1
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
2
|
Xia Z, Dai X, Fan W, Liu C, Zhang M, Bian P, Zhou Y, Li L, Zhu B, Liu S, Li Z, Wang X, Yu M, Xiang Z, Jiang Y, Zhao A. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1119-1137. [PMID: 36055564 DOI: 10.1016/j.gpb.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our findings provide an important genetic resource for sex identification research and molecular breeding in mulberry.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuman Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661100, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Maode Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Andrew DJ, Chen EH, Manoli DS, Ryner LC, Arbeitman MN. Sex and the Single Fly: A Perspective on the Career of Bruce S. Baker. Genetics 2019; 212:365-376. [PMID: 31167898 PMCID: PMC6553822 DOI: 10.1534/genetics.119.301928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
Bruce Baker, a preeminent Drosophila geneticist who made fundamental contributions to our understanding of the molecular genetic basis of sex differences, passed away July 1, 2018 at the age of 72. Members of Bruce's laboratory remember him as an intensely dedicated, rigorous, creative, deep-thinking, and fearless scientist. His trainees also remember his strong commitment to teaching students at every level. Bruce's career studying sex differences had three major epochs, where the laboratory was focused on: (1) sex determination and dosage compensation, (2) the development of sex-specific structures, and (3) the molecular genetic basis for sex differences in behavior. Several members of the Baker laboratory have come together to honor Bruce by highlighting some of the laboratory's major scientific contributions in these areas.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Devanand S Manoli
- Department of Psychiatry, University of California, San Francisco, California 94158
- Weill Institute for Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, California 94158
| | - Lisa C Ryner
- Development Sciences Division, Roche Genentech, South San Francisco, California 94080
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
4
|
Dosage Compensation in Drosophila-a Model for the Coordinate Regulation of Transcription. Genetics 2017; 204:435-450. [PMID: 27729494 DOI: 10.1534/genetics.115.185108] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022] Open
Abstract
The sex chromosomes have special significance in the history of genetics. The chromosomal basis of inheritance was firmly established when Calvin Bridges demonstrated that exceptions to Mendel's laws of segregation were accompanied at the cytological level by exceptional sex chromosome segregation. The morphological differences between X and Y exploited in Bridges' experiments arose as a consequence of the evolution of the sex chromosomes. Originally a homologous chromosome pair, the degeneration of the Y chromosome has been accompanied by a requirement for increased expression of the single X chromosome in males. Drosophila has been a model for the study of this dosage compensation and has brought key strengths, including classical genetics, the exceptional cytology of polytene chromosomes, and more recently, comprehensive genomics. The impact of these studies goes beyond sex chromosome regulation, providing valuable insights into mechanisms for the establishment and maintenance of chromatin domains, and for the coordinate regulation of transcription.
Collapse
|
5
|
Lubelsky Y, Prinz JA, DeNapoli L, Li Y, Belsky JA, MacAlpine DM. DNA replication and transcription programs respond to the same chromatin cues. Genome Res 2015; 24:1102-14. [PMID: 24985913 PMCID: PMC4079966 DOI: 10.1101/gr.160010.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a dynamic process that occurs in a temporal order along each of the chromosomes. A consequence of the temporally coordinated activation of replication origins is the establishment of broad domains (>100 kb) that replicate either early or late in S phase. This partitioning of the genome into early and late replication domains is important for maintaining genome stability, gene dosage, and epigenetic inheritance; however, the molecular mechanisms that define and establish these domains are poorly understood. The modENCODE Project provided an opportunity to investigate the chromatin features that define the Drosophila replication timing program in multiple cell lines. The majority of early and late replicating domains in the Drosophila genome were static across all cell lines; however, a small subset of domains was dynamic and exhibited differences in replication timing between the cell lines. Both origin selection and activation contribute to defining the DNA replication program. Our results suggest that static early and late replicating domains were defined at the level of origin selection (ORC binding) and likely mediated by chromatin accessibility. In contrast, dynamic domains exhibited low ORC densities in both cell types, suggesting that origin activation and not origin selection governs the plasticity of the DNA replication program. Finally, we show that the male-specific early replication of the X chromosome is dependent on the dosage compensation complex (DCC), suggesting that the transcription and replication programs respond to the same chromatin cues. Specifically, MOF-mediated hyperacetylation of H4K16 on the X chromosome promotes both the up-regulation of male-specific transcription and origin activation.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joseph A Prinz
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Leyna DeNapoli
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yulong Li
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jason A Belsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
6
|
Maenner S, Müller M, Fröhlich J, Langer D, Becker PB. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell 2013; 51:174-84. [PMID: 23870143 DOI: 10.1016/j.molcel.2013.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022]
Abstract
Dosage compensation in Drosophila involves a global activation of genes on the male X chromosome. The activating complex (MSL-DCC) consists of male-specific-lethal (MSL) proteins and two long, noncoding roX RNAs. The roX RNAs are essential for X-chromosomal targeting, but their contributions to MSL-DCC structure and function are enigmatic. Conceivably, the RNA helicase MLE, itself an MSL subunit, is actively involved in incorporating roX into functional DCC. We determined the secondary structure of roX2 and mapped specific interaction sites for MLE in vitro. Upon addition of ATP, MLE disrupted a functionally important stem loop in roX2. This RNA remodeling enhanced specific ATP-dependent association of MSL2, the core subunit of the MSL-DCC, providing a link between roX and MSL subunits. Probing the conformation of roX in vivo revealed a remodeled stem loop in chromatin-bound roX2. The active remodeling of a stable secondary structure by MLE may constitute a rate-limiting step for MSL-DCC assembly.
Collapse
Affiliation(s)
- Sylvain Maenner
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
7
|
Alekseyenko AA, Ho JWK, Peng S, Gelbart M, Tolstorukov MY, Plachetka A, Kharchenko PV, Jung YL, Gorchakov AA, Larschan E, Gu T, Minoda A, Riddle NC, Schwartz YB, Elgin SCR, Karpen GH, Pirrotta V, Kuroda MI, Park PJ. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context. PLoS Genet 2012; 8:e1002646. [PMID: 22570616 PMCID: PMC3343056 DOI: 10.1371/journal.pgen.1002646] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/22/2012] [Indexed: 11/23/2022] Open
Abstract
The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at “entry sites” that contain a consensus sequence motif (“MSL recognition element” or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome. The genomes of complex organisms encompass hundreds of millions of base pairs of DNA, and regulatory molecules must distinguish specific targets within this vast landscape. In general, regulatory factors find target genes through sequence-specific interactions with the underlying DNA. However, sequence-specific factors typically bind only a fraction of the candidate genomic regions containing their specific target sequence motif. Here we identify potential roles for chromatin environment and flanking sequence composition in helping regulatory factors find their appropriate binding sites, using targeting of the Drosophila dosage compensation complex as a model. The initial stage of dosage compensation involves binding of the Male Specific Lethal (MSL) complex to a sequence motif called the MSL recognition element [1]. Using data from a large chromatin mapping effort (the modENCODE project), we successfully identify an active chromatin environment as predictive of selective MRE binding by the MSL complex. Our study provides a framework for using genome-wide datasets to analyze and predict functional protein–DNA binding site selection.
