1
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Gagliani EK, Gutzwiller LM, Kuang Y, Odaka Y, Hoffmeister P, Hauff S, Turkiewicz A, Harding-Theobald E, Dolph PJ, Borggrefe T, Oswald F, Gebelein B, Kovall RA. A Drosophila Su(H) model of Adams-Oliver Syndrome reveals cofactor titration as a mechanism underlying developmental defects. PLoS Genet 2022; 18:e1010335. [PMID: 35951645 PMCID: PMC9398005 DOI: 10.1371/journal.pgen.1010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/23/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Notch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that heterozygous Drosophila with the AOS-like Su(H) allele behave in an opposing manner to heterozygous flies with a Su(H) null allele, due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants have decreased DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby the AOS-associated RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation. Adams-Oliver Syndrome (AOS) is a rare disease defined by missing skin/skull tissue, limb malformations, and cardiovascular abnormalities. Human genetic studies have revealed that ~40% of AOS patients inherit dominant mutations within specific genes in the Notch signaling pathway. Notch signaling is a highly conserved cell-to-cell communication pathway found in all metazoans and plays crucial roles during embryogenesis and tissue homeostasis in organisms from Drosophila (fruit-flies) to mammals. The Notch receptor converts cell-to-cell interactions into a Notch signal that enters the nucleus and activates target genes by binding to a highly conserved transcription factor. Here, we took advantage of the unexpected finding that a previously described dominant allele in the Drosophila Notch pathway transcription factor contains a missense variant in an analogous residue found in a family with AOS. Using this novel animal model of AOS along with biochemical DNA binding, protein-protein interaction, and transcriptional reporter assays, we found that this transcription factor variant selectively compromises DNA binding but not binding to the Notch signal nor binding to other proteins in the Notch pathway. Taken together with prior human genetic studies, these data suggest AOS phenotypes associated with variants in the Notch pathway transcription factor are caused by a dominant mechanism that sequesters the Notch signal, leading to Notch target gene dysregulation.
Collapse
Affiliation(s)
- Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Graduate program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Yoshinobu Odaka
- Biology Department, University of Cincinnati Blue Ash College, Cincinnati, Ohio, United States of America
| | - Phillipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Stefanie Hauff
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | | | - Emily Harding-Theobald
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Patrick J. Dolph
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| |
Collapse
|
3
|
Maier D. Membrane-Anchored Hairless Protein Restrains Notch Signaling Activity. Genes (Basel) 2020; 11:genes11111315. [PMID: 33171957 PMCID: PMC7694644 DOI: 10.3390/genes11111315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway governs cell-to-cell communication in higher eukaryotes. In Drosophila, after cleavage of the transmembrane receptor Notch, the intracellular domain of Notch (ICN) binds to the transducer Suppressor of Hairless (Su(H)) and shuttles into the nucleus to activate Notch target genes. Similarly, the Notch antagonist Hairless transfers Su(H) into the nucleus to repress Notch target genes. With the aim to prevent Su(H) nuclear translocation, Hairless was fused to a transmembrane domain to anchor the protein at membranes. Indeed, endogenous Su(H) co-localized with membrane-anchored Hairless, demonstrating their binding in the cytoplasm. Moreover, adult phenotypes uncovered a loss of Notch activity, in support of membrane-anchored Hairless sequestering Su(H) in the cytosol. A combined overexpression of membrane-anchored Hairless with Su(H) lead to tissue proliferation, which is in contrast to the observed apoptosis after ectopic co-overexpression of the wild-type genes, indicating a shift to a gain of Notch activity. A mixed response, general de-repression of Notch signaling output, plus inhibition at places of highest Notch activity, perhaps reflects Su(H)’s role as activator and repressor, supported by results obtained with the Hairless-binding deficient Su(H)LLL mutant, inducing activation only. Overall, the results strengthen the idea of Su(H) and Hairless complex formation within the cytosolic compartment.
Collapse
Affiliation(s)
- Dieter Maier
- Deptartment of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Gahr BM, Brändle F, Zimmermann M, Nagel AC. An RBPJ- Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription-Regulator Complexes. Cells 2019; 8:cells8101252. [PMID: 31615108 PMCID: PMC6829621 DOI: 10.3390/cells8101252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/07/2023] Open
Abstract
Notch signaling activity governs widespread cellular differentiation in higher animals, including humans, and is involved in several congenital diseases and different forms of cancer. Notch signals are mediated by the transcriptional regulator RBPJ in a complex with activated Notch (NICD). Analysis of Notch pathway regulation in humans is hampered by a partial redundancy of the four Notch receptor copies, yet RBPJ is solitary, allowing its study in model systems. In Drosophila melanogaster, the RBPJ orthologue is encoded by Suppressor of Hairless [Su(H)]. Using genome engineering, we replaced Su(H) by murine RBPJ in order to study its function in the fly. In fact, RBPJ largely substitutes for Su(H)’s function, yet subtle phenotypes reflect increased Notch signaling activity. Accordingly, the binding of RBPJ to Hairless (H) protein, the general Notch antagonist in Drosophila, was considerably reduced compared to that of Su(H). An H-binding defective RBPJLLL mutant matched the respective Su(H)LLL allele: homozygotes were lethal due to extensive Notch hyperactivity. Moreover, RBPJLLL protein accumulated at lower levels than wild type RBPJ, except in the presence of NICD. Apparently, RBPJ protein stability depends on protein complex formation with either H or NICD, similar to Su(H), demonstrating that the murine homologue underlies the same regulatory mechanisms as Su(H) in Drosophila. These results underscore the importance of regulating the availability of RBPJ protein to correctly mediate Notch signaling activity in the fly.
Collapse
Affiliation(s)
- Bernd M. Gahr
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
- Present address: Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franziska Brändle
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
| | - Mirjam Zimmermann
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
- Correspondence: ; Tel.: +49-711-45922210
| |
Collapse
|
5
|
Grégoire MC, Leduc F, Morin MH, Cavé T, Arguin M, Richter M, Jacques PÉ, Boissonneault G. The DNA double-strand "breakome" of mouse spermatids. Cell Mol Life Sci 2018; 75:2859-2872. [PMID: 29417179 PMCID: PMC11105171 DOI: 10.1007/s00018-018-2769-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
De novo germline mutations arise preferentially in male owing to fundamental differences between spermatogenesis and oogenesis. Post-meiotic chromatin remodeling in spermatids results in the elimination of most of the nucleosomal supercoiling and is characterized by transient DNA fragmentation. Using three alternative methods, DNA from sorted populations of mouse spermatids was used to confirm that double-strand breaks (DSB) are created in elongating spermatids and repaired at later steps. Specific capture of DSB was used for whole-genome mapping of DSB hotspots (breakome) for each population of differentiating spermatids. Hotspots are observed preferentially within introns and repeated sequences hence are more prevalent in the Y chromosome. When hotspots arise within genes, those involved in neurodevelopmental pathways become preferentially targeted reaching a high level of significance. Given the non-templated DNA repair in haploid spermatids, transient DSBs formation may, therefore, represent an important component of the male mutation bias and the etiology of neurological disorders, adding to the genetic variation provided by meiosis.
