1
|
Ferreira EA, Clements JE, Veenhuis RT. HIV-1 Myeloid Reservoirs - Contributors to Viral Persistence and Pathogenesis. Curr HIV/AIDS Rep 2024; 21:62-74. [PMID: 38411842 DOI: 10.1007/s11904-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.
Collapse
Affiliation(s)
- Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
2
|
A diffusive virus model with a fixed intracellular delay and combined drug treatments. J Math Biol 2021; 83:19. [PMID: 34324062 DOI: 10.1007/s00285-021-01646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/26/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The method of administration of an effective drug treatment to eradicate viruses within a host is an important issue in studying viral dynamics. Overuse of a drug can lead to deleterious side effects, and overestimating the efficacy of a drug can result in failure to treat infection. In this study, we proposed a reaction-diffusion within-host virus model which incorporated information regarding spatial heterogeneity, drug treatment, and the intracellular delay to produce productively infected cells and viruses. We also calculated the basic reproduction number [Formula: see text] under the assumptions of spatial heterogeneity. We have shown that the infection-free periodic solution is globally asymptotically stable when [Formula: see text], whereas when [Formula: see text] there is an infected periodic solution and the infection is uniformly persistent. By conducting numerical simulations, we also revealed the effects of various parameters on the value of [Formula: see text]. First, we showed that the dependence of [Formula: see text] on the intracellular delay could be monotone or non-monotone, depending on the death rate of infected cells in the immature stage. Second, we found that the mobility of infected cells or virions could facilitate the virus clearance. Third, we found that the spatial fragmentation of the virus environment enhanced viral infection. Finally, we showed that the combination of spatial heterogeneity and different sets of diffusion rates resulted in complicated viral dynamic outcomes.
Collapse
|
3
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Ssenyondwa J, George PE, Carlos Bazo-Alvarez J, Mercedes R, Kanywa JB, Naturinda E, Wasswa PLM, Lubega J. Impact of sickle cell disease on presentation and progression of paediatric HIV: a retrospective cohort study. Trop Med Int Health 2020; 25:897-904. [PMID: 32329120 DOI: 10.1111/tmi.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES HIV and sickle cell disease (SCD) are significant causes of morbidity and mortality in sub-Saharan Africa. Given their separate roles in immune dysregulation, our objective was to characterise the impact that SCD has on the presentation and progression of paediatric HIV. METHODS The study was a retrospective cohort study (study period 2004-2018). Cases of HIV + and SCD-afflicted patients (HIV+/SCD+) were obtained via electronic chart review from a paediatric HIV clinic in Kampala, Uganda and matched 1:3 with HIV + controls without SCD (HIV+/SCD-). RESULTS Thirty-five HIV+/SCD + subjects and 95 HIV+/SCD- controls were analysed (39% female (51/130), age 3.6 years (SD3.9)). At baseline, WHO clinical stage (64% total cohort Stage III/IV) and nutritional status (9.4% severe acute malnutrition) were similar for both groups, whereas HIV+/SCD + had higher though non-significant baseline CD4 count (1036 (SD713) vs 849 (SD638) cells/microlitre, P = 0.20, two-tailed t-test). There were 19 deaths, 6 (17%) HIV+/SCD + and 13 (14%) HIV+/SCD-, with unadjusted/adjusted models showing no significant difference. Nutritional progression and clinical stage progression showed no significant differences between groups. Kaplan-Meier analysis showed a slower rate of treatment failures in the HIV+/SCD + cohort (P = 0.11, log-rank survival test). Trajectory analysis showed that in the time period analysed, the HIV+/SCD + cohort showed a more rapid rise and higher total CD4 count (P = 0.012, regression analysis). CONCLUSION The study suggests that SCD does not adversely affect the progression of HIV in patients on ART. Further, HIV+/SCD + achieved higher CD4 counts and fewer HIV treatment failures, suggesting physiological effects due to SCD might mitigate HIV progression.