Collapse
Affiliation(s)
- Artyom A. Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua W. K. Ho
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shouyong Peng
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marnie Gelbart
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Y. Tolstorukov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annette Plachetka
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter V. Kharchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Youngsook L. Jung
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrey A. Gorchakov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Tingting Gu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Aki Minoda
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Genome Dynamics, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Nicole C. Riddle
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | | | - Sarah C. R. Elgin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gary H. Karpen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mitzi I. Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MIK); (PJP)
| | - Peter J. Park
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MIK); (PJP)
| |
Collapse
|
8
|
Abstract
In higher eukaryotes, histone acetyltransferase MOF (male absent on the first) is the major enzyme that acetylates histone H4 lysine 16, a prevalent mark associated with chromatin decondensation. Recent studies show that MOF resides in two different but evolutionarily conserved complexes, MSL and MOF-MSL1v1. Although these two MOF complexes have indistinguishable activity on histone H4 K16, they differ dramatically in acetylating non-histone substrate p53. The regulation of MOF activity in these complexes remains elusive. Given the evolution conservation of MOF and the importance of H4 K16 acetylation in maintaining higher order chromatin structures, understanding the function and regulation of MOF bears great significance. Here, we discussed the key differences in two MOF complexes that may shed light on the regulation of their distinct acetyltransferase activities. We also discussed coordinated functions of two MOF complexes with different histone methyltransferase complexes in transcription regulation.
Collapse
|
9
|
Li J, Hosseini Moghaddam SH, Chen X, Chen M, Zhong B. Shotgun strategy-based proteome profiling analysis on the head of silkworm Bombyx mori. Amino Acids 2010; 39:751-61. [PMID: 20198493 DOI: 10.1007/s00726-010-0517-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 02/05/2010] [Indexed: 01/09/2023]
Abstract
Insect head is comprised of important sensory systems to communicate with internal and external environment and endocrine organs such as brain and corpus allatum to regulate insect growth and development. To comprehensively understand how all these components act and interact within the head, it is necessary to investigate their molecular basis at protein level. Here, the spectra of peptides digested from silkworm larval heads were obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) and were analyzed by bioinformatics methods. Totally, 539 proteins with a low false discovery rate (FDR) were identified by searching against an in-house database with SEQUEST and X!Tandem algorithms followed by trans-proteomic pipeline (TPP) validation. Forty-three proteins had the theoretical isoelectric point (pI) greater than 10 which were too difficult to separate by two-dimensional gel electrophoresis (2-DE). Four chemosensory proteins, one odorant-binding protein, two diapause-related proteins, and a lot of cuticle proteins, interestingly including pupal cuticle proteins were identified. The proteins involved in nervous system development, stress response, apoptosis and so forth were related to the physiological status of head. Pathway analysis revealed that many proteins were highly homologous with the human proteins which involved in human neurodegenerative disease pathways, probably implying a symptom of the forthcoming metamorphosis of silkworm. These data and the analysis methods were expected to be of benefit to the proteomics research of silkworm and other insects.
Collapse
Affiliation(s)
- Jianying Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Gamberi C, Johnstone O, Lasko P. Drosophila RNA Binding Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:43-139. [PMID: 16487790 DOI: 10.1016/s0074-7696(06)48002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
11
|
Reid JL, Moqtaderi Z, Struhl K. Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:757-64. [PMID: 14701747 PMCID: PMC343795 DOI: 10.1128/mcb.24.2.757-764.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae has a global pattern of histone acetylation in which histone H3 and H4 acetylation levels are lower at protein-coding sequences than at promoter regions. The loss of Eaf3, a subunit of the NuA4 histone acetylase and Rpd3 histone deacetylase complexes, greatly alters the genomic profile of histone acetylation, with the effects on H4 appearing to be more pronounced than those on H3. Specifically, the loss of Eaf3 causes increases in H3 and H4 acetylation at coding sequences and decreases at promoters, such that histone acetylation levels become evenly distributed across the genome. Eaf3 does not affect the overall level of H4 acetylation, the recruitment of the NuA4 catalytic subunit Esa1 to target promoters, or the level of transcription of the genes analyzed for histone acetylation. Whole-genome transcriptional profiling indicates that Eaf3 plays a positive, but quantitatively modest, role in the transcription of a small subset of genes, whereas it has a negative effect on very few genes. We suggest that Eaf3 regulates the genomic profile of histone H3 and H4 acetylation in a manner that does not involve targeted recruitment and is independent of transcriptional activity.
Collapse
Affiliation(s)
- Juliet L Reid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, Song HD, Xu XR, Wang ZJ, Rong YP, Zeng LC, Wu J, Zhang X, Wang JJ, Xu XN, Wang SY, Fu G, Zhang XL, Wang ZQ, Brindley PJ, McManus DP, Xue CL, Feng Z, Chen Z, Han ZG. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 2003; 35:139-47. [PMID: 12973349 DOI: 10.1038/ng1236] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 07/23/2003] [Indexed: 01/28/2023]
Abstract
Schistosoma japonicum causes schistosomiasis in humans and livestock in the Asia-Pacific region. Knowledge of the genome of this parasite should improve understanding of schistosome-host interactions, biomedical aspects of schistosomiasis and invertebrate evolution. We assigned 43,707 expressed sequence tags (ESTs) derived from adult S. japonicum and their eggs to 13,131 gene clusters. Of these, 35% shared no similarity with known genes and 75% had not been reported previously in schistosomes. Notably, S. japonicum encoded mammalian-like receptors for insulin, progesterone, cytokines and neuropeptides, suggesting that host hormones, or endogenous parasite homologs, could orchestrate schistosome development and maturation and that schistosomes modulate anti-parasite immune responses through inhibitors, molecular mimicry and other evasion strategies.