Collapse
Affiliation(s)
- Marie-Chantal Grégoire
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Leduc
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin H Morin
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tiphanie Cavé
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélina Arguin
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
6
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Abstract
RBPJ is the central transcription factor that controls the Notch-dependent transcriptional response by coordinating repressing histone H3K27 deacetylation and activating histone H3K4 methylation. Here, we discuss the molecular mechanisms how RBPJ interacts with opposing NCoR/HDAC-corepressing or KMT2D/UTX-coactivating complexes and how this is controlled by phosphorylation of chromatin modifiers.
Collapse
Affiliation(s)
| | - Franz Oswald
- b Department of Internal Medicine I , Center for Internal Medicine, University Medical Center Ulm , Ulm , Germany
| | - Tilman Borggrefe
- a Institute of Biochemistry, Justus Liebig University , Giessen , Germany
| |
Collapse
|
8
|
Abstract
Notch signaling has been shown over the past few decades to play fundamental roles in a plethora of developmental processes in an evolutionarily conserved fashion. Notch-mediated cell-to-cell signaling is involved in many aspects of embryonic development and control of tissue homeostasis in a variety of adult tissues, and regulates stem cell maintenance, cell differentiation and cellular homeostasis. The focus of this Review is the role of Notch signaling in stem cells, comparing insights from flies, fish and mice to highlight similarities, as well as differences, between species, tissues and stem cell compartments.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Science, SwissInstitute for Experimental Cancer Research (ISREC), Station 19, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
9
|
Abstract
Notch is a receptor that mediates cell-cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery.
Collapse
|
10
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
11
|
Ataxin-1 and Brother of ataxin-1 are components of the Notch signalling pathway. EMBO Rep 2011; 12:428-35. [PMID: 21475249 DOI: 10.1038/embor.2011.49] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/08/2022] Open
Abstract
Ataxin-1 (ATXN1), a causative factor for spinocerebellar ataxia type 1 (SCA1), and the related Brother of ATXN1 (BOAT1) are human proteins involved in transcriptional repression. So far, little is known about which transcriptional pathways mediate the effects of ATXN1 and BOAT1. From our analyses of the properties of BOAT1 in Drosophila and of both proteins in mammalian cells, we report here that BOAT1 and ATXN1 are components of the Notch signalling pathway. In Drosophila, BOAT1 compromises the activities of Notch. In mammalian cells, both ATXN1 and BOAT1 bind to the promoter region of Hey1 and inhibit the transcriptional output of Notch through direct interactions with CBF1, a transcription factor that is crucial for the Notch pathway. Our results suggest that, in addition to their involvement in SCA1, ATXN1 and BOAT1 might participate in several Notch-controlled developmental and pathological processes.
Collapse
|
12
|
Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling. Exp Cell Res 2010; 316:1465-78. [PMID: 20347808 DOI: 10.1016/j.yexcr.2010.03.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 11/21/2022]
Abstract
The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the gamma-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-gamma-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the gamma-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.
Collapse
|
13
|
Kyriazis GA, Belal C, Madan M, Taylor DG, Wang J, Wei Z, Pattisapu JV, Chan SL. Stress-induced switch in Numb isoforms enhances Notch-dependent expression of subtype-specific transient receptor potential channel. J Biol Chem 2010; 285:6811-25. [PMID: 20038578 PMCID: PMC2825475 DOI: 10.1074/jbc.m109.074690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/16/2009] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays an essential role in the regulation of cell specification by controlling differentiation, proliferation, and apoptosis. Numb is an intrinsic regulator of the Notch pathway and exists in four alternative splice variants that differ in the length of their phosphotyrosine-binding domain (PTB) and proline-rich region domains. The physiological relevance of the existence of the Numb splice variants and their exact regulation are still poorly understood. We previously reported that Numb switches from isoforms containing the insertion in PTB to isoforms lacking this insertion in neuronal cells subjected to trophic factor withdrawal (TFW). The functional relevance of the TFW-induced switch in Numb isoforms is not known. Here we provide evidence that the TFW-induced switch in Numb isoforms regulates Notch signaling strength and Notch target gene expression. PC12 cells stably overexpressing Numb isoforms lacking the PTB insertion exhibited higher basal Notch activity and Notch-dependent transcription of the transient receptor potential channel 6 (TRPC6) when compared with those overexpressing Numb isoforms with the PTB insertion. The differential regulation of TRPC6 expression is correlated with perturbed calcium signaling and increased neuronal vulnerability to TFW-induced death. Pharmacological inhibition of the Notch pathway or knockdown of TRPC6 function ameliorates the adverse effects caused by the TFW-induced switch in Numb isoforms. Taken together, our results indicate that Notch and Numb interaction may influence the sensitivity of neuronal cells to injurious stimuli by modulating calcium-dependent apoptotic signaling cascades.
Collapse
Affiliation(s)
- George A. Kyriazis
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Cherine Belal
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Meenu Madan
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - David G. Taylor
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Jang Wang
- the Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224
| | - Zelan Wei
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Jogi V. Pattisapu
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| | - Sic L. Chan
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816 and
| |
Collapse
|
14
|
Abstract
RBP-J/Su(H)/Lag1, the main transcriptional mediator of Notch signaling, binds DNA with the consensus sequence YRTGDGAD. Notch target genes can be controlled by two opposing activities of RBP-J. The interaction of the Notch intracellular domain with RBP-J induces a weak transcriptional activation and requires an additional tissue-specific transcriptional activator such as bHLH proteins or GATA to mediate strong target gene expression. For example, during Drosophila sensory organ precursor (SOP) cell development, proneural bHLH interacts with Da, a Drosophila orthologue of E2A, to form a tissue-specific activator of Su(H), the Drosophila orthologue of RBP-J. This complex and Su(H) act synergistically to promote the epidermal cell fate. In contrast, a complex of Su(H) with Hairless, a Drosophila functional homologue of MINT, has transcriptional repression activity that promotes SOP differentiation to neurons. Recent conditional loss-of-function studies demonstrated that transcriptional networks involving RBP-J, MINT, and E2A are conserved in mammalian cell differentiation, including multiple steps of lymphocyte development, and probably also in neuronal maturation in adult neurogenesis. During neurogenesis, Notch-RBP-J signaling was thought historically to be involved mainly in the maintenance of undifferentiated neural progenitors. However, the identification of a tissue-specific transcriptional activator of RBP-J-Notch has revealed new roles of RBP-J in the promotion of neuronal maturation. Finally, the Notch-independent function of RBP-J was recently discovered and will be reviewed here.
