 2011; 111:1107-13. [PMID: 20717919 DOI: 10.1002/jcb.22841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
c-Src and Lyn are the only Src family kinases (SFKs) with established activity in osteoclasts (OCs). c-Src promotes function via cytoskeletal organization of the mature resorptive cell while Lyn is a negative regulator of osteoclastogenesis. We establish that Fyn, another SFK, also impacts the OC, but in a manner distinctly different than c-Src and Lyn. Fyn deficiency principally alters cells throughout the osteoclastogenic process, resulting in diminished numbers of resorptive polykaryons. Arrested OC formation in the face of insufficient Fyn reflects reduced proliferation of precursors, in response to M-CSF and retarded RANK ligand (RANKL)-induced differentiation, attended by suppressed activation of the osteoclastogenic signaling molecules, c-Jun, and NF-κB. The anti-apoptotic properties of RANKL are also compromised in cells deleted of Fyn, an event mediated by increased Bim expression and failed activation of Akt. The defective osteoclastogenesis of Fyn-/- OCs dampens bone resorption, in vitro. Finally, while Fyn deficiency does not regulate basal osteoclastogenesis, in vivo, it reduces that stimulated by RANKL by ~2/3. Thus, Fyn is a pro-resorptive SFK, which exerts its effects by prompting proliferation and differentiation while attenuating apoptosis of OC lineage cells.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jensen AR, David SY, Liao C, Dai J, Keller ET, Al-Ahmadie H, Dakin-Haché K, Usatyuk P, Sievert MF, Paner GP, Yala S, Cervantes GM, Natarajan V, Salgia R, Posadas EM. Fyn is downstream of the HGF/MET signaling axis and affects cellular shape and tropism in PC3 cells. Clin Cancer Res 2011; 17:3112-22. [PMID: 21364031 DOI: 10.1158/1078-0432.ccr-10-1264] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Fyn is a member of the Src family of kinases that we have previously shown to be overexpressed in prostate cancer. This study defines the biological impact of Fyn inhibition in cancer using a PC3 prostate cancer model. EXPERIMENTAL DESIGN Fyn expression was suppressed in PC3 cells using an shRNA against Fyn (PC3/FYN-). Knockdown cells were characterized using standard growth curves and time-lapse video microscopy of wound assays and Dunn Chamber assays. Tissue microarray analysis was used to verify the physiologic relevance of the HGF/MET axis in human samples. Flank injections of nude mice were performed to assess in vivo growth characteristics. RESULTS HGF was found to be sufficient to drive Fyn-mediated events. Compared to control transductants (PC3/Ctrl), PC3/FYN- showed a 21% decrease in growth at 4 days (P = 0.05). PC3/FYN- cells were 34% longer than control cells (P = 0.018) with 50% increase in overall surface area (P < 0.001). Furthermore, when placed in a gradient of HGF, PC3/FYN- cells showed impaired directed chemotaxis down an HGF gradient in comparison to PC3/Ctrl (P = 0.001) despite a 41% increase in cellular movement speed. In vivo studies showed 66% difference of PC3/FYN- cell growth at 8 weeks using bidimensional measurements (P = 0.002). CONCLUSIONS Fyn plays an important role in prostate cancer biology by facilitating cellular growth and by regulating directed chemotaxis-a key component of metastasis. This finding bears particular translational importance when studying the effect of Fyn inhibition in human subjects.