Collapse
Affiliation(s)
- Joseph Ssenyondwa
- Baylor College of Medicine Children's Foundation, Kampala, Uganda.,Texas Children's Hospital - Global HOPE Program, Kampala, Uganda
| | - Paul E George
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Rebecca Mercedes
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Ernest Naturinda
- Baylor College of Medicine Children's Foundation, Kampala, Uganda.,Texas Children's Hospital - Global HOPE Program, Kampala, Uganda
| | - Peter L M Wasswa
- Texas Children's Hospital - Global HOPE Program, Kampala, Uganda.,Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Joseph Lubega
- Texas Children's Hospital - Global HOPE Program, Kampala, Uganda.,Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Grossman Z. Immunological Paradigms, Mechanisms, and Models: Conceptual Understanding Is a Prerequisite to Effective Modeling. Front Immunol 2019; 10:2522. [PMID: 31749803 PMCID: PMC6848063 DOI: 10.3389/fimmu.2019.02522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Most mathematical models that describe the individual or collective actions of cells aim at creating faithful representations of limited sets of data in a self-consistent manner. Consistency with relevant physiological rules pertaining to the greater picture is rarely imposed. By themselves, such models have limited predictive or even explanatory value, contrary to standard claims. Here I try to show that a more critical examination of currently held paradigms is necessary and could potentially lead to models that pass the test of time. In considering the evolution of paradigms over the past decades I focus on the “smart surveillance” theory of how T cells can respond differentially, individually and collectively, to both self- and foreign antigens depending on various “contextual” parameters. The overall perspective is that physiological messages to cells are encoded not only in the biochemical connections of signaling molecules to the cellular machinery but also in the magnitude, kinetics, and in the time- and space-contingencies, of sets of stimuli. By rationalizing the feasibility of subthreshold interactions, the “dynamic tuning hypothesis,” a central component of the theory, set the ground for further theoretical and experimental explorations of dynamically regulated immune tolerance, homeostasis and diversity, and of the notion that lymphocytes participate in nonclassical physiological functions. Some of these efforts are reviewed. Another focus of this review is the concomitant regulation of immune activation and homeostasis through the operation of a feedback mechanism controlling the balance between renewal and differentiation of activated cells. Different perspectives on the nature and regulation of chronic immune activation in HIV infection have led to conflicting models of HIV pathogenesis—a major area of research for theoretical immunologists over almost three decades—and can have profound impact on ongoing HIV cure strategies. Altogether, this critical review is intended to constructively influence the outlook of prospective model builders and of interested immunologists on the state of the art and to encourage conceptual work.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Chen SS, Cheng CY, Rong L. Within-Host Viral Dynamics in a Multi-compartmental Environment. Bull Math Biol 2019; 81:4271-4308. [DOI: 10.1007/s11538-019-00658-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022]
|
7
|
Çalışkan E, Atay G, Kara M, Sütçü M, Bayramoğlu Z, Hançerli Törün S, Somer A, Adaletli İ. Comparative evaluation of liver, spleen, and kidney stiffness in HIV-monoinfected pediatric patients via shear wave elastography. Turk J Med Sci 2019; 49:899-906. [PMID: 31192547 PMCID: PMC7018312 DOI: 10.3906/sag-1811-87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/aim This study aimed to evaluate the stiffness of the liver, spleen, and kidneys in HIV-monoinfected children via shear wave elastography (SWE). Materials and methods Twenty-one HIV-monoinfected children and 37 healthy subjects were included in this study. Livers, spleens, and kidneys of the participants were examined via ultrasound and SWE. Patients were divided into two groups according to the presence of pathologic ultrasonographic findings. Routine laboratory tests were also recorded. Stiffness of these organs was compared between patients and control groups. Results Liver transaminases, blood urea, and creatinine levels were normal in all subjects. Ultrasonographic examination revealed hepatosplenomegaly (n = 1, 4.7%), grade 1 hepatosteatosis (n = 1, 4.7%), and hepatosteatosis and minimal heterogeneity of the liver (n = 1, 4.7%). Ultrasonographic features were normal in 18 patients. Stiffness of the liver, spleen, and kidneys of all HIV-monoinfected children with normal laboratory parameters was significantly higher than in healthy subjects. Eighteen patients with normal ultrasonographic findings also had higher stiffness values when compared to control subjects. Conclusion Stiffness of the liver, spleen, and kidneys in HIV-monoinfected children was increased. SWE can be used in the detection of early parenchymal changes even in patients with normal laboratory parameters and ultrasonographic findings.