Collapse
Affiliation(s)
- Wei Hu
- Chinese National Human Genome Center at Shanghai, 351 Guo shou-Jing Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Demakova OV, Kotlikova IV, Gordadze PR, Alekseyenko AA, Kuroda MI, Zhimulev IF. The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 2003; 112:103-15. [PMID: 14579126 DOI: 10.1007/s00412-003-0249-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 06/28/2003] [Accepted: 07/01/2003] [Indexed: 11/26/2022]
Abstract
In Drosophila, dosage compensation requires assembly of the Male Specific Lethal (MSL) protein complex for doubling transcription of most X-linked genes in males. The recognition of the X chromosome by the MSL complex has been suggested to include initial assembly at approximately 35 chromatin entry sites and subsequent spreading of mature complexes in cis to numerous additional sites along the chromosome. To understand this process further we examined MSL patterns in a range of wild-type and mutant backgrounds producing different amounts of MSL components. Our data support a model in which MSL complex binding to the X is directed by a hierarchy of target sites that display different affinities for the MSL proteins. Chromatin entry sites differ in their ability to provide local intensive binding of complexes to adjacent regions, and need high MSL complex titers to achieve this. We also mapped a set of definite autosomal regions (approximately 70) competent to associate with the functional MSL complex in wild-type males. Overexpression of both MSL1 and MSL2 stabilizes this binding and results in inappropriate MSL binding to the chromocenter and the 4th chromosome. Thus, wild-type MSL complex titers are critical for correct targeting to the X chromosome.
Collapse
Affiliation(s)
- Olga V Demakova
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Buscaino A, Köcher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell 2003; 11:1265-77. [PMID: 12769850 DOI: 10.1016/s1097-2765(03)00140-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dosage compensation ensures equal expression of X-linked genes in males and females. In Drosophila, equalization is achieved by hypertranscription of the male X chromosome. This process requires an RNA/protein containing dosage compensation complex (DCC). Here we use RNA interference of individual DCC components to define the order of complex assembly in Schneider cells. We show that interaction of MOF with MSL-3 leads to specific acetylation of MSL-3 at a single lysine residue adjacent to one of its chromodomains. We observe that localization of MSL-3 to the X chromosome is RNA dependent and acetylation sensitive. We find that the acetylation status of MSL-3 determines its interaction with roX2 RNA. Furthermore, we find that RPD3 interacts with MSL-3 and that MSL-3 can be deacetylated by the RPD3 complex. We propose that regulated acetylation of MSL-3 may provide a mechanistic explanation for spreading of the dosage compensation complex along the male X chromosome.
Collapse
Affiliation(s)
- Alessia Buscaino
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Koike Y, Mita K, Suzuki MG, Maeda S, Abe H, Osoegawa K, deJong PJ, Shimada T. Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. Mol Genet Genomics 2003; 269:137-49. [PMID: 12715162 DOI: 10.1007/s00438-003-0822-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 01/17/2003] [Indexed: 10/25/2022]
Abstract
The sex chromosome constitution of the silkworm, Bombyx mori, is ZW in the female and ZZ in the male. Very little molecular information is available about the Z chromosome in Lepidoptera, although the topic is interesting because of the absence of gene dosage compensation in this chromosome. We constructed a 320-kb BAC contig around the Bmkettin gene on the Z chromosome in Bombyx and determined its nucleotide sequence by the shotgun method. We found 13 novel protein-coding sequences in addition to Bmkettin. All the transposable elements detected in the region were truncated, and no LTR retrotransposons were found, in stark contrast to the situation on the W chromosome. In this 320-kb region, four genes for muscle proteins (Bmkettin, Bmtitin1, Bmtitin2, and Bmprojectin) are clustered, together with another gene (Bmmiple) on the Z chromosome in B. mori; their orthologs are also closely linked on chromosome 3 in Drosophila, suggesting a partial synteny. Real-time RT-PCR experiments demonstrated that transcripts of 13 genes of the 14 Z-linked genes found accumulated in larger amounts in males than in female moths, indicating the absence of gene dosage compensation. The implications of these findings for the evolution and function of the Z chromosome in Lepidoptera are discussed.
Collapse
Affiliation(s)
- Y Koike
- Department of Agricultural and Environmental Biology, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM. MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation. J Biol Chem 2002; 277:50860-6. [PMID: 12397079 DOI: 10.1074/jbc.m203839200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MRG15 is a novel chromodomain protein that is a member of a family of genes related to MORF4. MORF4 (mortality factor on chromosome 4) induces senescence in a subset of human tumor cell lines. Our previous results indicated that MRG15 (MORF-related gene on chromosome 15) could derepress the B-myb promoter by association with Rb. In this study, sucrose gradient analysis demonstrated that MRG15 was present in two distinct nuclear protein complexes, MAF1 (MRG15-associated factor 1) and MAF2. Rb was associated with MRG15 and PAM14 (a novel coil-coil protein) in MAF1, and a histone acetyl transferase, hMOF, was an MRG15 partner in MAF2. Analysis of deletion mutants of MRG15 indicated that the leucine zipper at the C-terminal region of MRG15 was important for the protein associations in MAF1 and that the N-terminal chromodomain was required for the assembly of the MAF2 protein complex. Consistent with these data was the fact that a histone acetyltransferase activity associated with MRG15 was lost when the chromodomain was deleted and that both mutant MRG15 proteins failed to activate the B-myb promoter. The various mechanisms by which MRG15 could activate gene transcription are discussed.