Collapse
Affiliation(s)
- Ana R Jensen
- Section of Hematology/Oncology, Department of Medicine, Section of Urology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ladygina N, Martin BR, Altman A. Dynamic palmitoylation and the role of DHHC proteins in T cell activation and anergy. Adv Immunol 2011; 109:1-44. [PMID: 21569911 DOI: 10.1016/b978-0-12-387664-5.00001-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although protein S-palmitoylation was first characterized >30 years ago, and is implicated in the function, trafficking, and localization of many proteins, little is known about the regulation and physiological implications of this posttranslational modification. Palmitoylation of various signaling proteins required for TCR-induced T cell activation is also necessary for their proper function. Linker for activation of T cells (LAT) is an essential scaffolding protein involved in T cell development and activation, and we found that its palmitoylation is selectively impaired in anergic T cells. The recent discovery of the DHHC family of palmitoyl acyl transferases and the establishment of sensitive and quantitative proteomics-based methods for global analysis of the palmitoyl proteome led to significant progress in studying the biology and underlying mechanisms of cellular protein palmitoylation. We are using these approaches to explore the palmitoyl proteome in T lymphocytes and, specifically, the mechanistic basis for the impaired palmitoylation of LAT in anergic T cells. This chapter reviews the history of protein palmitoylation and its role in T cell activation, the DHHC family and new methodologies for global analysis of the palmitoyl proteome, and summarizes our recent work in this area. The new methodologies will accelerate the pace of research and provide a greatly improved mechanistic and molecular understanding of the complex process of protein palmitoylation and its regulation, and the substrate specificity of the novel DHHC family. Reversible protein palmitoylation will likely prove to be an important posttranslational mechanism that regulates cellular responses, similar to protein phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Nadejda Ladygina
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, California, USA
| | | | | |
Collapse
|
49
|
Luo J, McGinnis LK, Kinsey WH. Role of Fyn kinase in oocyte developmental potential. Reprod Fertil Dev 2010; 22:966-76. [PMID: 20591331 DOI: 10.1071/rd09311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/20/2010] [Indexed: 12/22/2022] Open
Abstract
Fyn kinase is highly expressed in oocytes, with inhibitor and dominant-negative studies suggesting a role in the signal transduction events during egg activation. The purpose of the present investigation was to test the hypothesis that Fyn is required for calcium signalling, meiosis resumption and pronuclear congression using the Fyn-knockout mouse as a model. Accelerated breeding studies revealed that Fyn-null females produced smaller litter sizes at longer intervals and exhibited a rapid decline in pup production with increasing age. Fyn-null females produced a similar number of oocytes, but the frequency of immature oocytes and mature oocytes with spindle chromosome abnormalities was significantly higher than in controls. Fertilised Fyn-null oocytes frequently (24%) failed to undergo pronuclear congression and remained at the one-cell stage. Stimulation with gonadotropins increased the number of oocytes ovulated, but did not overcome the above defects. Fyn-null oocytes overexpressed Yes kinase in an apparent effort to compensate for the loss of Fyn, yet still exhibited an altered pattern of protein tyrosine phosphorylation. In summary, Fyn-null female mice exhibit reduced fertility that appears to result from actin cytoskeletal defects rather than calcium signalling. These defects cause developmental arrest during oocyte maturation and pronuclear congression.
Collapse
Affiliation(s)
- Jinping Luo
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
50
|
Cannons JL, Wu JZ, Gomez-Rodriguez J, Zhang J, Dong B, Liu Y, Shaw S, Siminovitch KA, Schwartzberg PL. Biochemical and genetic evidence for a SAP-PKC-theta interaction contributing to IL-4 regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2819-27. [PMID: 20668219 PMCID: PMC3422635 DOI: 10.4049/jimmunol.0902182] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP), an adaptor molecule that recruits Fyn to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4(+) T cells from SAP-deficient mice have defective TCR-induced and follicular Th cell IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4(+) T cells exhibit decreased protein kinase C (PKC)-theta recruitment upon TCR stimulation. We demonstrate in this paper using GST pulldowns and coimmunoprecipitation studies that SAP constitutively associates with PKC- in T cells. SAP-PKC-theta interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP's interactions with PKC-theta occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-theta recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-theta, like SAP, was required for SLAM-mediated increases in IL-4 production, and, conversely, membrane-targeted PKC-theta mutants rescued IL-4 expression in SAP(-/-) CD4(+) T cells, providing genetic evidence that PKC-theta is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|