Collapse
Affiliation(s)
- Emine Çalışkan
- Department of Pediatric Radiology, Seyhan State Hospital, Adana, Turkey
| | - Gürkan Atay
- Department of Pediatrics, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Manolya Kara
- Department of Pediatric Infectious Diseases, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Murat Sütçü
- Department of Pediatric Infectious Diseases, Konya Training and Research Hospital, Konya, Turkey
| | - Zuhal Bayramoğlu
- Department of Pediatric Radiology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Selda Hançerli Törün
- Department of Pediatric Infectious Diseases, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ayper Somer
- Department of Pediatric Infectious Diseases, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - İbrahim Adaletli
- Department of Pediatric Radiology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
8
|
Grebennikov D, Bouchnita A, Volpert V, Bessonov N, Meyerhans A, Bocharov G. Spatial Lymphocyte Dynamics in Lymph Nodes Predicts the Cytotoxic T Cell Frequency Needed for HIV Infection Control. Front Immunol 2019; 10:1213. [PMID: 31244829 PMCID: PMC6579925 DOI: 10.3389/fimmu.2019.01213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
The surveillance of host body tissues by immune cells is central for mediating their defense function. In vivo imaging technologies have been used to quantitatively characterize target cell scanning and migration of lymphocytes within lymph nodes (LNs). The translation of these quantitative insights into a predictive understanding of immune system functioning in response to various perturbations critically depends on computational tools linking the individual immune cell properties with the emergent behavior of the immune system. By choosing the Newtonian second law for the governing equations, we developed a broadly applicable mathematical model linking individual and coordinated T-cell behaviors. The spatial cell dynamics is described by a superposition of autonomous locomotion, intercellular interaction, and viscous damping processes. The model is calibrated using in vivo data on T-cell motility metrics in LNs such as the translational speeds, turning angle speeds, and meandering indices. The model is applied to predict the impact of T-cell motility on protection against HIV infection, i.e., to estimate the threshold frequency of HIV-specific cytotoxic T cells (CTLs) that is required to detect productively infected cells before the release of viral particles starts. With this, it provides guidance for HIV vaccine studies allowing for the migration of cells in fibrotic LNs.
Collapse
Affiliation(s)
- Dmitry Grebennikov
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia.,Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anass Bouchnita
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Vitaly Volpert
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.,Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France.,INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne, France
| | - Nikolay Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 2018; 9:780. [PMID: 29725327 PMCID: PMC5916971 DOI: 10.3389/fimmu.2018.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.
Collapse
Affiliation(s)
- Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| |
Collapse
|
10
|
HIV reservoir dynamics in HAART-treated poor immunological responder patients under IL-7 therapy. AIDS 2018; 32:715-720. [PMID: 29369157 DOI: 10.1097/qad.0000000000001752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recombinant Human IL-7 (rhIL-7) therapy allows reconstituting systemic and tissue-associated CD4 T-cell populations in HIV-infected poor immunological responder (PIR) patients. However, in-vitro studies suggest that the impact of rhIL-7 treatment on HIV-DNA loads in vivo remains questionable. DESIGN We assessed the dynamics of circulating HIV-DNA loads in IL-7-treated HIV-infected PIR individuals. METHODS Forty-one rhIL-7-treated and 16 control participants from the INSPIRE-3 clinical trial were included. Participants received three weekly subcutaneous injections of rhIL-7. HIV-DNA was quantified by nested quantitative PCR in white blood cells sampled at D0, D28 and M3 and expressed as per milliliters and per CD4 T-cell. Changes in HIV-DNA loads in the CD4 compartment at M3 were confirmed on sorted CD4 cells. RESULTS Together with rhIL-7-induced T-cell expansion, we observed a significant raise in both infected cell frequencies and counts during the first 28 days of follow-up. During this period, HIV-DNA load per CD4 T-cell also increased, to a lower extent. Three months post-therapy, both the frequencies and counts of infected cells diminished in blood as compared with D28 but remained significantly higher than before IL-7 therapy. In contrast, infection frequencies strongly diminished within CD4 cells, reaching slightly but significantly lower levels than at baseline. CONCLUSION rhIL-7 treatment initially drives an expansion of HIV reservoir in PIR patients by D28. This expansion is probably not only because of infected cell proliferation, but also to possible enhanced neoinfection, despite highly active antiretroviral therapy. In contrast, subsequent reduction in HIV-DNA load per CD4 T-cell argues for partial elimination of infected cells between D28 and M3.