Collapse
Affiliation(s)
- Patricia S Pardo
- Roy M. and Phyllis Gough Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
17
|
Ruiz MF, Esteban MR, Doñoro C, Goday C, Sánchez L. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Genetics 2000; 156:1853-65. [PMID: 11102379 PMCID: PMC1461397 DOI: 10.1093/genetics/156.4.1853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Drosophila melanogaster and in Sciara ocellaris dosage compensation occurs by hypertranscription of the single male X chromosome. This article reports the cloning and characterization in S. ocellaris of the gene homologous to maleless (mle) of D. melanogaster, which implements dosage compensation. The Sciara mle gene produces a single transcript, encoding a helicase, which is present in both male and female larvae and adults and in testes and ovaries. Both Sciara and Drosophila MLE proteins are highly conserved. The affinity-purified antibody to D. melanogaster MLE recognizes the S. ocellaris MLE protein. In contrast to Drosophila polytene chromosomes, where MLE is preferentially associated with the male X chromosome, in Sciara MLE is found associated with all chromosomes. Anti-MLE staining of Drosophila postblastoderm male embryos revealed a single nuclear dot, whereas Sciara male and female embryos present multiple intranuclear staining spots. This expression pattern in Sciara is also observed before blastoderm stage, when dosage compensation is not yet set up. The affinity-purified antibodies against D. melanogaster MSL1, MSL3, and MOF proteins involved in dosage compensation also revealed no differences in the staining pattern between the X chromosome and the autosomes in both Sciara males and females. These results lead us to propose that different proteins in Drosophila and Sciara would implement dosage compensation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Cell Nucleus/ultrastructure
- Chromosomal Proteins, Non-Histone
- Chromosomes/chemistry
- Cloning, Molecular
- DNA Helicases
- DNA-Binding Proteins
- Diptera/embryology
- Diptera/genetics
- Dosage Compensation, Genetic
- Drosophila Proteins
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/ultrastructure
- Female
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation, Developmental
- Genes, Insect
- Insect Proteins/genetics
- Insect Proteins/immunology
- Insect Proteins/physiology
- Male
- Molecular Sequence Data
- RNA Helicases/genetics
- RNA Helicases/immunology
- RNA Helicases/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sex Determination Processes
- Species Specificity
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/physiology
- Transcription, Genetic
- X Chromosome/genetics
Collapse
Affiliation(s)
- M F Ruiz
- Centro de Investigaciones Biológicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Lieb JD, de Solorzano CO, Rodriguez EG, Jones A, Angelo M, Lockett S, Meyer BJ. The Caenorhabditis elegans dosage compensation machinery is recruited to X chromosome DNA attached to an autosome. Genetics 2000; 156:1603-21. [PMID: 11102361 PMCID: PMC1461385 DOI: 10.1093/genetics/156.4.1603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dosage compensation machinery of Caenorhabditis elegans is targeted specifically to the X chromosomes of hermaphrodites (XX) to reduce gene expression by half. Many of the trans-acting factors that direct the dosage compensation machinery to X have been identified, but none of the proposed cis-acting X chromosome-recognition elements needed to recruit dosage compensation components have been found. To study X chromosome recognition, we explored whether portions of an X chromosome attached to an autosome are competent to bind the C. elegans dosage compensation complex (DCC). To do so, we devised a three-dimensional in situ approach that allowed us to compare the volume, position, and number of chromosomal and subchromosomal bodies bound by the dosage compensation machinery in wild-type XX nuclei and XX nuclei carrying an X duplication. The dosage compensation complex was found to associate with a duplication of the right 30% of X, but the complex did not spread onto adjacent autosomal sequences. This result indicates that all the information required to specify X chromosome identity resides on the duplication and that the dosage compensation machinery can localize to a site distinct from the full-length hermaphrodite X chromosome. In contrast, smaller duplications of other regions of X appeared to not support localization of the DCC. In a separate effort to identify cis-acting X recognition elements, we used a computational approach to analyze genomic DNA sequences for the presence of short motifs that were abundant and overrepresented on X relative to autosomes. Fourteen families of X-enriched motifs were discovered and mapped onto the X chromosome.
Collapse
Affiliation(s)
- J D Lieb
- Howard Hughes Medical Institute and University of California, Berkeley, California 94720-3204, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Both flies and mammals remodel the architecture of the X chromosome to achieve dosage compensation. A novel class of noncoding RNAs that paint entire chromosomes are centrally involved in this process. The genes encoding these unusual RNAs are themselves located on the X, and are key sites that target the X for dosage compensation.
Collapse
Affiliation(s)
- R L Kelley
- Baylor College of Medicinem, Department of Molecular and Cellular Biology, One Baylor Plaza, Mail Stop BCM235, Houston, Texas 77030, USA.
| | | |
Collapse
|
20
|
Bhadra U, Pal-Bhadra M, Birchler JA. Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 2000; 155:753-63. [PMID: 10835396 PMCID: PMC1461119 DOI: 10.1093/genetics/155.2.753] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of sex determination mechanisms is often accompanied by reduction in dosage of genes on a whole chromosome. Under these circumstances, negatively acting regulatory genes would tend to double the expression of the genome, which produces compensation of the single-sex chromosome and increases autosomal gene expression. Previous work has suggested that to reduce the autosomal expression to the female level, these dosage effects are modified by a chromatin complex specific to males, which sequesters a histone acetylase to the X. The reduced autosomal histone 4 lysine 16 (H4Lys16) acetylation results in lowered autosomal expression, while the higher acetylation on the X is mitigated by the male-specific lethal complex, preventing overexpression. In this report, we examine how mutations in the principal sex determination gene, Sex lethal (Sxl), impact the H4 acetylation and gene expression on both the X and autosomes. When Sxl expression is missing in females, we find that the sequestration occurs concordantly with reductions in autosomal H4Lys16 acetylation and gene expression on the whole. When Sxl is ectopically expressed in Sxl(M) mutant males, the sequestration is disrupted, leading to an increase in autosomal H4Lys16 acetylation and overall gene expression. In both cases we find relatively little effect upon X chromosomal gene expression.
Collapse
Affiliation(s)
- U Bhadra
- Division of Biological Sciences, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
21
|
Akhtar A, Becker PB. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 2000; 5:367-75. [PMID: 10882077 DOI: 10.1016/s1097-2765(00)80431-1] [Citation(s) in RCA: 367] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dosage compensation in Drosophila involves a 2-fold increase in transcription from the single male X relative to the two female X chromosomes. Regulation at the level of the chromosome involves alterations in chromatin organization: male X chromosomes appear decondensed and are marked by acetylation of histone H4 at lysine 16. We demonstrate that MOF, a protein required for dosage compensation with significant sequence similarity to the MYST family of acetyltransferases, is a histone acetyltransferase that acetylates chromatin specifically at histone H4 lysine 16. This acetylation relieves chromatin-mediated repression of transcription in vitro and in vivo if MOF is targeted to a promoter by fusion to a DNA-binding domain. Acetylation of chromatin by MOF, therefore, appears to be causally involved in transcriptional activation during dosage compensation.
Collapse
Affiliation(s)
- A Akhtar
- The Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
22
|
Bhattacharya A, Sudha S, Chandra HS, Steward R. flex, an X-linked female-lethal mutation in Drosophila melanogaster controls the expression of Sex-lethal. Development 1999; 126:5485-93. [PMID: 10556072 DOI: 10.1242/dev.126.23.5485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Sex-lethal (Sxl) gene is required in Drosophila females for sexual differentiation of the soma, for gem cell differentiation and dosage compensation. We have isolated three new alleles of female-lethal-on-X (flex), an X-linked female-lethal mutation and have characterized its function in sex determination. SXL protein is missing in flex/flex embryos, however transcription from both Sxl(Pe), the early Sxl promoter and Sxl(Pm), the late maintenance promoter, is normal in flex homozygotes. In flex/flex embryos, Sxl mRNA is spliced in the male mode. Analysis of flex germline clones shows that it also functions in oogenesis, but in contrast to Sxl mutants that show an early arrest tumorous phenotype, flex mutant egg chambers develop to stage 10. In flex ovarian clones, Sxl RNA is also spliced in the male form. Hence, flex is a sex-specific regulator of Sxl functioning in both the soma and the germline. Genetic interaction studies show that flex does not enhance female lethality of Sxl loss-of-function alleles but it rescues the male-specific lethality of both of the gain-of-function Sxl mutations, Sxl(M1)and Sxl(M4.) In contrast to mutations in splicing regulators of Sxl, the female lethality of flex is not rescued by either Sxl(M1)or Sxl(M4). Based on these observations, we propose that flex regulates Sxl at a post-splicing stage and regulates either its translation or the stability of the SXL protein.