Collapse
|
15
|
Whelan JT, Kellogg A, Shewchuk BM, Hewan-Lowe K, Bertrand FE. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J Cell Biochem 2009; 107:992-1001. [PMID: 19479935 DOI: 10.1002/jcb.22199] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Prostate tumorigenesis is associated with loss of PTEN gene expression. We and others have recently reported that PTEN is regulated by Notch-1 signaling. Herein, we tested the hypothesis that alterations of the Notch-1 signaling pathway are present in human prostate adenocarcinoma and that Notch-1 signaling regulates PTEN gene expression in prostate cells. Prostate adenocarcinoma cases were examined by immunohistochemistry for ligand cleaved (activated) Notch-1 protein. Tumor foci exhibited little cleaved Notch-1 protein, but expression was observed in benign tissue. Both tumor and benign tissue expressed total (uncleaved) Notch-1. Reduced Hey-1 expression was seen in tumor foci but not in benign tissue, confirming loss of Notch-1 signaling in prostate adenocarcinoma. Retroviral expression of constitutively active Notch-1 in human prostate tumor cell lines resulted in increased PTEN gene expression. Incubation of prostate cell lines with the Notch-1 ligand, Delta, resulted in increased PTEN expression indicating that endogenous Notch-1 regulates PTEN gene expression. Chromatin immunoprecipitation demonstrated that CBF-1 was bound to the PTEN promoter. These data collectively indicate that defects in Notch-1 signaling may play a role in human prostate tumor formation in part via a mechanism that involves regulation of the PTEN tumor suppressor gene.
Collapse
Affiliation(s)
- Jarrett T Whelan
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | | | | | |
Collapse
|
16
|
Song Q, Sun K, Shuai Y, Lin R, You W, Wang L, Zhong Y. Suppressor of Hairless Is Required for Long-Term Memory Formation inDrosophila. J Neurogenet 2009; 23:405-11. [DOI: 10.3109/01677060903096133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:587-613. [PMID: 18039126 DOI: 10.1146/annurev.pathmechdis.3.121806.154300] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent discoveries indicate that gain-of-function mutations in the Notch1 receptor are very common in human T cell acute lymphoblastic leukemia/lymphoma. This review discusses what these mutations have taught us about normal and pathophysiologic Notch1 signaling, and how these insights may lead to new targeted therapies for patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
18
|
Chapman G, Liu L, Sahlgren C, Dahlqvist C, Lendahl U. High levels of Notch signaling down-regulate Numb and Numblike. ACTA ACUST UNITED AC 2007; 175:535-40. [PMID: 17116748 PMCID: PMC2064589 DOI: 10.1083/jcb.200602009] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch, high levels of Notch signaling conversely led to a reduction of Numb and Numblike protein levels in cultured cells and in the developing chick central nervous system. The Notch intracellular domain but not the canonical Notch downstream proteins Hes 1 and Hey 1 caused a reduction of Numb and Numblike. The Notch-mediated reduction of Numblike required the PEST domain in the Numblike protein and was blocked by the proteasome inhibitor MG132. Collectively, these observations reveal a reciprocal negative regulation between Notch and Numb/Numblike, which may be of relevance for stabilizing asymmetric cell fate switches and for tumor development.
Collapse
Affiliation(s)
- Gavin Chapman
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Radtke F, Wilson A, MacDonald HR. Notch signaling in hematopoiesis and lymphopoiesis: lessons from Drosophila. Bioessays 2006; 27:1117-28. [PMID: 16237675 DOI: 10.1002/bies.20315] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The evolutionarily conserved Notch signaling pathway regulates a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal life. It is involved in embryonic organogenesis as well as in the maintenance of homeostasis of self-renewing systems. In this article, we review the role of Notch signaling in the hematopoietic system with particular emphasis on lymphocyte development and highlight the similarities in Notch function between Drosophila and mammalian differentiation processes. Recent studies indicating that aberrant NOTCH signaling is frequently linked to the induction of T leukemia in humans will also be discussed.
Collapse
Affiliation(s)
- Freddy Radtke
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
20
|
Lan K, Murakami M, Choudhuri T, Kuppers DA, Robertson ES. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency. Virology 2006; 351:393-403. [PMID: 16701788 DOI: 10.1016/j.virol.2006.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/08/2006] [Accepted: 03/24/2006] [Indexed: 11/15/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-Jkappa, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway.
Collapse
Affiliation(s)
- Ke Lan
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 2005; 8:709-15. [PMID: 15917835 DOI: 10.1038/nn1475] [Citation(s) in RCA: 449] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Notch pathway, although originally identified in fruit flies, is now among the most heavily studied in mammalian biology. In mice, loss-of-function and gain-of-function work has demonstrated that Notch signaling is essential both during development and in the adult in a multitude of tissues. Prominent among these is the CNS, where Notch has been implicated in processes ranging from neural stem cell regulation to learning and memory. Here we review the role of Notch in the mammalian CNS by focusing specifically on mutations generated in mice. These mutations have provided critical insight into Notch function in the CNS and have led to the identification of promising new directions that are likely to generate important discoveries in the future.
Collapse
Affiliation(s)
- Keejung Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
22
|
Qin H, Wang J, Liang Y, Taniguchi Y, Tanigaki K, Han H. RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res 2004; 32:1492-501. [PMID: 14999091 PMCID: PMC390284 DOI: 10.1093/nar/gkh295] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The DNA-binding protein recombination signal binding protein-Jkappa (RBP-J) mediates transcriptional activation of the Notch intracellular domain (NIC). In the absence of transcriptional activators, RBP-J suppresses transcription by recruiting co-suppressors. KyoT2 is a LIM domain protein that inhibits the RBP-J-mediated transcriptional activation. Here we provide evidence that the polycomb group protein RING1 interacts with the LIM domains of KyoT2 in yeast and mammalian cells. The interaction between KyoT2 and RING1 was detected both in vitro and in vivo. By using a co-immunoprecipitation assay, we also showed that, though RING1 and RBP-J did not associate directly, the two molecules could be co-precipitated simultaneously by KyoT2, probably through the LIM domains and the RBP-J-binding motif of KyoT2, respectively. These results suggested the formation of a three-molecule complex consisting of RBP-J, KyoT2 and RING1 in cells. Moreover, we found that overexpression of RING1 together with KyoT2 in cells inhibited transactivation of RBP-J by NIC. Suppression of the NIC- mediated transactivation of RBP-J by RING1 was abrogated by overexpression of KBP1, a molecule that competed with RING1 for binding to LIM domains of KyoT2, suggesting that suppression of RBP-J by RING1 was dependent on its associating with KyoT2. Taken together, our data suggested that there might be at least two ways of the KyoT2-mediated suppression of RBP-J, namely competition for binding sites with transactivators, and recruitment of suppressors such as RING1.