Collapse
|
11
|
Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelleher AD. Divergent Expression of CXCR5 and CCR5 on CD4 + T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection. Front Immunol 2017; 8:495. [PMID: 28553284 PMCID: PMC5427074 DOI: 10.3389/fimmu.2017.00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/10/2017] [Indexed: 12/23/2022] Open
Abstract
Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ T follicular helper (Tfh) cells that regulate humoral immunity and CCR5+CD4+ T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4+ T cells appear to fall into either of these two lineages, CCR5−CXCR5+ or CCR5+CXCR5−. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC) in lymphoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5− CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of antibody pressure driving virus mutation and additional GC responses to resulting neoantigens.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Yin Xu
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Araínga M, Edagwa B, Mosley RL, Poluektova LY, Gorantla S, Gendelman HE. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology 2017; 14:17. [PMID: 28279181 PMCID: PMC5345240 DOI: 10.1186/s12977-017-0344-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1ADA-infected NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. RESULTS Plasma viral loads were reduced by two log10 or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. CONCLUSION Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir.
Collapse
Affiliation(s)
- Mariluz Araínga
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
13
|
Hedegaard DL, Tully DC, Rowe IA, Reynolds GM, Bean DJ, Hu K, Davis C, Wilhelm A, Ogilvie CB, Power KA, Tarr AW, Kelly D, Allen TM, Balfe P, McKeating JA. High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease. J Hepatol 2017; 66:28-38. [PMID: 27531641 PMCID: PMC5558612 DOI: 10.1016/j.jhep.2016.07.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The high replication and mutation rate of hepatitis C virus (HCV) results in a heterogeneous population of viral sequences in vivo. HCV replicates in the liver and infected hepatocytes occur as foci surrounded by uninfected cells that may promote compartmentalization of viral variants. Given recent reports showing interferon stimulated gene (ISG) expression in chronic hepatitis C, we hypothesized that local interferon responses may limit HCV replication and evolution. METHODS To investigate the spatial influence of liver architecture on viral replication we measured HCV RNA and ISG mRNA from each of the 8 Couinaud segments of the liver from 21 patients undergoing liver transplant. RESULTS HCV RNA and ISG mRNA levels were comparable across all sites from an individual liver but showed up to 500-fold difference between patients. Importantly, there was no association between ISG and HCV RNA expression across all sites in the liver or plasma. Deep sequencing of HCV RNA isolated from the 8 hepatic sites from two subjects showed a similar distribution of viral quasispecies across the liver and uniform sequence diversity. Single genome amplification of HCV E1E2-envelope clones from 6 selected patients at 2 hepatic sites supported these data and showed no evidence for HCV compartmentalization. CONCLUSIONS We found no differences between the hepatic and plasma viral quasispecies in all patients sampled. We conclude that in end-stage liver disease HCV RNA levels and the genetic pool of HCV envelope sequences are indistinguishable between distant sites in the liver and plasma, arguing against viral compartmentalization. LAY SUMMARY HCV is an RNA virus that exists as a quasispecies of closely related genomes that are under continuous selection by host innate and adaptive immune responses and antiviral drug therapy. The primary site of HCV replication is the liver and yet our understanding of the spatial distribution of viral variants within the liver is limited. High resolution sequencing of HCV and monitoring of innate immune responses at multiple sites across the liver identified a uniform pattern of diversity and argues against viral compartmentalization.
Collapse
Affiliation(s)
| | | | - Ian A. Rowe
- Centre for Human Virology, University of Birmingham, Birmingham, UK
| | - Gary M. Reynolds
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ke Hu
- Centre for Human Virology, University of Birmingham, Birmingham, UK
| | | | - Annika Wilhelm
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | | | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alexander W. Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Childrens’ Hospital, Birmingham, UK
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Peter Balfe
- Centre for Human Virology, University of Birmingham, Birmingham, UK.