Collapse
Affiliation(s)
- A Bhattacharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
23
|
Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 1999; 98:513-22. [PMID: 10481915 DOI: 10.1016/s0092-8674(00)81979-0] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The multisubunit MSL dosage compensation complex binds to hundreds of sites along the Drosophila single male X chromosome, mediating its hypertranscription. The male X chromosome is also coated with noncoding roX RNAs. When either msl3, mle, or mof is mutant, a partial MSL complex is bound at only approximately 35 unusual sites distributed along the X. We show that two of these sites are the roX1 and roX2 genes and postulate that one of their functions is to provide entry sites for the MSL complex to recognize the X chromosome. The roX1 gene provides a nucleation site for extensive spreading of the MSL complex into flanking chromatin even when moved to an autosome. The spreading can occur in cis or in trans between paired homologs. We present a model for how the dosage compensation complex recognizes X chromatin.
Collapse
Affiliation(s)
- R L Kelley
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
25
|
Chang KA, Kuroda MI. Modulation of MSL1 abundance in female Drosophila contributes to the sex specificity of dosage compensation. Genetics 1998; 150:699-709. [PMID: 9755201 PMCID: PMC1460363 DOI: 10.1093/genetics/150.2.699] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dosage compensation in Drosophila is the mechanism by which X-linked gene expression is made equal in males and females. Proper regulation of this process is critical to the survival of both sexes. Males must turn the male-specific lethal (msl)-mediated pathway of dosage compensation on and females must keep it off. The msl2 gene is the primary target of negative regulation in females. Preventing production of MSL2 protein is sufficient to prevent dosage compensation; however, ectopic expression of MSL2 protein in females is not sufficient to induce an insurmountable level of dosage compensation, suggesting that an additional component is limiting in females. A candidate for this limiting factor is MSL1, because the amount of MSL1 protein in females is reduced compared to males. We have identified two levels of negative regulation of msl1 in females. The predominant regulation is at the level of protein stability, while a second regulatory mechanism functions at the level of protein synthesis. Overcoming these control mechanisms by overexpressing both MSL1 and MSL2 in females results in 100% female-specific lethality.
Collapse
Affiliation(s)
- K A Chang
- Department of Cell Biology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
27
|
The evolution of caste polymorphism in social insects:0 Genetic release followed by diversifying evolution. J Genet 1997. [DOI: 10.1007/bf02932215] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Bashaw GJ, Baker BS. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 1997; 89:789-98. [PMID: 9182767 DOI: 10.1016/s0092-8674(00)80262-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Drosophila, dosage compensation occurs by increasing the transcription of the single male X chromosome. Four trans-acting factors encoded by the male-specific lethal genes are required for this process. Dosage compensation is restricted to males by the splicing regulator Sex-lethal, which functions to prevent the production of the MSL-2 protein in females by an unknown mechanism. In this report, we provide evidence that Sex-lethal acts synergistically through sequences in both the 5' and 3' untranslated regions of MSL-2 to mediate repression. We also provide evidence that the repression of MSL-2 is directly regulated by Sex-lethal at the level of translation.
Collapse
Affiliation(s)
- G J Bashaw
- Department of Biological Sciences, Stanford University, California 94305, USA
| | | |
Collapse
|
29
|
Lee CG, Chang KA, Kuroda MI, Hurwitz J. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J 1997; 16:2671-81. [PMID: 9184214 PMCID: PMC1169878 DOI: 10.1093/emboj/16.10.2671] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Drosophila maleless (mle) is required for X chromosome dosage compensation and is essential for male viability. Maleless protein (MLE) is highly homologous to human RNA helicase A and the bovine counterpart of RNA helicase A, nuclear helicase II. In this report, we demonstrate that MLE protein, overexpressed and purified from Sf9 cells infected with recombinant baculovirus, possesses RNA/DNA helicase, adenosine triphosphatase (ATPase) and single-stranded (ss) RNA/ssDNA binding activities, properties identical to RNA helicase A. Using site-directed mutagenesis, we created a mutant of MLE (mle-GET) that contains a glutamic acid in place of lysine in the conserved ATP binding site A. In vitro biochemical analysis showed that this mutation abolished both NTPase and helicase activities of MLE but affected the ability of MLE to bind to ssRNA, ssDNA and guanosine triphosphate (GTP) less severely. In vivo, mle-GET protein could still localize to the male X chromosome coincidentally with the male-specific lethal-1 protein, MSL-1, but failed to complement mle1 mutant males. These results indicate that the NTPase/helicase activities are essential functions of MLE for dosage compensation, perhaps utilized for chromatin remodeling of X-linked genes.
Collapse
Affiliation(s)
- C G Lee
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
30
|
Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 1997; 88:445-57. [PMID: 9038336 DOI: 10.1016/s0092-8674(00)81885-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Drosophila roX1 gene is X-linked and produces RNAs that are male-specific, somatic, and preferentially expressed in the central nervous system. These RNAs are retained in the nucleus and lack any significant open reading frame. Although all sexually dimorphic characteristics in Drosophila were thought to be controlled by the sex determination pathway through the gene transformer (tra), the expression of roX1 is independent of tra activity. Instead, the dosage compensation system is necessary and sufficient for the expression of roX1. Consistent with a potential function in dosage compensation, roX1 RNAs localize specifically to the male X chromosome. This localization occurs even when roX1 RNAs are expressed from autosomal locations in X-to-autosome translocations. The novel regulation and subnuclear localization of roX1 RNAs makes them candidates for an RNA component of the dosage compensation machinery.
Collapse
Affiliation(s)
- V H Meller
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
For 600 million years, the two best-understood metazoan species, the nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster, have developed independent strategies for solving a biological problem faced by essentially all metazoans: how to generate two sexes in the proper proportions. The genetic program for sexual dimorphism has been a major focus of research in these two organisms almost from the moment they were chosen for study, and it may now be the best-understood general aspect of their development. In this review, we compare and contrast the strategies used for sex determination (including dosage compensation) between "the fly" and "the worm" and the way this understanding has come about. Although no overlap has been found among the molecules used by flies and worms to achieve sex determination, striking similarities have been found in the genetic strategies used by these two species to differentiate their sexes.
