1
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Santiago ML, Lozano MM, Dudley JP. Apobec-mediated retroviral hypermutation in vivo is dependent on mouse strain. PLoS Pathog 2024; 20:e1012505. [PMID: 39208378 PMCID: PMC11389910 DOI: 10.1371/journal.ppat.1012505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo, we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain that is defective in Rem and its cleavage product Rem-CT (TBLV-SD). Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. Furthermore, unlike MMTV, TBLV induced T-cell tumors in B6 μMT mice, which lack membrane-bound IgM and conventional B-2 cells. At limiting viral doses, loss of Rem expression in TBLV-SD-infected B6 mice accelerated tumorigenesis compared to TBLV-WT in either wild-type B6 or AID-knockout mice. Unlike BALB/c results, high-throughput sequencing indicated that proviral G-to-A or C-to-T mutations were unchanged regardless of Rem expression in B6 tumors. However, knockout of both AID and mA3 reduced G-to-A mutations. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, and effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to TBLV-WT-induced tumors, consistent with another Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gurvani B Singh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wendy Kaichun Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alejandro Reyes
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Anna Battenhouse
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
3
|
Beilinson HA, Sevilleja A, Spring J, Benavides F, Beilinson V, Neokosmidis N, Golovkina T. A single dominant locus restricts retrovirus replication in YBR/Ei mice. J Virol 2023; 97:e0068523. [PMID: 37578238 PMCID: PMC10506465 DOI: 10.1128/jvi.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Differential responses to viral infections are influenced by the genetic makeup of the host. Studies of resistance to retroviruses in human populations are complicated due to the inability to conduct proof-of-principle studies. Inbred mouse lines, which have a range of susceptible phenotypes to retroviruses, are an ideal tool to identify and characterize mechanisms of resistance and define their genetic underpinnings. YBR/Ei mice become infected with Mouse Mammary Tumor Virus, a mucosally transmitted murine retrovirus, but eliminate the virus from their pedigrees. Virus elimination correlates with a lack of virus-specific neonatal oral tolerance, which is a major mechanism for blocking the anti-virus response in susceptible mice. Virus control is unrelated to virus-neutralizing antibodies, cytotoxic CD8+ T cells, NK cells, and NK T cells, which are the best characterized mechanisms of resistance to retroviruses. We identified a single, dominant locus that controls the resistance mechanism, which we provisionally named attenuation of virus titers (Avt) and mapped to the distal region of chromosome 18. IMPORTANCE Elucidation of the mechanism that mediates resistance to retroviruses is of fundamental importance to human health, as it will ultimately lead to knowledge of the genetic differences among individuals in susceptibility to microbial infections.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Amanda Sevilleja
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Chen L, Zhang X, Liu G, Chen S, Zheng M, Zhu S, Zhang S. Intestinal Immune System and Amplification of Mouse Mammary Tumor Virus. Front Cell Infect Microbiol 2022; 11:807462. [PMID: 35096654 PMCID: PMC8792748 DOI: 10.3389/fcimb.2021.807462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a virus that induces breast cancer in mice. During lactation, MMTV can transmit from mother to offspring through milk, and Peyer’s patches (PPs) in mouse intestine are the first and specific target organ. MMTV can be transported into PPs by microfold cells and then activate antigen-presenting cells (APCs) by directly binding with Toll-like receptors (TLRs) whereas infect them through mouse transferrin receptor 1 (mTfR1). After being endocytosed, MMTV is reversely transcribed and the cDNA inserts into the host genome. Superantigen (SAg) expressed by provirus is presented by APCs to cognate CD4+ T cells via MHCII molecules to induce SAg response, which leads to substantial proliferation and recruitment of related immune cells. Both APCs and T cells can be infected by MMTV and these extensively proliferated lymphocytes and recruited dendritic cells act as hotbeds for viral replication and amplification. In this case, intestinal lymphatic tissues can actually become the source of infection for the transmission of MMTV in vivo, which results in mammary gland infection by MMTV and eventually lead to the occurrence of breast cancer.
Collapse
Affiliation(s)
- Lankai Chen
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Guisheng Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Siwei Zhu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang, ; Siwei Zhu,
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang, ; Siwei Zhu,
| |
Collapse
|
5
|
Abstract
Genetic alleles that contribute to enhanced susceptibility or resistance to viral infections and virally induced diseases have often been first identified in mice before humans due to the significant advantages of the murine system for genetic studies. Herein we review multiple discoveries that have revealed significant insights into virus-host interactions, all made using genetic mapping tools in mice. Factors that have been identified include innate and adaptive immunity genes that contribute to host defense against pathogenic viruses such as herpes viruses, flaviviruses, retroviruses, and coronaviruses. Understanding the genetic mechanisms that affect infectious disease outcomes will aid the development of personalized treatment and preventive strategies for pathogenic infections.
Collapse
Affiliation(s)
- Melissa Kane
- Center for Microbial Pathogenesis, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Tatyana V Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
6
|
Dudley JP, Golovkina TV, Ross SR. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR J 2017; 57:12-23. [PMID: 27034391 DOI: 10.1093/ilar/ilv044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Jaquelin P Dudley
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Tatyana V Golovkina
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Susan R Ross
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45. [PMID: 25818029 PMCID: PMC4424171 DOI: 10.1016/j.virol.2015.03.012] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The APOBEC family of single-stranded DNA cytosine deaminases comprises a formidable arm of the vertebrate innate immune system. Pre-vertebrates express a single APOBEC, whereas some mammals produce as many as 11 enzymes. The APOBEC3 subfamily displays both copy number variation and polymorphisms, consistent with ongoing pathogenic pressures. These enzymes restrict the replication of many DNA-based parasites, such as exogenous viruses and endogenous transposable elements. APOBEC1 and activation-induced cytosine deaminase (AID) have specialized functions in RNA editing and antibody gene diversification, respectively, whereas APOBEC2 and APOBEC4 appear to have different functions. Nevertheless, the APOBEC family protects against both periodic viral zoonoses as well as exogenous and endogenous parasite replication. This review highlights viral pathogens that are restricted by APOBEC enzymes, but manage to escape through unique mechanisms. The sensitivity of viruses that lack counterdefense measures highlights the need to develop APOBEC-enabling small molecules as a new class of anti-viral drugs.
Collapse
Affiliation(s)
- Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
8
|
Konstantoulas CJ, Indik S. C3H strain of mouse mammary tumour virus, like GR strain, infects human mammary epithelial cells, albeit less efficiently than murine mammary epithelial cells. J Gen Virol 2015; 96:650-662. [DOI: 10.1099/jgv.0.000006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Stanislav Indik
- Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
9
|
Abstract
B cells have long been regarded as simple antibody production units, but are now becoming known as key players in both adaptive and innate immune responses. However, several bacteria, viruses and parasites have evolved the ability to manipulate B cell functions to modulate immune responses. Pathogens can affect B cells indirectly, by attacking innate immune cells and altering the cytokine environment, and can also target B cells directly, impairing B cell-mediated immune responses. In this Review, we provide a summary of recent advances in elucidating direct B cell-pathogen interactions and highlight how targeting this specific cell population benefits different pathogens.
Collapse
|
10
|
Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc Natl Acad Sci U S A 2011; 108:3677-82. [PMID: 21321220 DOI: 10.1073/pnas.1100213108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Treg) play critical roles in the modulation of immune responses to infectious agents. Further understanding of the factors that control Treg activation and expansion in response to pathogens is needed to manipulate Treg function in acute and chronic infections. Here we show that chronic, but not acute, infection of mice with lymphocytic choriomeningitis virus results in a marked expansion of Foxp3(+) Treg that is dependent on retroviral superantigen (sag) genes encoded in the mouse genome. Sag-dependent Treg expansion was MHC class II dependent, CD4 independent, and required dendritic cells. Thus, one unique mechanism by which certain infectious agents evade host immune responses may be mediated by endogenous Sag-dependent activation and expansion of Treg.