| | - Jane A. McKeating
- Centre for Human Virology, University of Birmingham, Birmingham, UK,NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748 Garching, Germany
| |
Collapse
|
14
|
Graff-Dubois S, Rouers A, Moris A. Impact of Chronic HIV/SIV Infection on T Follicular Helper Cell Subsets and Germinal Center Homeostasis. Front Immunol 2016; 7:501. [PMID: 27891132 PMCID: PMC5105356 DOI: 10.3389/fimmu.2016.00501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 11/13/2022] Open
Abstract
The discovery of broad and potent HIV-1 neutralizing antibodies (bNAbs) has renewed optimism for developing an effective vaccine against HIV-1. The generation of most bNAbs requires multiple rounds of B cell receptor affinity maturation, suggesting a crucial role of follicular helper T (Tfh) cells in their production. However, less than 1% of HIV-infected patients develop bNAbs that arise late in the course of infection, indicating probable Tfh and B cell dysfunctions in this context. Since the last few years, many studies have characterized Tfh cells from lymph nodes and spleen of HIV-infected individuals and SIV-infected macaques. Various lymphoid Tfh cell subsets have been identified, including precursor Tfh (pTfh), germinal center Tfh (GC Tfh), and the regulatory counterpart of Tfh cells, the follicular regulatory T cells. The latter have been reported to play a crucial role in the control of T and B cell crosstalk and GC reactions. More recently, circulating Tfh-like cells (cTfh) have been identified. Meanwhile, advances in single-cell technologies have made possible to analyze the transcriptional profiles of low abundant cells, such as Tfh populations. Using transcriptional signatures, we review here the impact of chronic SIV/HIV infection on Tfh, GC Tfh, pTfh, and cTfh differentiation and helper T cell functions with regard to their capacity to induce efficient B cell maturation. We will explore some hypothesis to explain the increased proportion of Tfh cells reported in chronically infected individuals and the impact on HIV pathogenesis.
Collapse
Affiliation(s)
- Stéphanie Graff-Dubois
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255 , Paris , France
| | - Angeline Rouers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255 , Paris , France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255 , Paris , France
| |
Collapse
|
15
|
Lythgoe KA, Blanquart F, Pellis L, Fraser C. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics. PLoS Biol 2016; 14:e1002567. [PMID: 27706164 PMCID: PMC5051940 DOI: 10.1371/journal.pbio.1002567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022] Open
Abstract
The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. A novel metapopulation model of HIV suggests that within-host infections are characterized by a highly dynamic process of localized infection followed by clearance within T cell centers. When a person is infected with HIV, the initial peak level of virus in the blood is usually very high before a lower, relatively stable level is reached and maintained for the duration of the chronic infection. This stable level is known as the set-point viral load (SPVL) and is associated with severity of infection. SPVL is also highly variable among patients, ranging from 100 to a million copies of the virus per mL of blood. The replicative capacity of the infecting virus and the strength of the immune response both influence SPVL. However, standard mathematical models show that variation in these two factors cannot easily reproduce the observed distribution of SPVL among patients. Standard models typically treat infected individuals as well-mixed systems, but in reality viral replication is localised in T-cell centres, or patches, found in secondary lymphoid tissue. To account for this population structure, we developed a carefully parameterised metapopulation model. We find the system can reach a steady state at which the viral load in the blood is relatively stable, representing SPVL, but surprisingly, the patches are highly dynamic, characterised by bursts of infection followed by elimination of virus due to localised host immune responses. Significantly, this model can reproduce the wide distribution of SPVLs found among infected individuals for realistic distributions of viral replicative capacity and strength of immune response. Our model can also be used in the future to understand other aspects of chronic HIV infection.
Collapse
Affiliation(s)
- Katrina A. Lythgoe
- Department of Zoology, Tinbergen Building, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary’s Campus, London, United Kingdom
- * E-mail:
| | - François Blanquart
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Lorenzo Pellis
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary’s Campus, London, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Puertas MC, Noguera-Julian M, Massanella M, Pou C, Buzon MJ, Clotet B, Stevenson M, Paredes R, Blanco J, Martinez-Picado J. Lack of concordance between residual viremia and viral variants driving de novo infection of CD4(+) T cells on ART. Retrovirology 2016; 13:51. [PMID: 27484989 PMCID: PMC4970251 DOI: 10.1186/s12977-016-0282-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022] Open
Abstract