Collapse
Affiliation(s)
- T W Cline
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
32
|
Franke A, Dernburg A, Bashaw GJ, Baker BS. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm. Development 1996; 122:2751-60. [PMID: 8787749 DOI: 10.1242/dev.122.9.2751] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila equalization of the amounts of gene products produced by X-linked genes in the two sexes is achieved by hypertranscription of the single male X chromosome. This process, dosage compensation, is controlled by a set of male-specific lethal (msl) genes, that appear to act at the level of chromatin structure. The properties of the MSL proteins have been extensively studied in the polytene salivary gland chromosomes where they bind to the same set of sites along the male X chromosome in a co-dependent manner. Here we report experiments that show that the MSL proteins first associate with the male X chromosome as early as blastoderm stage, slightly earlier than the histone H4 isoform acetylated at lysine 16 is detected on the X chromosome. MSL binding to the male X chromosome is observed in all somatic tissues of embryos and larvae. Binding of the MSLs to the X chromosome is also interdependent in male embryos and prevented in female embryos by the expression of Sex-lethal (Sxl). A delayed onset of binding of the MSLs in male progeny of homozygous mutant msl-1 or mle mothers coupled with the previous finding that such males have an earlier lethal phase supports the idea that msl-mediated dosage compensation begins early in embryogenesis. Other results show that the maleless (MLE) protein on embryo and larval chromosomes differs in its reactivity with antibodies; the functional significance of this finding remains to be explored.
Collapse
Affiliation(s)
- A Franke
- Department of Biological Sciences, Stanford University, CA 94305, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The past year has brought significant advances in our understanding of the male-specific lethal (msl genes and dosage compensation in Drosophila. The molecular characterization of the msl-2 gene has, to a great extent, solved the question of how msl-mediated dosage compensation is restricted to males. Molecular analyses of the msl genes have substantiated the proposal that the MSL proteins function as a multimeric complex to mediate dosage compensation. The finding that MSL-2 protein has a RING finger and the demonstration that an insulator protein facilitates the dosage compensation of X-linked genes inserted into the autosomes have opened promising avenues to identify the cis-acting dosage-compensation determinants.
Collapse
Affiliation(s)
- G J Bashaw
- Department of Biological Sciences, Stanford University, Stanford, California, 94305-5020, USA.
| | | |
Collapse
|
34
|
McDowell KA, Hilfiker A, Lucchesi JC. Dosage compensation in Drosophila: the X chromosome binding of MSL-1 and MSL-2 in female embryos is prevented by the early expression of the Sxl gene. Mech Dev 1996; 57:113-9. [PMID: 8817458 DOI: 10.1016/0925-4773(96)00517-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In wildtype males, binding of the MSL-1 gene product to the X chromosome is first seen at the cellular blastoderm stage (stage 5). MSL-2 is associated with the X chromosome in male embryos at a later stage, but the difference in apparent binding time between these two proteins is probably due to a difference in the sensitivity of their respective antisera. Early binding of MSL-1 is never seen in wildtype female embryos, and we have determined that this inhibition is mediated by the SXL product made by the activation of the early Sxl promoter. Once it is allowed to occur, the early X chromosome association of the MSLs is relatively stable, persisting in some cases through the first larval instar in spite of the presence of SXL levels concordant with normal female development. The results of these experiments are discussed in light of their relevance to the established observations that (1) the SXL made by the early promoter inhibits the hypertranscription of run at the blastoderm stage, and (2) severe disturbances in SXL function (loss in XX individuals and gain in haplo-X individuals) result in lethality during embryogenesis while loss of msl function kills males much later.
Collapse
Affiliation(s)
- K A McDowell
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
35
|
Wolf KW, Glatzel S, Niedereichholz F, Turner BM. Preparation of insect chromosomes for immunolabeling. Biotech Histochem 1996; 71:137-44. [PMID: 8724439 DOI: 10.3109/10520299609117150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe a method for isolating chromosomes from testes of the desert locust, Schistocerca gregaria, and their subsequent incubation with antibodies directed against chromosomal proteins. The procedure involves hypotonic pretreatment of the germ cells, centrifugation onto coverslips in a cytocentrifuge and immunolabeling, while still unfixed, using a chromatin-stabilizing buffer. In the present case, an antibody specific for the acetylated isoforms of histone H4 was tested. After the antibody treatment, the preparations are fixed using formaldehyde, stained with a DNA-specific fluorescent dye and mounted. Analysis of the preparations revealed good preservation of chromosome structure in prophase spermatogonia and late prophase I spermatocytes. Fully condensed chromosomes were not observed and are probably lost during preparation. The bright fluorescence of the autosomes indicates that the reaction between the antibody against acetylated histone H4 and its chromosomal antigen is not impeded. In contrast, the X univalent remained unstained with the exception of a small terminal band. Thus, cytospin preparations of locust germ cells allow high resolution immunolabeling with antibodies against chromosome-associated proteins.
Collapse
Affiliation(s)
- K W Wolf
- Institute of Anatomy, Medical University of Lübeck, Germany
| | | | | | | |
Collapse
|
36
|
|
37
|
Affiliation(s)
- B Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
38
|
Abstract
In many species, females possess two X chromosomes and males have one X chromosome. This difference is critical for the initial determination of sex. However, the X encodes many functions required equally in males and females; thus, X chromosome expression must be adjusted to compensate for the difference in dosage between the sexes. Distinct dosage compensation mechanisms have evolved in different species. A common theme in the Drosophila melanogaster and Caenorhabditis elegans systems is that a subtle alteration of chromatin structure may impose this modest, but vital adjustment of the X chromosome transcription level.
Collapse
Affiliation(s)
- R L Kelley
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
39
|
Roseman RR, Swan JM, Geyer PK. A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites. Development 1995; 121:3573-82. [PMID: 8582271 DOI: 10.1242/dev.121.11.3573] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The suppressor of Hairy-wing [su(Hw)] gene encodes a zinc finger protein that binds to a repeated motif in the gypsy retrotransposon. These DNA sequences, called the su(Hw)-binding region, have properties of an insulator region because they (1) disrupt enhancer/silencer function in a position-dependent manner and (2) protect the mini-white gene from both euchromatic and heterochromatic position effects. To gain further insights into the types of position effects that can be insulated, we determined the effects of the su(Hw)-binding region on dosage compensation of the X-linked mini-white gene. Dosage compensation is the process that equalizes the unequal content of X-linked genes in males and females by increasing the X-linked transcription level twofold in males. Transposition of X-linked genes to the autosomes commonly results in incomplete dosage compensation, indicating that the distinct male X chromatin environment is important for this process. We found that dosage compensation of autosomally integrated mini-white genes flanked by su(Hw)-binding regions was greatly improved, such that complete or nearly complete compensation was observed at the majority of insertion sites. The su(Hw) protein was essential for this enhanced dosage compensation because in a su(Hw) mutant background compensation was incomplete. These experiments provide evidence that the su(Hw)-binding region facilitates dosage compensation of the mini-white gene on the autosomes. This may result from protection of the mini-white gene from a negative autosomal chromatin environment.