Collapse
|
11
|
Cabrera G, Vercelli C, Burzyn D, Badano N, Maglioco A, Costa H, Mundiñano J, Camicia G, Nepomnaschy I, Piazzon I. Increases in IgA(+) B cells in Peyer's patches during milk-borne mouse mammary tumor virus infection are influenced by Toll-like receptor 4 and are completely dependent on the superantigen response. J Gen Virol 2010; 91:2814-20. [PMID: 20685932 DOI: 10.1099/vir.0.023358-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Although mammary glands are the final target of infection, Peyer's patches (PP) are the entry site of the virus. Herein, we show that the infection induces increases in the number of PP IgA(+) B cells and higher expression of the α circular transcript, which is a specific marker of the switch to IgA. In addition, IgA(+) B-cell increases correlated with higher levels of cytokines related to IgA class switching, such as interleukin (IL)-5 and IL-6. Of interest, the increases in IgA(+) B cells were lower in Toll-like receptor 4-deficient mice and were completely dependent on the presence of superantigen-reactive T cells. Our results point to a novel mechanism involved in MMTV infection and suggest that IgA(+) B cells may play an important role in carrying the virus to the mammary glands.
Collapse
Affiliation(s)
- Gabriel Cabrera
- ILEX-CONICET, División Medicina Experimental, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Viral infections spread based on the ability of viruses to overcome multiple barriers and move from cell to cell, tissue to tissue, and person to person and even across species. While there are fundamental differences between these types of transmissions, it has emerged that the ability of viruses to utilize and manipulate cell-cell contact contributes to the success of viral infections. Central to the excitement in the field of virus cell-to-cell transmission is the idea that cell-to-cell spread is more than the sum of the processes of virus release and entry. This implies that virus release and entry are efficiently coordinated to sites of cell-cell contact, resulting in a process that is distinct from its individual components. In this review, we will present support for this model, illustrate the ability of viruses to utilize and manipulate cell adhesion molecules, and discuss the mechanism and driving forces of directional spreading. An understanding of viral cell-to-cell spreading will enhance our ability to intervene in the efficient spreading of viral infections.
Collapse
|
13
|
Mertz JA, Chadee AB, Byun H, Russell R, Dudley JP. Mapping of the functional boundaries and secondary structure of the mouse mammary tumor virus Rem-responsive element. J Biol Chem 2009; 284:25642-52. [PMID: 19632991 DOI: 10.1074/jbc.m109.012476] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3' long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3' long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3'-end of the mouse mammary tumor virus genome, but further deletions at the 5'- or 3'-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3'-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5'- and 3'-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, The University of Texas, Austin, Texas 78712-0162, USA
| | | | | | | | | |
Collapse
|
14
|
CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proc Natl Acad Sci U S A 2009; 106:3895-900. [PMID: 19228948 DOI: 10.1073/pnas.0809736106] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plasma cells represent the end stage of B-cell development and play a key role in providing an efficient antibody response, but they are also involved in numerous pathologies. Here we show that CD93, a receptor expressed during early B-cell development, is reinduced during plasma-cell differentiation. High CD93/CD138 expression was restricted to antibody-secreting cells both in T-dependent and T-independent responses as naive, memory, and germinal-center B cells remained CD93-negative. CD93 was expressed on (pre)plasmablasts/plasma cells, including long-lived plasma cells that showed decreased cell cycle activity, high levels of isotype-switched Ig secretion, and modification of the transcriptional network. T-independent and T-dependent stimuli led to re-expression of CD93 via 2 pathways, either before or after CD138 or Blimp-1 expression. Strikingly, while humoral immune responses initially proceeded normally, CD93-deficient mice were unable to maintain antibody secretion and bone-marrow plasma-cell numbers, demonstrating that CD93 is important for the maintenance of plasma cells in bone marrow niches.
Collapse
|
15
|
Ross SR. MMTV infectious cycle and the contribution of virus-encoded proteins to transformation of mammary tissue. J Mammary Gland Biol Neoplasia 2008; 13:299-307. [PMID: 18661104 PMCID: PMC2715138 DOI: 10.1007/s10911-008-9090-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/04/2008] [Indexed: 02/08/2023] Open
Abstract
Mouse mammary tumor virus has served as a major model for the study of breast cancer since its discovery 1920's as a milk-transmitted agent. Much is known about in vivo infection by this virus, which initially occurs in lymphocytes that then carry virus to mammary tissue. In addition to the virion proteins, MMTV encodes a number of accessory proteins that facilitate high level in vivo infection. High level infection of lymphoid and mammary epithelial cells ensures efficient passage of virus to the next generation. Since MMTV causes mammary tumors by insertional activation of oncogenes, which is thought to be a stochastic process, mammary epithelial cell transformation is a by-product of the infectious cycle. The envelope protein may also participate in transformation. Although there have been several reports of a similar virus in human breast cancer, the existence of a human MTV has not been definitely established.
Collapse
Affiliation(s)
- Susan R Ross
- Department of Microbiology/Abramson Family Cancer Center, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 1914, USA.
| |
Collapse
|
16
|
Early increases in superantigen-specific Foxp3+ regulatory T cells during mouse mammary tumor virus infection. J Virol 2008; 82:7422-31. [PMID: 18495774 DOI: 10.1128/jvi.00102-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Here, we show in a natural model of MMTV infection that the virus causes early and progressive increases in superantigen (SAg)-specific Foxp3(+) regulatory T cells (T(reg)) in Peyer's patches (PP). These increases were shown to be dependent on the presence of dendritic cells. CD4(+) CD25(+) T cells from the PP of infected mice preferentially suppress the proliferative response of T cells to SAg-expressing antigen-presenting cells ex vivo. We investigated the influence of the depletion of CD25(+) cells at different stages of the infection. When CD25(+) cells were depleted before MMTV infection, an increase in the number of PP SAg-cognate Foxp3(-) T cells was found at day 6 of infection. Since the SAg response is associated with viral amplification, the possibility exists that T(reg) cells attenuate the increase in viral load at the beginning of the infection. In contrast, depletion of CD25(+) cells once the initial SAg response has developed caused a lower viral load, suggesting that at later stages T(reg) cells may favor viral persistence. Thus, our results indicated that T(reg) cells play an important and complex role during MMTV infection.
Collapse
|
17
|
Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; 72:157-96, table of contents. [PMID: 18322038 PMCID: PMC2268285 DOI: 10.1128/mmbr.00033-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
18
|
Huber BT, Beutner U, Subramanyam M. The role of superantigens in the immunobiology of retroviruses. CIBA FOUNDATION SYMPOSIUM 2007; 187:132-40; discussion 140-3. [PMID: 7796668 DOI: 10.1002/9780470514672.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Murine mammary tumour viruses (MMTVs) are retroviruses that encode superantigens capable of stimulating T cells via superantigen-reactive T cell receptor V beta chains. MMTVs are transmitted to the suckling offspring via the milk. We have established that class II and B cell-deficient mice that were foster nursed by virus-secreting mice do not transfer infectious MMTVs to their offspring. No MMTV proviruses could be detected in the spleen and mammary tissue of these mice and there was no deletion of MMTV superantigen-reactive T cells. These results confirm that superantigen expression in the context of MHC class II molecules is required for MMTV transmission. We conclude that B cells are essential for the completion of the viral life cycle in vivo. This indicates that B cells are infected first and that viral amplification takes place only if infected B cells present the MMTV superantigen on their surface which, in turn, results in activation of T cells expressing the appropriate T cell receptor V beta chains. These activated T cells stimulate B cells which enables viral replication. Human T cells carry all the structural features required for an efficient response to murine retrovirally encoded superantigens. Superantigen-like stimulation of human T cells has been demonstrated in both infectious and autoimmune diseases. Human immunodeficiency virus may encode a superantigen but this has not been proven.