Background In most patients, current antiretroviral therapy (ART) regimens can rapidly reduce plasma viral load. However, even after years of effective treatment, a significant proportion of patients show residual plasma viremia below the clinical detection limit. Although residual viremia might be associated with increased chronic immune activation and morbidity, its origin and its potential role in the replenishment of the viral reservoir during suppressive ART is not completely understood. We performed an in-depth genetic analysis of the total and episomal cell-associated viral DNA (vDNA) repertoire in purified CD4+ T cell subsets of three HIV-infected individuals, and used phylogenetic analysis to explore its relationship with plasma viruses. Results The predominant proviral reservoir was established in naïve or memory (central and transitional) CD4+ T cell subsets in patients harboring X4- or R5-tropic viruses, respectively. Regardless of the viral tropism, most plasma viruses detected under suppressive ART resembled the proviral reservoir identified in effector and transitional memory CD4+ T-cell subsets in blood, suggesting that residual viremia originates from these cells in either blood or lymphoid tissue. Most importantly, sequences in episomal vDNA in CD4+ T-cells were not well represented in residual viremia. Conclusions Viral tropism determines the differential distribution of viral reservoir among CD4+ T-cell subsets. In spite of viral tropism, the effector and transitional memory CD4+ T-cells subsets are the main source of residual viremia during suppressive ART, even though their contribution to the total proviral pool is small. However, the lack of concordance between residual viremia and viral variants driving de novo infection of CD4+ T cells on ART may reflect the predominance of defective plasma HIV RNA genomes. These findings highlight the need for monitoring the multiple viral RNA/DNA persistence markers, based on their differential contribution to viral persistence. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria C Puertas
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Noguera-Julian
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Marta Massanella
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du CHUM et Université de Montréal, Montreal, Canada
| | - Christian Pou
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Maria J Buzon
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,"Lluita Contra la Sida" Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Mario Stevenson
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roger Paredes
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,"Lluita Contra la Sida" Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain. .,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
17
|
Williams DW, Engle EL, Shirk EN, Queen SE, Gama L, Mankowski JL, Zink MC, Clements JE. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2068-2087. [PMID: 27322772 DOI: 10.1016/j.ajpath.2016.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/04/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022]
Abstract
The effects of HIV infection on spleen and its cellular subsets have not been fully characterized, particularly for macrophages in which diverse populations exist. We used an accelerated SIV-infected macaque model to examine longitudinal effects on T-cell and macrophage populations and their susceptibilities to infection. Substantial lymphoid depletion occurred, characterized by follicular burn out and a loss of CD3 T lymphocytes, which was associated with cellular activation and transient dysregulations in CD4/CD8 ratios and memory effector populations. In contrast, the loss of CD68 and CD163(+)CD68(+) macrophages and increase in CD163 cells was irreversible, which began during acute infection and persisted until terminal disease. Mac387 macrophages and monocytes were transiently recruited into spleen, but were not sufficient to mitigate the changes in macrophage subsets. Type I interferon, M2 polarizing genes, and chemokine-chemokine receptor signaling were up-regulated in spleen and drove macrophage alterations. SIV-infected T cells were numerous within the white pulp during acute infection, but were rarely observed thereafter. CD68, CD163, and Mac387 macrophages were highly infected, which primarily occurred in the red pulp independent of T cells. Few macrophages underwent apoptosis, indicating that they are a long-lasting target for HIV/SIV. Our results identify macrophages as an important contributor to HIV/SIV infection in spleen and in promoting morphologic changes through the loss of specific macrophage subsets that mediate splenic organization.
Collapse
Affiliation(s)
- Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth L Engle
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) gives rise to a chronic infection that progressively depletes CD4(+) T lymphocytes. CD4(+) T lymphocytes play a central coordinating role in adaptive cellular and humoral immune responses, and to do so they migrate and interact within lymphoid compartments and at effector sites to mount immune responses. While cell-free virus serves as an excellent prognostic indicator for patient survival, interactions of infected T cells or virus-scavenging immune cells with uninfected T cells can greatly enhance viral spread. HIV can induce interactions between infected and uninfected T cells that are triggered by cell surface expression of viral Env, which serves as a cell adhesion molecule that interacts with CD4 on the target cell, before it acts as the viral membrane fusion protein. These interactions are called virological synapses and promote replication in the face of selective pressure of humoral immune responses and antiretroviral therapy. Other infection-enhancing cell-cell interactions occur between virus-concentrating antigen-presenting cells and recipient T cells, called infectious synapses. The exact roles that these cell-cell interactions play in each stage of infection, from viral acquisition, systemic dissemination, to chronic persistence are still being determined. Infection-promoting immune cell interactions are likely to contribute to viral persistence and enhance the ability of HIV-1 to evade adaptive immune responses.