Collapse
Affiliation(s)
- R R Roseman
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
40
|
Rastelli L, Richman R, Kuroda MI. The dosage compensation regulators MLE, MSL-1 and MSL-2 are interdependent since early embryogenesis in Drosophila. Mech Dev 1995; 53:223-33. [PMID: 8562424 DOI: 10.1016/0925-4773(95)00438-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have analyzed the expression pattern and localization of MLE, MLS-1, MSL-2, and histone H4Ac16 during embryogenesis to determine when msl-dependent dosage compensation begins. Maternal MSL-1 and MLE are present in both sexes at fertilization. MSL-2 lacks a maternal component, and male-specific zygotic expression is detectable at the end of blastoderm. During germ band extension, MSL-1, MSL-2, MLE, and histone H4Ac16 display coincident sub-nuclear localization in male embryos. In embryos lacking one of the MSL proteins, the sub-nuclear localization of the other MSLs and of histone H4Ac16 is not detected. We conclude that the MSL proteins associate with the X chromosome and are interdependent since early embryogenesis.
Collapse
Affiliation(s)
- L Rastelli
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
41
|
Bashaw GJ, Baker BS. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 1995; 121:3245-58. [PMID: 7588059 DOI: 10.1242/dev.121.10.3245] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila dosage compensation increases the rate of transcription of the male's X chromosome and depends on four autosomal male-specific lethal genes. We have cloned the msl-2 gene and shown that MSL-2 protein is co-localized with the other three MSL proteins at hundreds of sites along the male polytene X chromosome and that this binding requires the other three MSL proteins. msl-2 encodes a protein with a putative DNA-binding domain: the RING finger. MSL-2 protein is not produced in females and sequences in both the 5′ and 3′ UTRs are important for this sex-specific regulation. Furthermore, msl-2 pre-mRNA is alternatively spliced in a Sex-lethal-dependent fashion in its 5′ UTR.
Collapse
Affiliation(s)
- G J Bashaw
- Department of Biological Sciences, Stanford University, CA 94305, USA
| | | |
Collapse
|
42
|
Deshpande G, Stukey J, Schedl P. scute (sis-b) function in Drosophila sex determination. Mol Cell Biol 1995; 15:4430-40. [PMID: 7623836 PMCID: PMC230683 DOI: 10.1128/mcb.15.8.4430] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The primary sex determination signal, the X chromosome-to-autosome (X/A) ratio, controls the choice of sexual identity in the Drosophila melanogaster embryo by regulating the activity of the early promoter of the Sex-lethal gene, Sxl-Pe. This promoter is activated in females (2X/2A), while it remains off in males (1X/2A). Promoter activation in females is dependent upon X-linked numerator genes. One of these genes, sisterless-b (sis-b), corresponds to the scute (sc) locus of the achaete-scute complex, and it encodes a helix-loop-helix transcription factor. In the studies reported here we have used monoclonal antibodies to study the expression and functioning of the sc(sis-b) protein. Sc is first detected at nuclear cycle 6 to 7, well before Sxl-Pe is first active. At this stage, the protein is in the cytoplasm, not the nucleus. Only after the formation of the syncytial blastoderm, at nuclear cycle 10 to 11, does a substantial fraction of the protein enter the nucleus, and this nuclear import closely coincides with the initial activation of Sxl-Pe. Consistent with the idea that the dose of sc(sis-b) is critical for its function as an X-chromosome counting element, wild-type syncytial blastoderm embryos could be grouped into two classes based on the level of protein. Western blot (immunoblot) analysis demonstrates that this difference in protein level correlates directly with the activity state of the Sxl gene. Finally, we provide the first direct evidence that Sc forms heteromeric complexes in vivo in early embryos with the maternally derived helix-loop-helix protein Daughterless. This in vivo complex is likely to be critical for Sc function in Sxl-Pe activation.
Collapse
Affiliation(s)
- G Deshpande
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | |
Collapse
|
43
|
Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 1995; 81:867-77. [PMID: 7781064 DOI: 10.1016/0092-8674(95)90007-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Male-specific lethal-2 (msl-2) is a RING finger protein that is required for X chromosome dosage compensation in Drosophila males. Consistent with the formation of a dosage compensation protein complex, msl-2 colocalizes with the other MSL proteins on the male X chromosome and coimmunoprecipitates with msl-1 from male larval extracts. Ectopic expression of msl-2 in females results in the appearance of the other MSL dosage compensation regulators on the female X chromosomes and decreased female viability. We suggest that msl-2 RNA is the primary target of SxI regulation in the dosage compensation pathway and present a speculative model for the regulation of two distinct modes of dosage compensation by SxI.
Collapse
Affiliation(s)
- R L Kelley
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gorman M, Franke A, Baker BS. Molecular characterization of the male-specific lethal-3 gene and investigations of the regulation of dosage compensation in Drosophila. Development 1995; 121:463-75. [PMID: 7768187 DOI: 10.1242/dev.121.2.463] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In Drosophila, dosage compensation occurs by transcribing the single male X chromosome at twice the rate of each of the two female X chromosomes. This hypertranscription requires four autosomal male-specific lethal (msl) genes and is negatively regulated by the Sxl gene in females. Two of the msls, the mle and msl-1 genes, encode proteins that are associated with hundreds of specific sites along the length of the male X chromosome. MLE and MSL-1 X chromosome binding are negatively regulated by Sxl in females and require the functions of the other msls in males. To investigate further the regulation of dosage compensation and the role of the msls in this process, we have cloned and molecularly characterized another msl, the msl-3 gene. We have found that MSL-3 is also associated with the male X chromosome. We have further investigated whether Sxl negatively regulates MSL-3 X-chromosome binding in females and whether MSL-3 X-chromosome binding requires the other msls. Our results suggest that the MLE, MSL-1 and MSL-3 proteins may associate with one another in a male-specific heteromeric complex on the X chromosome to achieve its hypertranscription.
Collapse
Affiliation(s)
- M Gorman
- Department of Biological Sciences, Stanford University, CA 94305, USA
| | | | | |
Collapse
|
45
|
Pultz MA, Baker BS. The dual role of hermaphrodite in the Drosophila sex determination regulatory hierarchy. Development 1995; 121:99-111. [PMID: 7867511 DOI: 10.1242/dev.121.1.99] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hermaphrodite (her) locus has both maternal and zygotic functions required for normal female development in Drosophila. Maternal her function is needed for the viability of female offspring, while zygotic her function is needed for female sexual differentiation. Here we focus on understanding how her fits into the sex determination regulatory hierarchy. Maternal her function is needed early in the hierarchy: genetic interactions of her with the sisterless genes (sis-a and sis-b), with function-specific Sex-lethal (Sxl) alleles and with the constitutive allele SxlM#1 suggest that maternal her function is needed for Sxl initiation. When mothers are defective for her function, their daughters fail to activate a reporter gene for the Sxl early promoter and are deficient in Sxl protein expression. Dosage compensation is misregulated in the moribund daughters: some salivary gland cells show binding of the maleless (mle) dosage compensation regulatory protein to the X chromosome, a binding pattern normally seen only in males. Thus maternal her function is needed early in the hierarchy as a positive regulator of Sxl, and the maternal effects of her on female viability probably reflect Sxl's role in regulating dosage compensation. In contrast to her's maternal function, her's zygotic function in sex determination acts at the end of the hierarchy. This zygotic effect is not rescued by constitutive Sxl expression, nor by constitutive transformer (tra) expression. Moreover, the expression of doublesex (dsx) transcripts appears normal in her mutant females. We conclude that the maternal and zygotic functions of her are needed at two distinctly different levels of the sex determination regulatory hierarchy.