Collapse
Affiliation(s)
- B T Huber
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
19
|
Bhadra S, Lozano MM, Payne SM, Dudley JP. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens. PLoS Pathog 2007; 2:e128. [PMID: 17140288 PMCID: PMC1665650 DOI: 10.1371/journal.ppat.0020128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 10/25/2006] [Indexed: 11/18/2022] Open
Abstract
Most inbred mice carry germline proviruses of the retrovirus, mouse mammary tumor virus (MMTV) (called Mtvs), which have multiple replication defects. A BALB/c congenic mouse strain lacking all endogenous Mtvs (Mtv-null) was resistant to MMTV oral and intraperitoneal infection and tumorigenesis compared to wild-type BALB/c mice. Infection of Mtv-null mice with an MMTV-related retrovirus, type B leukemogenic virus, also resulted in severely reduced viral loads and failure to induce T-cell lymphomas, indicating that resistance is not dependent on expression of a superantigen (Sag) encoded by exogenous MMTV. Resistance to MMTV in Mtv-null animals was not due to neutralizing antibodies. Further, Mtv-null mice were resistant to rapid mortality induced by intragastric inoculation of the Gram-negative bacterium, Vibrio cholerae, but susceptibility to Salmonella typhimurium was not significantly different from BALB/c mice. Susceptibility to both MMTV and V. cholerae was reconstituted by the presence of any one of three endogenous Mtvs located on different chromosomes and was associated with increased pathogen load. One of these endogenous proviruses is known to encode only Sag. Therefore, Mtv-encoded Sag appears to provide a unique genetic susceptibility to specific viruses and bacteria. Since human endogenous retroviruses also encode Sags, these studies have broad implications for pathogen-induced responses in mice and humans.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Mary M Lozano
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Shelley M Payne
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Abstract
There are well-established risk factors for breast cancer, most of which relate to estrogens and growth hormones in females. These include early-age menarche, late-age menopause, postmenopausal obesity and use of hormone therapy. However, these factors do not account for the sixfold difference in breast cancer incidence and mortality between countries and the fact that these differences dramatically lessen after migration; nor do they account for male breast cancer. Accordingly, hormone-responsive viruses have become major suspects as etiological agents for human breast cancer. Human papillomaviruses, mouse mammary tumor virus and Epstein-Barr virus are the prime candidate viruses as causes of human breast cancer. Human papillomaviruses and the mouse mammary tumor virus have hormone responsive elements that appear to be associated with enhanced replication of these viruses in the presence of corticosteroid and other hormones. This biological phenomenon is particularly relevant because of the hormone dependence of breast cancer. Viral genetic material for each of these candidate viruses has been identified by polymerase chain reaction in breast tumors but rarely in normal breast tissue controls. Pooled data from controlled studies show substantial odds ratios for the presence of viral genetic material in breast tumors compared with normal controls. These and additional data provide substantial, but not conclusive, evidence that human papillomavirus, the mouse mammary tumor virus and Epstein-Barr virus may have a role in the etiology of human breast cancer. If conclusive evidence for a role of these viruses in breast carcinogenesis can be developed, there is a practical possibility of primary prevention.
Collapse
Affiliation(s)
- James S Lawson
- School of Public Health, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
21
|
Swanson I, Jude BA, Zhang AR, Pucker A, Smith ZE, Golovkina TV. Sequences within the gag gene of mouse mammary tumor virus needed for mammary gland cell transformation. J Virol 2006; 80:3215-24. [PMID: 16537589 PMCID: PMC1440402 DOI: 10.1128/jvi.80.7.3215-3224.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a group of replication-competent exogenous mouse mammary tumor viruses that failed to induce mammary tumors in susceptible mice. Sequence comparison of tumorigenic and tumor-attenuated virus variants has linked the ability of virus to cause high-frequency mammary tumors to the gag gene. To determine the specific sequences within the gag gene that contribute to tumor induction, we constructed five distinct chimeric viruses that have various amino acid coding sequences of gag derived from a tumor-attenuated virus replaced by those of highly tumorigenic virus and tested these viruses for tumorigenic capacities in virus-susceptible C3H/HeN mice. Comparing the tumorigenic potentials of these viruses has allowed us to map the region responsible for tumorigenesis to a 253-amino-acid region within the CA and NC regions of the Gag protein. Unlike C3H/HeN mice, BALB/cJ mice develop tumors when infected with all viral variants, irrespective of the gag gene sequences. Using genetic crosses between BALB/cJ and C3H/HeN mice, we were able to determine that the mechanism that confers susceptibility to Gag-independent mammary tumors in BALB/cJ mice is inherited as a dominant trait and is controlled by a single gene, called mammary tumor susceptibility (mts), that maps to chromosome 14.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cell Transformation, Neoplastic
- Chromosome Mapping
- Chromosomes
- Cloning, Molecular
- Conserved Sequence
- Crosses, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, gag
- Genetic Engineering
- Haplotypes
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
Collapse
|
22
|
Abstract
Mouse mammary tumor virus (MMTV), a well-characterized retrovirus that causes mammary tumors in susceptible mice, is commonly used to investigate virus-host interactions. We have shown that YBR/Ei mice demonstrate a novel, dominant mechanism of resistance to MMTV infection and MMTV-induced mammary tumors. MMTV can both establish infection in YBR/Ei mice and be transmitted by YBR/Ei mice as an infectious virus. However, virus production is severely attenuated, resulting in gradual clearance of infection in successive generations. Our transfer experiments showed that T cells generated in MMTV-infected resistant mice were required to restrict MMTV replication in susceptible mice. These results emphasize the importance of inducing T-cell responses for effective protection against retroviral infections.
Collapse
|
23
|
Case LK, Purdy A, Golovkina TV. Molecular and cellular basis of the retrovirus resistance in I/LnJ mice. THE JOURNAL OF IMMUNOLOGY 2006; 175:7543-9. [PMID: 16301663 DOI: 10.4049/jimmunol.175.11.7543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previously, we showed that IFN-gamma elicited by mouse mammary tumor virus (MMTV) infection in I/LnJ mice stimulated production of virus-neutralizing Abs, mostly of the IgG2a isotype. These Abs coated virions secreted by infected I/LnJ cells, and thus completely prevented virus transmission to offspring. However, the mechanism of virus neutralization by isotype-specific Abs remained unknown. Ab coating is capable of blocking virus infection by interfering with receptor-virus binding, by virus opsonization, by complement activation, and via FcgammaR-mediated effector mechanisms. The aim of the studies described in this work was to uncover the cellular basis of anti-virus Ab production, to evaluate the importance of the IgG2a subclass of IgGs in virus neutralization, and to investigate which of the blocking mechanisms plays a role in virus neutralization. We showed that I/LnJ-derived bone marrow cells, specifically IFN-gamma-producing CD4+ T cells, were key cells conferring resistance to MMTV infection in susceptible mice upon transfer. We also established that a unique bias in the subclass selection toward the IgG2a isotype in infected I/LnJ mice was not due to their potent neutralizing ability, as anti-virus Abs of other isotypes were also able to neutralize the virus, but were a product of virally induced IFN-gamma. Finally, we demonstrated that F(ab')2 of anti-MMTV IgGs neutralized the virus as efficiently as total IgGs, suggesting that Ab-mediated interference with viral entry is the sole factor inhibiting virus replication in I/LnJ mice. We propose and discuss possible mechanisms by which infected I/LnJ mice eradicate retrovirus.