Collapse
Affiliation(s)
- Hongyan Qin
- Department of Medical Genetics and Developmental Biology, Tangdu Hospital, The Fourth Military Medical University, Chang-Le Xi Street 17, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
23
|
Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibâñez CF, Lendahl U. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 2004; 130:6089-99. [PMID: 14597575 DOI: 10.1242/dev.00834] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for BMP4-mediated block of differentiation of muscle stem cells, i.e. satellite cells and the myogenic cell line C2C12. Addition of BMP4 during induction of differentiation dramatically reduced the number of differentiated satellite and C2C12 cells. Differentiation was substantially restored in BMP4-treated cultures by blocking Notch signaling using either the gamma-secretase inhibitor L-685,458 or by introduction of a dominant-negative version of the Notch signal mediator CSL. BMP4 addition to C2C12 cells increased transcription of two immediate Notch responsive genes, Hes1 and Hey1, an effect that was abrogated by L-685,458. A 3 kb Hey1-promoter reporter construct was synergistically activated by the Notch 1 intracellular domain (Notch 1 ICD) and BMP4. The BMP4 mediator SMAD1 mimicked BMP activation of the Hey1 promoter. A synthetic Notch-responsive promoter containing no SMAD1 binding sites responded to SMAD1, indicating that DNA-binding activity of SMAD1 is not required for activation. Accordingly, Notch 1 ICD and SMAD1 interacted in binding experiments in vitro. Thus, the data presented here provide evidence for a direct interaction between the Notch and BMP signaling pathways, and indicate that Notch has a crucial role in the execution of certain aspects of BMP-mediated differentiation control.
Collapse
Affiliation(s)
- Camilla Dahlqvist
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Ahmed A, Chandra S, Magarinos M, Vaessin H. Echinoid mutants exhibit neurogenic phenotypes and show synergistic interactions with the Notch signaling pathway. Development 2004; 130:6295-304. [PMID: 14623819 DOI: 10.1242/dev.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During neurogenesis in Drosophila, groups of ectodermal cells are endowed with the capacity to become neuronal precursors. The Notch signaling pathway is required to limit the neuronal potential to a single cell within each group. Loss of genes of the Notch signaling pathway results in a neurogenic phenotype: hyperplasia of the nervous system accompanied by a parallel loss of epidermis. Echinoid (Ed), a cell membrane associated Immunoglobulin C2-type protein, has previously been shown to be a negative regulator of the EGFR pathway during eye and wing vein development. Using in situ hybridization and antibody staining of whole-mount embryos, we show that Ed has a dynamic expression pattern during embryogenesis. Embryonic lethal alleles of ed reveal a role of Ed in restricting neurogenic potential during embryonic neurogenesis, and result in a phenotype similar to that of loss-of-function mutations of Notch signaling pathway genes. In this process Ed interacts closely with the Notch signaling pathway. Loss of ed suppresses the loss of neuronal elements caused by ectopic activation of the Notch signaling pathway. Using a temperature-sensitive allele of ed we show, furthermore, that Ed is required to suppress sensory bristles and for proper wing vein specification during adult development. In these processes also, ed acts in close concert with genes of the Notch signaling pathway. Thus the extra wing vein phenotype of ed is enhanced upon reduction of Delta (Dl) or Enhancer of split [E(spl)] proteins. Overexpression of the membrane-tethered extracellular region of Ed results in a dominant-negative phenotype. This phenotype is suppressed by overexpression of E(spl)m7 and enhanced by overexpression of Dl. Our work establishes a role of Ed during embryonic nervous system development, as well as adult sensory bristle specification and shows that Ed interacts synergistically with the Notch signaling pathway.
Collapse
Affiliation(s)
- Amina Ahmed
- Molecular, Cellular and Developmental Biology Program, Center for Molecular Neurobiology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
25
|
FURUKAWA T, KIMURA K, KOBAYAKAWA Y, TAMURA K, KAWAICHI M, TANIMURA T, HONJO T. Genetic characterization of Drosophila RBP-J κ (Suppressor of Hairless) as a neurogenic gene in adult PNS development. Genes Genet Syst 2004. [DOI: 10.1266/ggs.69.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Chandra S, Ahmed A, Vaessin H. The Drosophila IgC2 domain protein Friend-of-Echinoid, a paralogue of Echinoid, limits the number of sensory organ precursors in the wing disc and interacts with the Notch signaling pathway. Dev Biol 2003; 256:302-16. [PMID: 12679104 DOI: 10.1016/s0012-1606(03)00038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosophila melanogaster gene friend of echinoid (fred), a paralogue of echinoid (ed), a gene recently identified as a negative regulator of the EGFR pathway. fred function was examined in transgenic flies by using inducible RNA interference (RNAi). Suppression of fred in developing wing discs results in specification of ectopic SOPs, additional microchaeta, and cell death. In eye-antennal discs, fred suppression causes a rough eye phenotype. These phenotypes are suppressed by overexpression of Notch, Suppressor of Hairless [Su(H)], and Enhancer of split m7. In contrast, overexpression of Hairless, a negative regulator of the Notch pathway, and decreased Su(H) activity enhance these phenotypes. Thus, fred acts in close concert with the Notch signaling pathway. Dosage-sensitive genetic interaction also suggests a close relationship between fred and ed.
Collapse
Affiliation(s)
- Shweta Chandra
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
27
|
Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, Taniguchi Y, Kurooka H, Hamada Y, Toyokuni S, Honjo T. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 2003; 18:301-12. [PMID: 12594956 DOI: 10.1016/s1074-7613(03)00029-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that Msx2-interacting nuclear target protein (MINT) competed with the intracellular region of Notch for binding to a DNA binding protein RBP-J and suppressed the transactivation activity of Notch signaling. Although MINT null mutant mice were embryonic lethal, MINT-deficient splenic B cells differentiated about three times more efficiently into marginal zone B cells with a concomitant reduction of follicular B cells. MINT is expressed in a cell-specific manner: high in follicular B cells and low in marginal zone B cells. Since Notch signaling directs differentiation of marginal zone B lymphocytes and suppresses that of follicular B lymphocytes in mouse spleen, the results indicate that high levels of MINT negatively regulate Notch signaling and block differentiation of precursor B cells into marginal zone B cells. MINT may serve as a functional homolog of Drosophila Hairless.
Collapse
Affiliation(s)
- Kazuki Kuroda
- Department of Medical Chemistry, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin SE, Oyama T, Nagase T, Harigaya K, Kitagawa M. Identification of new human mastermind proteins defines a family that consists of positive regulators for notch signaling. J Biol Chem 2002; 277:50612-20. [PMID: 12386158 DOI: 10.1074/jbc.m209529200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mastermind (Mam) is one of the evolutionarily conserved elements of Notch signaling. Genetic analyses in Drosophila implicated it as an important positive regulator of the pathway. We show here identification of two new members of human Mam family (human Mastermind-2 (hMam-2) and human Mastermind-3 (hMam-3)), which retain characteristics similar to human Mastermind-1 (hMam-1) and Drosophila Mastermind. Both hMam-2 and hMam-3 stabilize and participate in the DNA-binding complex RBP-J/CBF-1 protein and the Notch intracellular domains that serve as intermediates of the signaling. Both hMam-2 and hMam-3 enhanced the activation of transcription from a target promoter by Notch signaling. However, we also show evidence that the activation of the target promoter by Notch3 and Notch4 is more efficiently potentiated by hMam-2 than by hMam-1 or -3. The multiplicity of Mam proteins in the mammalian system may help provide divergence to the strength of the Notch signals in different cell types.