Collapse
Affiliation(s)
- M A Pultz
- Department of Biological Sciences, Stanford University, CA 94305
| | | |
Collapse
|
46
|
Latham KE, McGrath J, Solter D. Mechanistic and developmental aspects of genetic imprinting in mammals. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 160:53-98. [PMID: 7558687 DOI: 10.1016/s0074-7696(08)61553-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genetic imprinting in mammals allows the recognition and differential expression of maternal and paternal alleles of certain genes. Recent results from a number of laboratories indicate that, at least for some genes, gametic imprints, which must exist in order to mark chromosomes or genes as having been transmitted via sperm or ovum, are not by themselves sufficient to determine allele expression. Other postfertilization events are required, and these events are subject to both tissue-specific and developmental stage-specific regulation. Changes in imprinted gene methylation during preimplantation and fetal life indicate that the establishment of additional allele-specific modifications is likely to contribute to imprinted regulation. Disruptions in imprinting processes, loss of imprints, and loss of nonimprinted alleles through uniparental disomy are likely to contribute to a variety of developmental abnormalities and pathological conditions in both mice and humans.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
47
|
Chuang PT, Albertson DG, Meyer BJ. DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 1994; 79:459-74. [PMID: 7954812 DOI: 10.1016/0092-8674(94)90255-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
dpy-27 is an essential dosage compensation gene that acts to reduce expression of both hermaphrodite X chromosomes. The DPY-27 protein becomes specifically localized to the X chromosomes of wild-type XX embryos, but remains diffusely distributed throughout the nuclei of male (XO) embryos. In xol-1 mutant XO embryos that activate the XX mode of dosage compensation and die from inappropriately low X chromosome transcript levels, DPY-27 becomes localized to X. Therefore, sex specificity of the dosage compensation process is regulated at the step of DPY-27 X chromosome localization. DPY-27 exhibits striking similarity to proteins required for assembly and structural maintenance of Xenopus chromosomes in vitro and for segregation of yeast chromosomes in vivo. These findings suggest a link between global regulation of gene expression and higher order chromosome structure. We propose that DPY-27 implements dosage compensation by condensing the chromatin structure of X in a manner that causes general reduction of X chromosome expression.
Collapse
Affiliation(s)
- P T Chuang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
48
|
Abstract
Dosage compensation is the process by which the expression of X-linked genes is equalized in males and females. In Drosophila, dosage compensation occurs by coordinately upregulating the transcription rates of all the genes on the single X chromosome in males. This hypertranscription requires the functioning of four autosomal male-specific lethal (msl) genes and is under the control of the Sxl gene. Recent genetic and molecular studies have suggested that the msl proteins may associate with one another in a sex-specific heteromeric complex on the male X chromosome, where they may function to alter its chromatin structure.
Collapse
Affiliation(s)
- M Gorman
- Department of Biological Sciences, Stanford University, CA 94305
| | | |
Collapse
|
49
|
Wang J, Bell LR. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev 1994; 8:2072-85. [PMID: 7958879 DOI: 10.1101/gad.8.17.2072] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex-lethal (Sxl) acts as a binary switch that regulates Drosophila sexual differentiation and dosage compensation and also maintains a stable female state through autoregulation. As part of a cascade of genes that are regulated by sex-specific splicing, Sxl controls the sex-specific splicing of transformer (tra) RNA and also its own RNA. Sxl contains two RNP-CS (RNA-binding) domains and is known to bind tra pre-mRNA near the alternative 3' splice site, thus blocking use of that site to give the female-specific splicing pattern. Here, we test how Sxl protein interacts with Sxl RNA during autoregulation. We show that Sxl not only binds Sxl pre-mRNA near the alternative 3' splice site but also at distant, multiple sites surrounding the Sxl alternative exon. Moreover, Sxl binds cooperatively at these multiple sites. The Sxl amino terminus is essential for the cooperative interaction and is also required for regulatory activity in vivo. It appears that this region of Sxl protein, which resembles regions in some other RNA-binding proteins, is a domain that mediates protein-protein interactions during RNA binding and plays an important role in splicing regulation.
Collapse
Affiliation(s)
- J Wang
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | |
Collapse
|
50
|
Lavender JS, Birley AJ, Palmer MJ, Kuroda MI, Turner BM. Histone H4 acetylated at lysine 16 and proteins of the Drosophila dosage compensation pathway co-localize on the male X chromosome through mitosis. Chromosome Res 1994; 2:398-404. [PMID: 7981944 DOI: 10.1007/bf01552799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the fruit fly Drosophila, dosage compensation involves several proteins acting in concert to double the transcriptional activity of genes on the single male X chromosome. Three of these proteins, MLE, MSL-1 and histone H4 acetylated at lysine 16 (H4Ac16), have recently been shown to be located almost exclusively on the male X chromosome in interphase (polytene) cells. We show here that in neuroblasts from third instar Drosophila larvae antisera to H4Ac16, MLE and MSL-1 uniquely label the distal, euchromatic region of the male X chromosome through mitosis. The centromere-proximal, heterochromatic region of the male X is not labelled with these antisera, nor are male autosomes or any chromosomes in female cells. That the association of H4Ac16 with the male X chromosome persists, even when the chromosome is maximally compacted and transcriptionally quiescent, argues that this modified histone is an integral component of the dosage compensation pathway. In the nuclei of interphase neuroblasts from male (but never female) larvae, antibodies to H4Ac16 revealed a small, brightly labelled patch against a background of generally weak nuclear staining. In double-labelling experiments, this patch was also labelled, albeit comparatively weakly, with antibodies to MSL-1. These results strongly suggest that the distal, euchromatic region of the X chromosome in male cells occupies a limited and relatively compact nuclear domain.
Collapse
Affiliation(s)
- J S Lavender
- Anatomy Department, University of Birmingham Medical School, UK
| | | | | | | | | |
Collapse
|