Collapse
Affiliation(s)
- Laure K Case
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
24
|
Azar GA, Sékaly RP, Thibodeau J. A defective viral superantigen-presenting phenotype in HLA-DR transfectants is corrected by CIITA. THE JOURNAL OF IMMUNOLOGY 2005; 174:7548-57. [PMID: 15944254 DOI: 10.4049/jimmunol.174.12.7548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of T lymphocytes by mouse mammary tumor virus superantigen (vSAg) requires binding to MHC class II molecules. The subcellular location where functional interactions occur between MHC class II molecules and vSAgs is still a matter of debate. To gain further insight into this issue, we have used human epithelial HeLa cells expressing HLA-DR1. Surprisingly, the human cells were unable to present transfected vSAg7 or vSAg9 to a series of murine T cell hybridomas. The defect is not related to a lack of vSAg processing, because these cells can indirectly activate T cells after coculture in the presence of B lymphocytes. However, after IFN-gamma treatment, the HeLa DR1(+) cells became apt at directly presenting the vSAg. Furthermore, transfection of CIITA was sufficient to restore presentation. Reconstitution experiments demonstrated the necessity of coexpressing HLA-DM and invariant chain (Ii) for efficient vSAg presentation. Interestingly, inclusion of a dileucine motif in the DRbeta cytoplasmic tail bypassed the need for HLA-DM expression and allowed the efficient presentation of vSAg7 in the presence of Ii. A similar trafficking signal was included in vSAg7 by replacing its cytoplasmic tail with the one of Ii. However, sorting of this chimeric Ii/vSAg molecule to the endocytic pathway completely abolished both its indirect and direct presentation. Together, our results suggest that functional vSAgs-DR complexes form after the very late stages of class II maturation, most probably at the cell surface.
Collapse
Affiliation(s)
- Georges A Azar
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Hôpital St.-Luc, Montréal, Canada
| | | | | |
Collapse
|
25
|
Baloul L, Camelo S, Lafon M. Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. J Neurovirol 2005; 10:372-82. [PMID: 15765808 DOI: 10.1080/13550280490521122] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Following its injection into the hindlimbs of mice, CVS, a highly pathogenic strain of rabies virus, invades the spinal cord and brain resulting in the death of the animal. In contrast, central nervous system (CNS) invasion by PV, a strain of attenuated pathogenicity, is restricted to the spinal cord and mice infected with this virus survive. Lymphocytes display transient migration into the infected CNS in fatal rabies and sustained migration in nonfatal rabies. The transient migration of T cells in fatal rabies is associated with an increase in T-cell apoptosis. We found that the early production of Fas ligand (FasL) mRNAs was up-regulated only in fatal rabies. FasL is produced by several neuronal cells and mainly in infected neurons. In mice lacking FasL (gld), infection with the neuroinvasive rabies virus strain was less severe, and the number of CD3 T cells undergoing apoptosis was smaller than that in normal mice. These data provide strong evidence that fatal rabies virus infection involves the early triggering of FasL production leading to the destruction of migratory T cells by the Fas/FasL apoptosis pathway. This mechanism could be in part responsible for the fact that T cells cannot control neuroinvasive rabies infection. Thus, rabies virus seems to use an immunosubversive strategy that takes advantage of the immune privilege status of the CNS.
Collapse
Affiliation(s)
- Leïla Baloul
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
26
|
Pobezinskaya Y, Chervonsky AV, Golovkina TV. Initial stages of mammary tumor virus infection are superantigen independent. THE JOURNAL OF IMMUNOLOGY 2004; 172:5582-7. [PMID: 15100301 DOI: 10.4049/jimmunol.172.9.5582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exogenous mouse mammary tumor virus (MMTV) is transmitted via the milk from infected mothers to newborn pups. Efficient MMTV transmission is dependent on proliferation of T cells with particular TCR beta-chains, which occurs upon recognition of virally encoded superantigen (SAg) bound to MHC class II molecules. It is assumed that infection of these dividing cells favors MMTV amplification. SAg is important for MMTV infection, as mice that lack SAg-cognate T cells due to expression of endogenous Mtv loci or mice that express inappropriate MHC haplotypes unable to present viral SAg efficiently were shown to be resistant to MMTV infection. However, this resistance was not absolute, as these mice developed late onset MMTV-induced mammary tumors. In this study, we show that the success of initial MMTV infection in neonates is independent of SAg function but depends on the developmentally regulated proliferation of target cells. However, SAg was absolutely required for virus spread following completion of this proliferative stage.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Genetic Predisposition to Disease
- Immunity, Innate/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mammary Tumor Virus, Mouse/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Mice, Transgenic
- Phenotype
- Postpartum Period/genetics
- Postpartum Period/immunology
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Retroviridae Infections/virology
- Superantigens/immunology
- Superantigens/metabolism
- Superantigens/physiology
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
- Virus Replication/immunology
Collapse
|
27
|
Wang Y, Jiang JD, Xu D, Li Y, Qu C, Holland JF, Pogo BGT. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer. Cancer Res 2004; 64:4105-11. [PMID: 15205319 DOI: 10.1158/0008-5472.can-03-3880] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported a 660-bp mouse mammary tumor virus (MMTV)-like env gene sequence in approximately 38% of human breast cancer DNA, but not in normal breasts or other tumors. This MMTV-like env gene sequence was expressed in 66% of the env gene-positive human breast cancers. An entire proviral structure was identified in human breast cancer DNA with high homology to MMTV and low homology to known human endogenous retrovirus. MMTV-like long terminal repeat (LTR) sequences were also detected in 41.5% of human breast cancers. They contain hormone-responsive elements, TEF-1 family elements, and the open reading frame for the superantigen (SAg). We have now amplified and sequenced MMTV-like sag sequences from 10 human breast cancers, and we found that they are highly homologous to those of MMTV. However, deletions and insertions at the COOH-terminal of sag were observed. The immune function of the human MMTV-like LTR SAg was also investigated. The sag gene was cloned and expressed in a human B-cell line (Ramos). T-cell proliferation and cytokine releasing assays were performed after cocultivation of T cells with irradiated Ramos SAg-expressing cells. The results indicate that expression of the human SAg stimulates T-cell activation in vitro, as the mouse SAg does. Because the T-cell responses in vitro are considered similar to those in vivo, these results suggest that the human LTR SAg might also play a role in human breast carcinogenesis.
Collapse
Affiliation(s)
- Yue Wang
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Aurrekoetxea-Hernández K, Buetti E. Transforming growth factor beta enhances the glucocorticoid response of the mouse mammary tumor virus promoter through Smad and GA-binding proteins. J Virol 2004; 78:2201-11. [PMID: 14963116 PMCID: PMC369214 DOI: 10.1128/jvi.78.5.2201-2211.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue-specific transcription is advantageously investigated by using viral promoters, which are selected for compact regulatory elements. Mouse mammary tumor virus (MMTV) has adapted to specialized cell types and targets initially B lymphocytes. We previously showed that, in B-cell lines, glucocorticoid-induced MMTV transcription requires an ETS family factor, GA-binding protein (GABP), bound in tandem to the MMTV DNA next to the glucocorticoid receptor (GR). We now report that transforming growth factor beta (TGF-beta) superinduces this response up to 10-fold through binding of its effectors, Smads, between the GABP-binding motifs. The basal level was unaffected. The TGF-beta-glucocorticoid cooperation also depended on GR and GABP binding, was transferable to another promoter, and occurred both with transiently transfected and with integrated templates. Smad3 associated in vitro with GR, with GABPalpha (via the MH2 domain), and with GABPbeta, Smad4 only with GABPalpha. Interactions of Smad3 with GABP (when coexpressed or endogenous to B cells) were shown by coprecipitation and by mammalian two-hybrid assay. This composite DNA element integrates three signaling pathways deriving from TGF-beta, glucocorticoid hormones, and a unique ETS factor, and may allow MMTV to exploit factors from the milk. It may as well indicate novel possibilities for cellular regulatory networks.