Collapse
Affiliation(s)
- Sey-En Lin
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
The Notch signaling pathway has long been known to influence cell fate in the developing nervous system. However, this pathway has generally been thought to inhibit the specification of certain cell types in favor of others, or to simply maintain a progenitor pool. Recently, this view has been challenged by numerous studies suggesting that Notch may play an instructive role in promoting glial development. This work has inspired a new look at the role of Notch signaling in specifying cell fate. It has also prompted further consideration of the emerging view that in some contexts glia may be multipotent progenitors. This review examines the role of Notch during gliogenesis in both fruit flies and vertebrates, as well as evidence in vertebrates that some glia may be stem cells.
Collapse
Affiliation(s)
- Nicholas Gaiano
- Developmental Genetics Program, and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, NY 10016, USA.
| | | |
Collapse
|
30
|
Abstract
Dendritic morphology has a profound impact on neuronal information processing. The overall extent and orientation of dendrites determines the kinds of input a neuron receives. Fine dendritic appendages called spines act as subcellular compartments devoted to processing synaptic information, and the dendritic branching pattern determines the efficacy with which synaptic information is transmitted to the soma. The acquisition of a mature dendritic morphology depends on the coordinated action of a number of different extracellular factors. Here we discuss this evidence in the context of dendritic development in the cerebral cortex. Soon after migrating to the cortical plate, neurons extend an apical dendrite directed toward the pial surface. The oriented growth of the apical dendrite is regulated by Sema3A, which acts as a dendritic chemoattractant. Subsequent dendritic development involves signaling by neurotrophic factors and Notch, which regulate dendritic growth and branching. During postnatal development the formation and stabilization of dendritic spines are regulated in part by patterns of synaptic activity. These observations suggest that extracellular signals play an important role in regulating every aspect of dendritic development and thereby exert a critical influence on cortical connectivity.
Collapse
Affiliation(s)
- Kristin L Whitford
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
31
|
Harju S, McQueen KJ, Peterson KR. Chromatin structure and control of beta-like globin gene switching. Exp Biol Med (Maywood) 2002; 227:683-700. [PMID: 12324650 DOI: 10.1177/153537020222700902] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human beta-globin locus is a complex genetic system widely used for analysis of eukaryotic gene expression. The locus consists of five functional beta-like globin genes, epsilon, (G)gamma, (A)gamma, delta, and beta, arrayed on the chromosome in the order that they are expressed during ontogeny. Globin gene expression is regulated, in part, by the locus control region, which physically consists of five DNaseI-hypersensitive sites located 6-22 Kb upstream of the epsilon -globin gene. During ontogeny two switches occur in beta-globin gene expression that reflect the changing oxygen requirements of the fetus. The first switch from embryonic epsilon - to fetal gamma-globin occurs at six weeks of gestation. The second switch from gamma- to adult delta- and beta-globin occurs shortly after birth. Throughout the locus, cis-acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, co-activators, repressors, and chromatin modifiers. Discovery of novel erythroid-specific transcription factors and a role for chromatin structure in gene expression have enhanced our understanding of the mechanism of globin gene switching. However, the hierarchy of events regulating gene expression during development, from extracellular signaling to transcriptional activation or repression, is complex. In this review we attempt to unify the current knowledge regarding the interplay of cis-acting elements, transcription factors, and chromatin modifiers into a comprehensive overview of globin gene switching.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
32
|
Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RSP. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy geneDll3are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 2002; 129:1795-806. [PMID: 11923214 DOI: 10.1242/dev.129.7.1795] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A loss-of-function mutation in the mouse delta-like3 (Dll3) gene has been generated following gene targeting, and results in severe axial skeletal defects. These defects, which consist of highly disorganised vertebrae and costal defects, are similar to those associated with the Dll3-dependent pudgy mutant in mouse and with spondylocostal dysplasia (MIM 277300) in humans. This study demonstrates that Dll3neo and Dll3pu are functionally equivalent alleles with respect to the skeletal dysplasia, and we suggest that the three human DLL3 mutations associated with spondylocostal dysplasia are also functionally equivalent to the Dll3neo null allele. Our phenotypic analysis of Dll3neo/Dll3neo mutants shows that the developmental origins of the skeletal defects lie in delayed and irregular somite formation, which results in the perturbation of anteroposterior somite polarity. As the expression of Lfng, Hes1, Hes5 and Hey1 is disrupted in the presomitic mesoderm, we suggest that the somitic aberrations are founded in the disruption of the segmentation clock that intrinsically oscillates within presomitic mesoderm.
Collapse
Affiliation(s)
- Sally L Dunwoodie
- Division of Mammalian Development, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Kitagawa M, Oyama T, Kawashima T, Yedvobnick B, Kumar A, Matsuno K, Harigaya K. A human protein with sequence similarity to Drosophila mastermind coordinates the nuclear form of notch and a CSL protein to build a transcriptional activator complex on target promoters. Mol Cell Biol 2001; 21:4337-46. [PMID: 11390662 PMCID: PMC87094 DOI: 10.1128/mcb.21.13.4337-4346.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mastermind (Mam) has been implicated as an important positive regulator of the Notch signaling pathway by genetic studies using Drosophila melanogaster. Here we describe a biochemical mechanism of action of Mam within the Notch signaling pathway. Expression of a human sequence related to Drosophila Mam (hMam-1) in mammalian cells augments induction of Hairy Enhancer of split (HES) promoters by Notch signaling. hMam-1 stabilizes and participates in the DNA binding complex of the intracellular domain of human Notch1 and a CSL protein. Truncated versions of hMam-1 that can maintain an association with the complex behave in a dominant negative fashion and depress transactivation. Furthermore, Drosophila Mam forms a similar complex with the intracellular domain of Drosophila Notch and Drosophila CSL protein during activation of Enhancer of split, the Drosophila counterpart of HES. These results indicate that Mam is an essential component of the transcriptional apparatus of Notch signaling.
Collapse
Affiliation(s)
- M Kitagawa
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Somites are transient embryonic structures that are formed from the unsegmented presomitic mesoderm (PSM) in a highly regulated process called somitogenesis. Somite, formation can be considered as the result of several sequential processes: generation of a basic metameric pattern, specification of the antero-posterior identity of each somite, and, finally, formation of the somitic border. Evidence for the existence of a molecular clock or oscillator linked to somitogenesis has been provided by the discovery of the rhythmic and dynamic expression in the PSM of c-hairy1 and lunatic fringe, two genes potentially related to the Notch signaling pathway. These oscillating expression patterns suggest that an important role of the molecular clock could reside in the temporal control of periodic Notch activation, ultimately resulting in the regular array of the somites. We discuss both the importance of the Notch signaling pathway in the molecular events of somitogenesis and its relationship with the molecular clock, and, finally, in that context we review a number of other genes known to play a role in somitogenesis.