Collapse
|
29
|
Burzyn D, Rassa JC, Kim D, Nepomnaschy I, Ross SR, Piazzon I. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J Virol 2004; 78:576-84. [PMID: 14694089 PMCID: PMC368791 DOI: 10.1128/jvi.78.2.576-584.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a milk-borne retrovirus that exploits the adaptive immune system. It has recently been shown that MMTV activates B cells via Toll-like receptor 4 (TLR4), a molecule involved in innate immune responses. Here, we show that direct virus binding to TLR4 induced maturation of bone marrow-derived dendritic cells and up-regulated expression of the MMTV entry receptor (CD71) on these cells. In vivo, MMTV increased the number of dendritic cells in neonatal Peyer's patches and their expression of CD71; both these effects were dependent on TLR4. Thus, retroviral signaling through TLRs plays a critical role in dendritic-cell participation during infection.
Collapse
Affiliation(s)
- Dalia Burzyn
- División Medicina Experimental, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
30
|
Uz-Zaman T, Ignatowicz L, Sarkar NH. Mouse mammary tumor viruses expressed by RIII/Sa mice with a high incidence of mammary tumors interact with the Vβ-2- and Vβ-8-specific T cells during viral infection. Virology 2003; 314:294-304. [PMID: 14517082 DOI: 10.1016/s0042-6822(03)00429-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mouse mammary tumor viruses (MMTVs) that induce mammary adenocarcinomas in mice are transmitted from mother to offspring through milk. MMTV infection results in the deletion of specific T cells as a consequence of interaction between the MMTV-encoded superantigen (Sag) and specific V beta chains of the T cell receptor. The specificity and kinetics of T cell deletion for a number of highly oncogenic MMTVs, such as C3H- and GR-MMTVs, have been studied in great detail. Some work has also been done with the MMTVs expressed in two substrains of RIII mice, BR6 and RIIIS/J, but the nature of the interaction between T cells and the virus(es) that the parental RIII-strain of mice express has not been investigated. Since RIII mice (designated henceforth as RIII/Sa) have a very high incidence (90-98%) of mammary tumors, and they have been extensively used in studies of the biology of mammary tumor development, we have presently determined the pattern of V beta-T cell deletion caused by RIII/Sa-MMTV-Sag(s) during viral infection. T cells were isolated from lymph nodes and thymus of young RIII/Sa mice, as well as from BALB/c (BALB/cfRIII/Sa), C57BL (C57BLfRIII/Sa), and RIIIS/J (RIIIS/JfRIII/Sa) mice after they were infected with RIII/Sa-MMTV(s) by foster nursing. The composition of the T cells was analyzed by FACS using a panel of monoclonal antibodies specific to a variety of V betas. Our results show that milk-borne RIII/Sa-MMTV(s) infection leads to the deletion of CD4(+) V beta-2, and to a lesser extent V beta-8 bearing peripheral and central T cells in RIII/Sa, RIIIS/J, BALB/c, and C57BL mice. Our results are in contrast to the findings that C3H-, GR-, and BR6-MMTVs delete V beta-14- and/or V beta-15-specific T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral
- CD4-Positive T-Lymphocytes/metabolism
- Female
- Incidence
- Lactation
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/metabolism
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Milk/virology
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Retroviridae Infections/virology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Taher Uz-Zaman
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
31
|
Jude BA, Pobezinskaya Y, Bishop J, Parke S, Medzhitov RM, Chervonsky AV, Golovkina TV. Subversion of the innate immune system by a retrovirus. Nat Immunol 2003; 4:573-8. [PMID: 12730691 DOI: 10.1038/ni926] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 03/12/2003] [Indexed: 01/25/2023]
Abstract
Retroviruses evolve rapidly to avoid the immune response of the infected host. We show here that the wild-type mouse mammary tumor virus MMTV(C3H) persisted indefinitely in C3H/HeN mice. However, it was rapidly lost in mice of the closely related C3H/HeJ strain and was replaced by a virus recombinant with an endogenous Mtv provirus. Maintenance of the wild-type virus was dependent on Toll-like receptor-4 (TLR4) signaling, which triggered production of the immunosuppressive cytokine interleukin-10. In the presence of mutant TLR4 in C3H/HeJ mice, wild-type virus was eliminated by the cytotoxic immune response, promoting selection of the immune escape recombinant MMTV variants. Thus, subversion of the innate immune system is yet another survival strategy used by retroviruses.
Collapse
Affiliation(s)
- Brooke A Jude
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Fan H, Palmarini M, DeMartini JC. Transformation and oncogenesis by jaagsiekte sheep retrovirus. Curr Top Microbiol Immunol 2003; 275:139-77. [PMID: 12596898 DOI: 10.1007/978-3-642-55638-8_6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma (OPA). JSRV is a potent carcinogen in the experimental setting, inducing end-stage tumors at around 6 weeks of age when newborn lambs are inoculated intratracheally. Despite this rapid oncogenesis, inspection of the JSRV genome sequence does not reveal any obvious viral oncogenes. In this review, recent advances in studies of JSRV oncogenic transformation are described. Molecular cloning of an infectious and oncogenic JSRV provirus was instrumental in the studies. DNA transfection of JSRV proviral DNA into mouse NIH3T3 cells results in morphological transformation, indicating that the JSRV genome carries an oncogene. Further experiments identified the JSRV envelope protein as the transforming gene, and a PI3 kinase docking site in the cytoplasmic tail of the transmembrane (TM) protein was shown to be necessary for transformation. Avian DF-1 cells infected with an avian retroviral vector (RCAS) expressing the JSRV envelope protein also undergo tumorigenic transformation. Possible mechanisms of transformation are discussed, and a cooperating role for insertional activation of proto-oncogenes in tumorigenesis is also considered. The transforming potential of the JSRV envelope protein may be necessary for JSRV infection and replication in vivo.
Collapse
Affiliation(s)
- H Fan
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
33
|
Purdy A, Case L, Duvall M, Overstrom-Coleman M, Monnier N, Chervonsky A, Golovkina T. Unique resistance of I/LnJ mice to a retrovirus is due to sustained interferon gamma-dependent production of virus-neutralizing antibodies. J Exp Med 2003; 197:233-43. [PMID: 12538662 PMCID: PMC2193815 DOI: 10.1084/jem.20021499] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Revised: 12/11/2002] [Accepted: 12/11/2002] [Indexed: 11/16/2022] Open
Abstract
Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-gamma production, because I/LnJ mice with targeted deletion of the INF-gamma gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-gamma-dependent humoral immune response.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/biosynthesis
- Cross Reactions
- Female
- Genetic Variation
- Immunoglobulin G/biosynthesis
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Knockout
- Milk/virology
- Neutralization Tests
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Retroviridae Infections/virology
- Superantigens/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Alexandra Purdy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Finke D, Luther SA, Acha-Orbea H. The role of neutralizing antibodies for mouse mammary tumor virus transmission and mammary cancer development. Proc Natl Acad Sci U S A 2003; 100:199-204. [PMID: 12502785 PMCID: PMC140926 DOI: 10.1073/pnas.0134988100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Indexed: 11/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.
Collapse
Affiliation(s)
- Daniela Finke
- Ludwig Institute for Cancer Research, Lausanne Branch, CH-1066 Epalinges, Switzerland
| | | | | |
Collapse
|
35
|
Vacheron S, Luther SA, Acha-Orbea H. Preferential infection of immature dendritic cells and B cells by mouse mammary tumor virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3470-6. [PMID: 11907107 DOI: 10.4049/jimmunol.168.7.3470] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.
Collapse
Affiliation(s)
- Sonia Vacheron
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
36
|
Czarneski J, Berguer P, Bekinschtein P, Kim DC, Hakimpour P, Wagner N, Nepomnaschy I, Piazzon I, Ross SR. Neonatal infection with a milk-borne virus is independent of beta7 integrin- and L-selectin-expressing lymphocytes. Eur J Immunol 2002; 32:945-56. [PMID: 11920560 DOI: 10.1002/1521-4141(200204)32:4<945::aid-immu945>3.0.co;2-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse mammary tumor virus (MMTV) is acquired by neonates through milk and first infects lymphocytes in Peyer's patches. We show here that newborn mice lacking beta7 integrin or L-selectin were infected with MMTV at wild-type levels in both their lymphoid and mammary tissues. Superantigen-mediated activation and cognate T cell deletion were also unimpaired in both types of null mice. A large proportion of neonatal Peyer's patch lymphocytes in wild-type mice were beta7 and beta1 integrin low and both populations increased in response to MMTV infection. These results suggest that adhesion molecules other than beta7 integrin or L-selectin play a role in lymphocyte homing in the gut, peripheral lymph nodes and mammary gland in response to MMTV infection.
Collapse
Affiliation(s)
- Jennifer Czarneski
- Department of Microbiology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Martín P, Ruiz SR, del Hoyo GM, Anjuère F, Vargas HH, López-Bravo M, Ardavín C. Dramatic increase in lymph node dendritic cell number during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment. Blood 2002; 99:1282-8. [PMID: 11830477 DOI: 10.1182/blood.v99.4.1282] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the information dealing with the differential phenotype and function of the main mouse dendritic cell (DC) subpopulations, namely, CD8alpha(-) and CD8alpha(+) DCs, their origin and involvement in antiviral immune responses in vivo are still largely unknown. To address these issues, this study used the changes occurring in DC subpopulations during the experimental infection by the Swiss (SW) strain of the mouse mammary tumor virus (MMTV). MMTV(SW) induced an 18-fold increase in lymph node DCs, which can be blocked by anti-CD62L treatment, concomitant with the presence of high numbers of DCs in the outer cortex, in close association with high endothelial venules. These data suggest that the DC increase caused by MMTV(SW) infection results from the recruitment of blood-borne DCs via high endothelial venules, by a CD62L-dependent mechanism. In addition, skin sensitization assays indicate that MMTV(SW) infection inhibits epidermal Langerhans cell migration to the draining lymph node. Moreover, data on the kinetics of MMTV(SW)-induced expansion of the different DC subsets support the hypothesis that CD8(-) and CD8(+) DCs represent different maturation stages of the same DC population, rather than myeloid- and lymphoid-derived DCs, respectively, as previously proposed. Finally, the fact that DCs were infected by MMTV(SW) suggests their participation in the early phases of infection.
Collapse
Affiliation(s)
- Pilar Martín
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Valve EM, Ruohola JK, Tasanen MJ, Glover JF, Darbre PD, Härkönen PL. Expression of the androgen-dependent MMTV-specific orf gene in Shionogi 115 mouse mammary tumor cells. J Steroid Biochem Mol Biol 2001; 78:389-400. [PMID: 11738549 DOI: 10.1016/s0960-0760(01)00116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Shionogi 115 (S115) mouse mammary tumor cells express the MMTV-specific 1.7 kb mRNA (orf) at a high level in the presence of androgens. In lymphoid cells the orf-gene encodes a superantigen which has an important role in establishing self-tolerance but in mammary and breast cancer cells the function of the orf gene is unclear. In the present work we studied the expression of the S115 mammary tumor cell orf sequence and its role in the androgen regulated growth of S115 cells. The cloning and sequencing of the cDNA specific for the 1.7 kb mRNA from the S115 mouse mammary tumor cells revealed a 990 bp DNA sequence with a 99.8% homology to the Mtv-17 proviral strain. There was a difference of only one amino acid (isoleu-tyr) in the coding region. A peptide was synthesized according to the hypervariable C-terminal part of the predicted protein and used to raise a rabbit antiserum. The anti-S115-orf antiserum immunoprecipitated an approximately 45 kDa protein from the metabolically labeled S115 cell lysates. In order to analyze the putative functions of the protein, the orf-sequence was linked to MoMLV-LTR and to the human ss-actin promoter in the mammalian expression vectors pLTRpoly and pHssAPr-1-neo, respectively, and transfected into NIH3T3 and S115 cells. NIH3T3 transfectants expressing orf mRNA did not show a transformed phenotype in vitro. The S115 orf transfectants proliferated somewhat more slowly than the vector transfected control cells in cell culture, both in the presence or absence of androgen, but there was no obvious change in the phenotype of S115 cells or in expression of the fibroblast growth factor 8 (FGF-8). This factor is activated by Mtv-6 integration and mediates androgen effects in these cells. Unexpectedly, however, the formation of tumors by S115 orf cells in nude mice was considerably prolonged and tumor growth retarded when compared with vector transfected control or parent S115 cells. The results suggest that MMTV-orf can be functional in breast cancer cells but the mechanism of the growth repressive effect in mammary tumor remains to be analyzed.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Androgens/pharmacology
- Animals
- Base Sequence
- Cell Division/drug effects
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Female
- Gene Expression
- Genes, Viral
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Nude
- Molecular Sequence Data
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/virology
- Open Reading Frames
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Sequence Homology, Amino Acid
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- E M Valve
- Department of Anatomy and MediCity Research Laboratory, Institute of Biomedicine, University of Turku, Tykistökatu 6A, FIN-20520, Turku, Finland
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
We usually think of superantigens (SAg) as dangerous toxins that may cause toxic shock syndrome and death. Now, based on two papers in this issue of Immunity, it seems that we all have SAg genes within us, lying dormant and waiting to be activated under special circumstances.
Collapse
Affiliation(s)
- D N Posnett
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
40
|
Stauffer Y, Marguerat S, Meylan F, Ucla C, Sutkowski N, Huber B, Pelet T, Conrad B. Interferon-alpha-induced endogenous superantigen. a model linking environment and autoimmunity. Immunity 2001; 15:591-601. [PMID: 11672541 DOI: 10.1016/s1074-7613(01)00212-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We earlier proposed that a human endogenous retroviral (HERV) superantigen (SAg) IDDMK(1,2)22 may cause type I diabetes by activating autoreactive T cells. Viral infections and induction of interferon-alpha (IFN-alpha) are tightly associated with the onset of autoimmunity. Here we establish a link between viral infections and IFN-alpha-regulated SAg expression of the polymorphic and defective HERV-K18 provirus. HERV-K18 has three alleles, IDDMK(1,2)22 and two full-length envelope genes, that all encode SAgs. Expression of HERV-K18 SAgs is inducible by IFN-alpha and this is sufficient to stimulate V beta 7 T cells to levels comparable to transfectants constitutively expressing HERV-K18 SAgs. Endogenous SAgs induced via IFN-alpha by viral infections is a novel mechanism through which environmental factors may cause disease in genetically susceptible individuals.