Collapse
Affiliation(s)
- M Maroto
- Laboratoire de Génétique et de Physiologie du Développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la Méditerranée-AP de Marseille, France
| | | |
Collapse
|
35
|
Bornkamm GW, Hammerschmidt W. Molecular virology of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 2001; 356:437-59. [PMID: 11313004 PMCID: PMC1088437 DOI: 10.1098/rstb.2000.0781] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) interacts with its host in three distinct ways in a highly regulated fashion: (i) EBV infects human B lymphocytes and induces proliferation of the infected cells, (ii) it enters into a latent phase in vivo that follows the proliferative phase, and (iii) it can be reactivated giving rise to the production of infectious progeny for reinfection of cells of the same type or transmission of the virus to another individual. In healthy people, these processes take place simultaneously in different anatomical and functional compartments and are linked to each other in a highly dynamic steady-state equilibrium. The development of a genetic system has paved the way for the dissection of those processes at a molecular level that can be studied in vitro, i.e. B-cell immortalization and the lytic cycle leading to production of infectious progeny. Polymerase chain reaction analyses coupled to fluorescent-activated cell sorting has on the other hand allowed a descriptive analysis of the virus-host interaction in peripheral blood cells as well as in tonsillar B cells in vivo. This paper is aimed at compiling our present knowledge on the process of B-cell immortalization in vitro as well as in vivo latency, and attempts to integrate this knowledge into the framework of the viral life cycle in vivo.
Collapse
Affiliation(s)
- G W Bornkamm
- Institut für Klinische Molekularbiologie und Tumorgenetik, Abteilung für Genvektoren, GSF-Forschungszentrum für Umwelt und Gesundheit, Marchioninistrasse 25, D-83177 München, Germany.
| | | |
Collapse
|
36
|
Tani S, Kurooka H, Aoki T, Hashimoto N, Honjo T. The N- and C-terminal regions of RBP-J interact with the ankyrin repeats of Notch1 RAMIC to activate transcription. Nucleic Acids Res 2001; 29:1373-80. [PMID: 11239004 PMCID: PMC29757 DOI: 10.1093/nar/29.6.1373] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolutionarily-conserved DNA-binding protein RBP-J directly interacts with the RAM domain and the ankyrin (ANK) repeats of the Notch intracellular region (RAMIC), and activates transcription of downstream target genes that regulate cell differentiation. In vitro binding assays demonstrate that the truncated N- and C-terminal regions of RBP-J bind to the ANK repeats but not to the RAM domain. Using an OT11 mouse cell line, in which the RBP-J locus is disrupted, we showed that RBP-J constructs mutated in the N- and C-terminal regions were defective in their transcriptional activation induced by either RAMIC or IC (the Notch intracellular region without the RAM domain) although they had normal levels of binding activity to DNA and the RAM domain. The studies using chimeric molecules between RBP-J and its homolog RBP-L showed that the N- and C-terminal regions of RBP-J conferred the IC- as well as RAMIC-induced transactivation potential on RBP-L, which binds to the same DNA sequence as RBP-J but fails to interact with RAMIC. Taken together, these results indicate that the interactions between the N- and C-terminal regions of RBP-J and the ANK repeats of RAMIC are important for transactivation of RBP-J by RAMIC.
Collapse
Affiliation(s)
- S Tani
- Department of Medical Chemistry and Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
37
|
Ansieau S, Strobl LJ, Leutz A. Activation of the Notch-regulated transcription factor CBF1/RBP-Jkappa through the 13SE1A oncoprotein. Genes Dev 2001; 15:380-5. [PMID: 11230145 PMCID: PMC312632 DOI: 10.1101/gad.189301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signaling through the Notch pathway controls cell growth and differentiation in metazoans. Following binding of its ligands, the intracellular part of the cell surface Notch1 receptor (Notch1-IC) is released and translocates to the nucleus, where it alters the function of the DNA-binding transcription factor CBF1/RBP-Jkappa. As a result, CBF1/RBP-Jkappa is converted from a repressor to an activator of gene transcription. Similarly, the Epstein Barr viral oncoprotein EBNA2, which is required for B-cell immortalization, activates genes through CBF1. Moreover, the TAN-1 and int-3 oncogenes represent activated versions of Notch1 and Notch4, respectively. Here, we show that the adenoviral oncoprotein 13S E1A also binds to CBF1/RBP-Jkappa, displaces associated corepressor complexes, and activates CBF1/RBP-Jkappa-dependent gene expression. Our results suggest that the central role of the Notch-CBF1/RBP-Jkappa signaling pathway in cell fate decisions renders it susceptible to pathways of viral replication and oncogenic conversion.
Collapse
Affiliation(s)
- S Ansieau
- Max-Delbrueck-Centrum für Molekulare Medizin, 13122 Berlin, Germany
| | | | | |
Collapse
|
38
|
Redmond L, Ghosh A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol 2001; 11:111-7. [PMID: 11179880 DOI: 10.1016/s0959-4388(00)00181-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dendritic patterning exerts a profound influence on neuronal connectivity. Recent studies indicate that mammalian Notch receptors are expressed by postmitotic neurons and that Notch signaling has a considerable influence on dendritic growth and branching. Investigations into the intracellular effectors of dendritic development have revealed that dendritic growth and branching are differentially affected by activation of the Rho-family GTPases, RhoA, Rac1, and Cdc42. These observations suggest that the differential activation of Notch receptors and Rho-family GTPases by extracellular signals may be important in the generation of morphological diversity in the developing nervous system.
Collapse
Affiliation(s)
- L Redmond
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore MD 21205, USA.
| | | |
Collapse
|
39
|
Morimura T, Goitsuka R, Zhang Y, Saito I, Reth M, Kitamura D. Cell cycle arrest and apoptosis induced by Notch1 in B cells. J Biol Chem 2000; 275:36523-31. [PMID: 10967117 DOI: 10.1074/jbc.m006415200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch receptors play various roles for cell fate decisions in developing organs, although their functions at the cell level are poorly understood. Recently, we found that Notch1 and its ligand are each expressed in juxtaposed cell compartments in the follicles of the bursa of Fabricius, the central organ for chicken B cell development. To examine the function of Notch1 in B cells, a constitutively active form of chicken Notch1 was expressed in a chicken B cell line, DT40, by a Cre/loxP-mediated inducible expression system. Remarkably, the active Notch1 caused growth suppression of the cells, accompanied by a cell cycle inhibition at the G(1) phase and apoptosis. The expression of Hairy1, a gene product up-regulated by the Notch1 signaling, also induced the apoptosis, but no cell cycle inhibition. Thus, Notch1 signaling induces apoptosis of the B cells through Hairy1, and the G(1) cell cycle arrest through other pathways. This novel function of Notch1 may account for the recent observations indicating the selective inhibition of early B cell development in mice by Notch1.
Collapse
Affiliation(s)
- T Morimura
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- T Kadesch
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104-6245, USA.
| |
Collapse
|
41
|
Lai EC, Bodner R, Kavaler J, Freschi G, Posakony JW. Antagonism of notch signaling activity by members of a novel protein family encoded by the bearded and enhancer of split gene complexes. Development 2000; 127:291-306. [PMID: 10603347 DOI: 10.1242/dev.127.2.291] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-cell signaling through the Notch receptor is a principal mechanism underlying cell fate specification in a variety of developmental processes in metazoans, such as neurogenesis. In this report we describe our investigation of seven members of a novel gene family in Drosophila with important connections to Notch signaling. These genes all encode small proteins containing predicted basic amphipathic (α)-helical domains in their amino-terminal regions, as described originally for Bearded; accordingly, we refer to them as Bearded family genes. Five members of the Bearded family are located in a newly discovered gene complex, the Bearded Complex; two others reside in the previously identified Enhancer of split Complex. All members of this family contain, in their proximal upstream regions, at least one high-affinity binding site for the Notch-activated transcription factor Suppressor of Hairless, suggesting that all are directly regulated by the Notch pathway. Consistent with this, we show that Bearded family genes are expressed in a variety of territories in imaginal tissue that correspond to sites of active Notch signaling. We demonstrate that overexpression of any family member antagonizes the activity of the Notch pathway in multiple cell fate decisions during adult sensory organ development. These results suggest that Bearded family genes encode a novel class of effectors or modulators of Notch signaling.
Collapse
Affiliation(s)
- E C Lai
- Department of Biology, Center for Molecular Genetics, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
42
|
Ashburner M, Misra S, Roote J, Lewis SE, Blazej R, Davis T, Doyle C, Galle R, George R, Harris N, Hartzell G, Harvey D, Hong L, Houston K, Hoskins R, Johnson G, Martin C, Moshrefi A, Palazzolo M, Reese MG, Spradling A, Tsang G, Wan K, Whitelaw K, Celniker S. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics 1999; 153:179-219. [PMID: 10471707 PMCID: PMC1460734 DOI: 10.1093/genetics/153.1.179] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A contiguous sequence of nearly 3 Mb from the genome of Drosophila melanogaster has been sequenced from a series of overlapping P1 and BAC clones. This region covers 69 chromosome polytene bands on chromosome arm 2L, including the genetically well-characterized "Adh region." A computational analysis of the sequence predicts 218 protein-coding genes, 11 tRNAs, and 17 transposable element sequences. At least 38 of the protein-coding genes are arranged in clusters of from 2 to 6 closely related genes, suggesting extensive tandem duplication. The gene density is one protein-coding gene every 13 kb; the transposable element density is one element every 171 kb. Of 73 genes in this region identified by genetic analysis, 49 have been located on the sequence; P-element insertions have been mapped to 43 genes. Ninety-five (44%) of the known and predicted genes match a Drosophila EST, and 144 (66%) have clear similarities to proteins in other organisms. Genes known to have mutant phenotypes are more likely to be represented in cDNA libraries, and far more likely to have products similar to proteins of other organisms, than are genes with no known mutant phenotype. Over 650 chromosome aberration breakpoints map to this chromosome region, and their nonrandom distribution on the genetic map reflects variation in gene spacing on the DNA. This is the first large-scale analysis of the genome of D. melanogaster at the sequence level. In addition to the direct results obtained, this analysis has allowed us to develop and test methods that will be needed to interpret the complete sequence of the genome of this species. Before beginning a Hunt, it is wise to ask someone what you are looking for before you begin looking for it. Milne 1926
Collapse
Affiliation(s)
- M Ashburner
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, England.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Organization and function of the Notch signaling pathway in Drosophila are best understood with respect to its role in the process of selection of neural progenitor cells. However, there is evidence that, besides neurogenesis, the Notch signaling pathway is involved in several other developmental processes, one of which is the selection of muscle progenitor cells. Thus, the number of these cells is increased in neurogenic mutants, and it has been proposed that muscle progenitor cells are selected from clusters of equivalent cells expressing genes of the achaete-scute gene complex (AS-C). Here, I present evidence for the participation of additional elements of the Notch signaling pathway in myogenesis. Gal4 mediated expression of a Notch variant, E(spl) and Hairless shows that the selection of muscle progenitor cells obeys principles apparently identical to those acting at the selection of neural progenitor cells.
Collapse
Affiliation(s)
- B Giebel
- Institut für Entwicklungsbiologie, Universität zu Köln, 50923, Köln, Germany.
| |
Collapse
|
44
|
Kavaler J, Fu W, Duan H, Noll M, Posakony JW. An essential role for the Drosophila Pax2 homolog in the differentiation of adult sensory organs. Development 1999; 126:2261-72. [PMID: 10207150 DOI: 10.1242/dev.126.10.2261] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adult peripheral nervous system of Drosophila includes a complex array of mechanosensory organs (bristles) that cover much of the body surface of the fly. The four cells (shaft, socket, sheath, and neuron) which compose each of these organs adopt distinct fates as a result of cell-cell signaling via the Notch (N) pathway. However, the specific mechanisms by which these cells execute their conferred fates are not well understood. Here we show that D-Pax2, the Drosophila homolog of the vertebrate Pax2 gene, has an essential role in the differentiation of the shaft cell. In flies bearing strong loss-of-function mutations in the shaven function of D-Pax2, shaft structures specifically fail to develop. Consistent with this, we find that D-Pax2 protein is expressed in all cells of the bristle lineage during the mitotic (cell fate specification) phase of bristle development, but becomes sharply restricted to the shaft and sheath cells in the post-mitotic (differentiative) phase. Two lines of evidence described here indicate that D-Pax2 expression and function is at least in part downstream of cell fate specification mechanisms such as N signaling. First, we find that the lack of late D-Pax2 expression in the socket cell (the sister of the shaft cell) is controlled by N pathway activity; second, we find that loss of D-Pax2 function is epistatic to the socket-to-shaft cell fate transformation caused by reduced N signaling. Finally, we show that misexpression of D-Pax2 is sufficient to induce the production of ectopic shaft structures. From these results, we propose that D-Pax2 is a high-level transcriptional regulator of the shaft cell differentiation program, and acts downstream of the N signaling pathway as a specific link between cell fate determination and cell differentiation in the bristle lineage.
Collapse
Affiliation(s)
- J Kavaler
- Department of Biology, University of California San Diego, La Jolla, CA 92093-0349, USA
| | | | | | | | | |
Collapse
|
45
|
Barrantes IB, Elia AJ, Wünsch K, Hrabe de Angelis MH, Mak TW, Rossant J, Conlon RA, Gossler A, de la Pompa JL. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol 1999; 9:470-80. [PMID: 10330372 DOI: 10.1016/s0960-9822(99)80212-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The process of somitogenesis can be divided into three major events: the prepatterning of the mesoderm; the formation of boundaries between the prospective somites; and the cellular differentiation of the somites. Expression and functional studies have demonstrated the involvement of the murine Notch pathway in somitogenesis, although its precise role in this process is not yet well understood. We examined the effect of mutations in the Notch pathway elements Delta like 1 (Dll1), Notch1 and RBPJkappa on genes expressed in the presomitic mesoderm (PSM) and have defined the spatial relationships of Notch pathway gene expression in this region. RESULTS We have shown that expression of Notch pathway genes in the PSM overlaps in the region where the boundary between the posterior and anterior halves of two consecutive somites will form. The Dll1, Notch1 and RBPJkappa mutations disrupt the expression of Lunatic fringe (L-fng), Jagged1, Mesp1, Mesp2 and Hes5 in the PSM. Furthermore, expression of EphA4, mCer 1 and uncx4.1, markers for the anterior-posterior subdivisions of the somites, is down-regulated to different extents in Notch pathway mutants, indicating a global alteration of pattern in the PSM. CONCLUSIONS We propose a model for the mechanism of somite border formation in which the activity of Notch in the PSM is restricted by L-fng to a boundary-forming territory in the posterior half of the prospective somite. In this region, Notch function activates a set of genes that are involved in boundary formation and anterior-posterior somite identity.