Collapse
Affiliation(s)
- Y Stauffer
- Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Baribaud F, Wirth S, Maillard I, Valsesia S, Acha-Orbea H, Diggelmann H. Identification of key amino acids of the mouse mammary tumor virus superantigen involved in the specific interaction with T-cell receptor V(beta) domains. J Virol 2001; 75:7453-61. [PMID: 11462017 PMCID: PMC114980 DOI: 10.1128/jvi.75.16.7453-7461.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a retrovirus encoding a superantigen that is recognized in association with major histocompatibility complex class II by the variable region of the beta chain (V(beta)) of the T-cell receptor. The C-terminal 30 to 40 amino acids of the superantigen of different MMTVs display high sequence variability that correlates with the recognition of particular T-cell receptor V(beta) chains. Interestingly, MMTV(SIM) and mtv-8 superantigens are highly homologous but have nonoverlapping T-cell receptor V(beta) specificities. To determine the importance of these few differences for specific V(beta) interaction, we studied superantigen responses in mice to chimeric and mutant MMTV(SIM) and mtv-8 superantigens expressed by recombinant vaccinia viruses. We show that only a few changes (two to six residues) within the C terminus are necessary to modify superantigen recognition by specific V(beta)s. Thus, the introduction of the MMTV(SIM) residues 314-315 into the mtv-8 superantigen greatly decreased its V(beta)12 reactivity without gain of MMTV(SIM)-specific function. The introduction of MMTV(SIM)-specific residues 289 to 295, however, induced a recognition pattern that was a mixture of MMTV(SIM)- and mtv-8-specific V(beta) reactivities: both weak MMTV(SIM)-specific V(beta)4 and full mtv-8-specific V(beta)11 recognition were observed while V(beta)12 interaction was lost. The combination of the two MMTV(SIM)-specific regions in the mtv-8 superantigen established normal MMTV(SIM)-specific V(beta)4 reactivity and completely abolished mtv-8-specific V(beta)5, -11, and -12 interactions. These new functional superantigens with mixed V(beta) recognition patterns allowed us to precisely delineate sites relevant for molecular interactions between the SIM or mtv-8 superantigen and the T-cell receptor V(beta) domain within the 30 C-terminal residues of the viral superantigen.
Collapse
Affiliation(s)
- F Baribaud
- Institute of Microbiology, University of Lausanne, CH-1011 Lausanne, CH-1066 Epalinges, Switzerland.
| | | | | | | | | | | |
Collapse
|
43
|
Li R, Page DM. Requirement for a complex array of costimulators in the negative selection of autoreactive thymocytes in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6050-6. [PMID: 11342622 DOI: 10.4049/jimmunol.166.10.6050] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoreactive thymocytes can be deleted at an immature stage of their development by Ag-induced apoptosis or negative selection. In addition to Ag, negative selection also requires costimulatory signals from APC. We recently used a fetal thymus organ culture system to show that CD5, CD28, and TNF cooperatively regulate deletion of autoreactive thymocytes. Although these experiments provided strong evidence for the action of several costimulators in negative selection, we wished to demonstrate a role for these molecules in a physiologically natural model where thymocytes are deleted in vivo by endogenously expressed AGS: Accordingly, we examined thymocyte deletion in costimulator-null mice in three models of autoantigen-induced negative selection. We compared CD5(-/-) CD28(-/-) mice to CD40L(-/-) mice, which exhibited a profound block in negative selection in all three systems. Surprisingly, only one of the three models revealed a requirement for the CD5 and CD28 costimulators in autoantigen-induced deletion. These results suggest that an extraordinarily complex array of costimulators is involved in negative selection. We predict that different sets of costimulators will be required depending on the timing of negative selection, the Ag, the signal strength, the APC, and whether Ag presentation occurs on class I or class II MHC molecules.
Collapse
Affiliation(s)
- R Li
- Department of Biology and the Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
44
|
Buggiano V, Schere-Levy C, Abe K, Vanzulli S, Piazzon I, Smith GH, Kordon EC. Impairment of mammary lobular development induced by expression of TGFbeta1 under the control of WAP promoter does not suppress tumorigenesis in MMTV-infected transgenic mice. Int J Cancer 2001; 92:568-76. [PMID: 11304693 DOI: 10.1002/ijc.1232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has previously been shown that transgenic female mice expressing TGFbeta1 under control of regulatory elements of the whey-acidic protein (WAP) gene were unable to lactate. This was due to the increased apoptosis of the cells committed to the lobular-lactogenic phenotype. Our goal was to determine whether the expression of WAP-TGFbeta1 transgene could inhibit MMTV (mouse mammary tumor virus) tumorigenic activity in the mammary gland. It is well known that the infection with this virus produces focal hyperplastic secretory nodules (HANs) and, some variants can also induce ductal pregnancy-dependent lesions (plaques). In either case, MMTV infection leads ultimately to the appearance of malignant mammary tumors. The results shown herein demonstrate that TGFbeta1 expression in the secretory mammary epithelium does not suppress mammary tumorigenesis in MMTV infected mice. Although MMTV infected WAP-TGFbeta1 transgenic females displayed a strong impairment of lobule-alveolar development, carcinogenesis induced by any of the four MMTV variants used herein proceeded unabated. WAP-TGFbeta1 tumors that showed a strong expression at the WAP promoter, appeared later and grew more slowly than their wild-type counterparts. Transgenic females also had a lower incidence of HANs and plaques. Our study suggests that the epithelial target cells for tumorigenic mutations are probably progenitor cells that are not susceptible to the apoptotic effect of TGFbeta1. Alternatively, their daughters cells that display the secretory phenotype and could be more involved in the formation of premalignant lesions continue to die due to the expression of the transgene.
Collapse
Affiliation(s)
- V Buggiano
- ILEX-CONICET, División de Medicina Experimental, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
45
|
Finke D, Baribaud F, Diggelmann H, Acha-Orbea H. Extrafollicular plasmablast B cells play a key role in carrying retroviral infection to peripheral organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6266-75. [PMID: 11342650 DOI: 10.4049/jimmunol.166.10.6266] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
B cells can either differentiate in germinal centers or in extrafollicular compartments of secondary lymphoid organs. Here we show the migration properties of B cells after differentiation in murine peripheral lymph node infected with mouse mammary tumor virus. Naive B cells become activated, infected, and carry integrated retroviral DNA sequences. After production of a retroviral superantigen, the infected B cells receive cognate T cell help and differentiate along the two main differentiation pathways analogous to classical Ag responses. The extrafollicular differentiation peaks on day 6 of mouse mammary tumor virus infection, and the follicular one becomes detectable after day 10. B cells participating in this immune response carry a retroviral DNA marker that can be detected by using semiquantitative PCR. We determined the migration patterns of B cells having taken part in the T cell-B cell interaction from the draining lymph node to different tissues. Waves of immigration and retention of infected cells in secondary lymphoid organs, mammary gland, salivary gland, skin, lung, and liver were observed correlating with the two peaks of B cell differentiation in the draining lymph node. Other organs revealed immigration of infected cells at later time points. The migration properties were correlated with a strong up-regulation of alpha(4)beta(1) integrin expression. These results show the migration properties of B cells during an immune response and demonstrate that a large proportion of extrafolliculary differentiating plasmablasts can escape local cell death and carry the retroviral infection to peripheral organs.