Collapse
Affiliation(s)
- I B Barrantes
- Amgen Institute, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology University of Toronto 620 University Avenue, Toronto, Ontario, M5G 2C1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kuroda K, Tani S, Tamura K, Minoguchi S, Kurooka H, Honjo T. Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 1999; 274:7238-44. [PMID: 10066785 DOI: 10.1074/jbc.274.11.7238] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling induced by interaction between the receptor Notch and its ligand Delta plays an important role in cell fate determination in vertebrates as well as invertebrates. Vertebrate Notch signaling has been investigated using its constitutively active form, i.e. the truncated intracellular region which is believed to mimic Notch-Delta signaling by interaction with a DNA-binding protein RBP-J. However, the molecular mechanism for Notch signaling triggered by ligand binding, which leads to inhibition of differentiation, is not clear. We have established a myeloma cell line expressing mouse Delta1 on its cell surface which can block muscle differentiation by co-culture with C2C12 muscle progenitor cells. We showed that Delta-induced Notch signaling stimulated transcriptional activation of RBP-J binding motif, containing promoters including the HES1 promoter. Furthermore, ligand-induced Notch signaling up-regulated HES1 mRNA expression within 1 h and subsequently reduced expression of MyoD mRNA. Since cycloheximide treatment did not inhibit induction of HES1 mRNA, the HES1 promoter appears to be a primary target of activated Notch. In addition, a transcriptionally active form of RBP-J, i.e. VP16-RBP-J, inhibited muscle differentiation of C2C12 cells by blocking the expression of MyoD protein. These results suggest that HES1 induction by the Delta1/Notch signaling is mediated by RBP-J and blocks myogenic differentiation of C2C12 cells by subsequent inhibition of MyoD expression.
Collapse
Affiliation(s)
- K Kuroda
- Department of Medical Chemistry, Kyoto University Faculty of Medicine, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Hsieh JJ, Zhou S, Chen L, Young DB, Hayward SD. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 1999; 96:23-8. [PMID: 9874765 PMCID: PMC15086 DOI: 10.1073/pnas.96.1.23] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Indexed: 11/18/2022] Open
Abstract
CBF1 is a member of the CSL family of DNA binding factors, which mediate either transcriptional repression or transcriptional activation. CSL proteins play a central role in Notch signaling and in Epstein-Barr virus-induced immortalization. Notch is a transmembrane protein involved in cell-fate decisions, and the cytoplasmic domain of Notch (NotchIC) targets CBF1. The Epstein-Barr virus-immortalizing protein EBNA2 activates both cellular and viral gene expression by targeting CBF1 and mimicking NotchIC. We have examined the mechanism of CBF1-mediated repression and show that CBF1 binds to a unique corepressor, CBF1 interacting corepressor (CIR). A CIR homolog is encoded by Caenorhabditis elegans, indicating that CIR is evolutionarily conserved. Two CBF1 mutants that were unable to bind CIR did not function as repressors, suggesting that targeting of CIR to CBF1 is an important component of repression. When expressed as a Gal4 fusion protein, CIR repressed reporter gene expression. CIR binds to histone deacetylase and to SAP30 and serves as a linker between CBF1 and the histone deacetylase complex.
Collapse
Affiliation(s)
- J J Hsieh
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences and Department of Oncology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- N Hawkins
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA.
| | | |
Collapse
|
49
|
Lam LT, Bresnick EH. Identity of the beta-globin locus control region binding protein HS2NF5 as the mammalian homolog of the notch-regulated transcription factor suppressor of hairless. J Biol Chem 1998; 273:24223-31. [PMID: 9727046 DOI: 10.1074/jbc.273.37.24223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we characterized a DNA-binding protein, HS2NF5, that bound tightly to a conserved region within hypersensitive site 2 (HS2) of the human beta-globin locus control region (LCR) (Lam, L. T. , and Bresnick, E. H. (1996) J. Biol. Chem. 271, 32421-32429). The beta-globin LCR controls the chromatin structure, transcription, and replication of the beta-globin genes. We have now purified HS2NF5 to near-homogeneity from fetal bovine thymus. Two polypeptides of 56 and 61 kDa copurified with the DNA binding activity. The two proteins bound to the LCR recognition site with an affinity (3.1 nM) and specificity similar to mouse erythroleukemia cell HS2NF5. The amino acid sequences of tryptic peptides of purified HS2NF5 revealed it to be identical to the murine homolog of the suppressor of hairless transcription factor, also known as recombination signal binding protein Jkappa or C promoter binding factor 1 (CBF1). The CBF1 site within HS2 resides near sites for hematopoietic regulators such as GATA-1, NF-E2, and TAL1. An additional conserved, high affinity CBF1 site was localized within HS4 of the LCR. As CBF1 is a downstream target of the Notch signaling pathway, we propose that Notch may modulate LCR activity during hematopoiesis.
Collapse
Affiliation(s)
- L T Lam
- University of Wisconsin Medical School, Department of Pharmacology, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
50
|
Olave I, Reinberg D, Vales LD. The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIIA to prevent activated transcription. Genes Dev 1998; 12:1621-37. [PMID: 9620850 PMCID: PMC316873 DOI: 10.1101/gad.12.11.1621] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RBP is a cellular protein that functions as a transcriptional repressor in mammalian cells. RBP has elicited great interest lately because of its established roles in regulating gene expression, in Drosophila and mouse development, and as a component of the Notch signal transduction pathway. This report focuses on the mechanism by which RBP represses transcription and thereby regulates expression of a relatively simple, but natural, promoter. The results show that, irrespective of the close proximity between RBP and other transcription factors bound to the promoter, RBP does not occlude binding by these other transcription factors. Instead, RBP interacts with two transcriptional coactivators: dTAFII110, a subunit of TFIID, and TFIIA to repress transcription. The domain of dTAFII110 targeted by RBP is the same domain that interacts with TFIIA, but is disparate from the domain that interacts with Sp1. Repression can be thwarted when stable transcription preinitiation complexes are formed before RBP addition, suggesting that RBP interaction with TFIIA and TFIID perturbs optimal interactions between these coactivators. Consistent with this, interaction between RBP and TFIIA precludes interaction with dTAFII110. This is the first report of a repressor specifically targeting these two coactivators to subvert activated transcription.
Collapse
Affiliation(s)
- I Olave
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA
| | | | | |
Collapse
|