Collapse
Affiliation(s)
- D Finke
- Ludwig Institute for Cancer Research, Lausanne Branch, and Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | |
Collapse
|
46
|
Abstract
Herpesvirus saimiri (saimiriine herpesvirus 2) is the classical prototype of the gamma(2)-herpesviruses or rhadinoviruses, which also contains a human member, the Kaposi's sarcoma-associated herpesvirus. The T-lymphotropic Herpesvirus saimiri establishes specific replicative and persistent conditions in different primate host species. Virtually all squirrel monkeys (Saimiri sciureus) are persistently infected with this virus. In its natural host, the virus does not cause disease, whereas it induces fatal acute T-cell lymphoma in other monkey species after experimental infection. The virus can be isolated by cocultivation of permissive epithelial cells with peripheral blood cells from naturally infected squirrel monkeys and from susceptible New World monkeys during the virus-induced disease. Tumour-derived and in vitro-transformed T-cell lines from New World monkeys release virus particles. Herpesvirus ateles is a closely related virus of spider monkeys (Ateles spp.) and has similar pathogenic properties to Herpesvirus saimiri in other New World primate species. Similar to other rhadinoviruses, the genome of Herpesvirus saimiri harbours a series of virus genes with pronounced homology to cellular counterparts including a D-type cyclin, a G-protein-coupled receptor, an interleukin-17, a superantigen homologue, and several inhibitors of the complement cascade and of different apoptosis pathways. Preserved function has been demonstrated for most of the homologues of cellular proteins. These viral functions are mostly dispensable for the transforming and pathogenic capability of the virus. However, they are considered relevant for the apathogenic persistence of Herpesvirus saimiri in its natural host. A terminal region of the non-repetitive coding part of the virus genome is essential for pathogenicity and T-cell transformation. Based on the pathogenic phenotypes and the different alleles of this variable region, the virus strains have been assigned to three subgroups, termed A, B and C. In the highly oncogenic subgroup C strains, the two virus genes stpC and tip are transcribed from one bicistronic mRNA and are essential for transformation and leukaemia induction. stpC fulfils the typical criteria of an oncogene; its product interacts with Ras and tumour necrosis factor-associated factors and induces mitogen-activated protein kinase and nuclear factor kappa B activation. Tip interacts with the RNA transport factor Tap, with signal transduction and activation of transcription factors, and with the T-cellular tyrosine kinase Lck, which is activated by this interaction and phosphorylates Tip as a substrate. It is of particular interest that certain subgroup C virus strains such as C488 are capable of transforming human T lymphocytes to stable growth in culture. The transformed human T cells harbour multiple copies of the viral genome in the form of stable, non-integrated episomes. The cells express only a few virus genes and do not produce virus particles. The transformed cells maintain the antigen specificity and many other essential functions of their parental T-cell clones. Based on the preserved functional phenotype of the transformed T cells, Herpesvirus saimiri provides useful tools for T-cell immunology, for gene transfer and possibly also for experimental adoptive immunotherapy.
Collapse
Affiliation(s)
- H Fickenscher
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | |
Collapse
|
47
|
Golovkina T, Agafonova Y, Kazansky D, Chervonsky A. Diverse repertoire of the MHC class II-peptide complexes is required for presentation of viral superantigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2244-50. [PMID: 11160278 DOI: 10.4049/jimmunol.166.4.2244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among other features, peptides affect MHC class II molecules, causing changes in the binding of bacterial superantigens (b-Sag). Whether peptides can alter binding of viral superantigens (v-Sag) to MHC class II was not known. Here we addressed the question of whether mutations limiting the diversity of peptides bound by the MHC class II molecules influenced the presentation of v-Sag and, subsequently, the life cycle of the mouse mammary tumor virus (MMTV). T cells reactive to v-Sag were found in mice lacking DM molecules as well as in A(b)Ep-transgenic mice in which MHC class II binding grooves were predominantly occupied by an invariant chain fragment or Ealpha(52-68) peptide, respectively. APCs from the mutant mice failed to present v-Sag, as determined by the lack of Sag-specific T cell activation, Sag-induced T cell deletion, and by the aborted MMTV infection. In contrast, mice that express I-A(b) with a variety of bound peptides presented v-Sag and were susceptible to MMTV infection. Comparison of v-Sag and b-Sag presentation by the same mutant cells suggested that presentation of v-Sag had requirements similar to that for presentation of toxic shock syndrome toxin-1. Thus, MHC class II peptide repertoire is critical for recognition of v-Sag by the T cells and affects the outcome of infection with a retrovirus.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/microbiology
- Antigen-Presenting Cells/virology
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Female
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Peptides/immunology
- Peptides/metabolism
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Staphylococcus aureus/immunology
- Superantigens/immunology
- Superantigens/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
Collapse
Affiliation(s)
- T Golovkina
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
48
|
Bachmann M, Gallimore A, Jones E, Ecabert B, Acha-Orbea H, Kopf M. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. Eur J Immunol 2001. [DOI: 10.1002/1521-4141(200102)31:2<450::aid-immu450>3.0.co;2-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Mustafa F, Lozano M, Dudley JP. C3H mouse mammary tumor virus superantigen function requires a splice donor site in the envelope gene. J Virol 2000; 74:9431-40. [PMID: 11000212 PMCID: PMC112372 DOI: 10.1128/jvi.74.20.9431-9440.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a superantigen (Sag) that is required for efficient milk-borne transmission of virus from mothers to offspring. The mRNA used for Sag expression is controversial, and at least four different promoters (two in the long terminal repeat and two in the envelope gene) for sag mRNA have been reported. To determine which RNA is responsible for Sag function during milk-borne MMTV transmission, we mutated a splice donor site unique to a spliced sag RNA from the 5' envelope promoter. The splice donor mutation in an infectious provirus was transfected into XC cells and injected into BALB/c mice. Mice injected with wild-type provirus showed Sag activity by the deletion of Sag-specific T cells and induction of mammary tumors in 100% of injected animals. However, mice injected with the splice donor mutant gave sporadic and delayed T-cell deletion and a low percentage of mammary tumors with a long latency, suggesting that the resulting tumors were due to the generation of recombinants with endogenous MMTVs. Third-litter offspring of mice injected with wild-type provirus showed Sag-specific T-cell deletion and developed mammary tumors with kinetics similar to those for mice infected by nursing on MMTV-infected mothers, whereas the third-litter offspring of the splice donor mutant-injected mice did not. One of the fifth-litter progeny of splice donor mutant-injected mice showed C3H Sag activity and had recombinants that repaired the splice donor mutation, thus confirming the necessity for the splice donor site for Sag function. These experiments are the first to show that the spliced sag mRNA from the 5' envelope promoter is required for efficient milk-borne transmission of C3H MMTV.
Collapse
Affiliation(s)
- F Mustafa
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78705, USA
| | | | | |
Collapse
|
50
|
Hook LM, Agafonova Y, Ross SR, Turner SJ, Golovkina TV. Genetics of mouse mammary tumor virus-induced mammary tumors: linkage of tumor induction to the gag gene. J Virol 2000; 74:8876-83. [PMID: 10982330 PMCID: PMC102082 DOI: 10.1128/jvi.74.19.8876-8883.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses are believed to induce tumors by acting as insertional mutagens that activate expression of cellular protooncogenes. Indeed, almost 90% of mouse mammary tumor virus (MMTV)-induced mammary tumors in C3H/He mice show upregulation of Int protooncogenes. We have analyzed three different MMTV variants [MMTV(C3H), MMTV(HeJ), and a genetically engineered MMTV hybrid provirus (HP)] for tumorigenicity in mice from two distinct genetic backgrounds. All three viruses were tumor causing in BALB/cJ mice. However, only MMTV(C3H), but not MMTV(HeJ) or HP, induced mammary tumors in C3H/He mice. All of the viruses were infectious on either background and up-regulated expression of Int genes in tumors they induced. Like HP, MMTV(HeJ) was found to be a genetic recombinant between endogenous Mtv1 provirus and exogenous MMTV(C3H). Sequence comparison of MMTV variants linked the tumorigenicity of MMTV(C3H) to the gag region of the retrovirus.
Collapse
Affiliation(s)
- L M Hook
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | |
Collapse
|