Collapse
Affiliation(s)
- K M Law
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - N Satija
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A M Esposito
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - B K Chen
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
19
|
Colineau L, Rouers A, Yamamoto T, Xu Y, Urrutia A, Pham HP, Cardinaud S, Samri A, Dorgham K, Coulon PG, Cheynier R, Hosmalin A, Oksenhendler E, Six A, Kelleher AD, Zaunders J, Koup RA, Autran B, Moris A, Graff-Dubois S. HIV-Infected Spleens Present Altered Follicular Helper T Cell (Tfh) Subsets and Skewed B Cell Maturation. PLoS One 2015; 10:e0140978. [PMID: 26501424 PMCID: PMC4621058 DOI: 10.1371/journal.pone.0140978] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022] Open
Abstract
Follicular helper T (Tfh) cells within secondary lymphoid organs control multiple steps of B cell maturation and antibody (Ab) production. HIV-1 infection is associated with an altered B cell differentiation and Tfh isolated from lymph nodes of HIV-infected (HIV+) individuals provide inadequate B cell help in vitro. However, the mechanisms underlying this impairment of Tfh function are not fully defined. Using a unique collection of splenocytes, we compared the frequency, phenotype and transcriptome of Tfh subsets in spleens from HIV negative (HIV-) and HIV+ subjects. We observed an increase of CXCR5+PD-1highCD57-Tfh and germinal center (GC) CD57+ Tfh in HIV+ spleens. Both subsets showed a reduced mRNA expression of the transcription factor STAT-3, co-stimulatory, regulatory and signal transduction molecules as compared to HIV- spleens. Similarly, Foxp3 expressing follicular regulatory T (Tfr) cells were increased, suggesting sustained GC reactions in chronically HIV+ spleens. As a consequence, GC B cell populations were expanded, however, complete maturation into memory B cells was reduced in HIV+ spleens where we evidenced a compromised production of B cell-activating cytokines such as IL-4 and IL-10. Collectively our data indicate that, although Tfh proliferation and GC reactions seem to be ongoing in HIV-infected spleens, Tfh “differentiation” and expression of costimulatory molecules is skewed with a profound effect on B cell maturation.
Collapse
Affiliation(s)
- Lucie Colineau
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Angeline Rouers
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Takuya Yamamoto
- Immunology Laboratory, Vaccine research center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Yin Xu
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Alejandra Urrutia
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Hang-Phuong Pham
- Sorbonne Universités UPMC Université Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- CNRS, FRE3632, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | - Sylvain Cardinaud
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Assia Samri
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Karim Dorgham
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Pierre-Grégoire Coulon
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Hosmalin
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Cochin, Paris, France
| | - Eric Oksenhendler
- Université Paris Diderot, Assistance Publique-Hôpitaux de Paris, Département d’Immunologie Clinique, Hôpital Saint-Louis, Paris, France
| | - Adrien Six
- Sorbonne Universités UPMC Université Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- CNRS, FRE3632, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - John Zaunders
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Richard A. Koup
- Immunology Laboratory, Vaccine research center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Brigitte Autran
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Stéphanie Graff-Dubois
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Costiniuk CT, Jenabian MA. HIV reservoir dynamics in the face of highly active antiretroviral therapy. AIDS Patient Care STDS 2015; 29:55-68. [PMID: 25412339 DOI: 10.1089/apc.2014.0173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Upon discontinuation of highly active antiretroviral therapy (HAART), human immunodeficiency virus (HIV)-infected individuals experience a brisk rebound in blood plasma viremia due to the exodus of HIV from various body reservoirs. Assessment of HIV dynamics during HAART and following treatment discontinuation is essential to better understand HIV persistence. Here we will first provide a brief overview of the molecular mechanisms involved in HIV reservoir formation and persistence. After a summary of HAART-mediated HIV decay within peripheral blood, we discuss findings from clinical studies examining the effects of HAART initiation and interruption on HIV reservoir dynamics in major anatomical compartments, including lymph nodes and spleen, gut associated lymphoid tissue, reproductive organs, the central nervous system, and the lungs. Features contributing to these reservoirs as distinct compartments, including anatomical features, the presence of drug transporters, and the effect of co-infection, are also discussed.
Collapse
Affiliation(s)
- Cecilia T. Costiniuk
- Department of Medicine, Divisions of Infectious Diseases/Chronic Viral Illness Service and Lachine Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
21
|
Costiniuk CT, Jenabian MA. Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. J Gen Virol 2014; 95:2346-2355. [PMID: 25146006 DOI: 10.1099/vir.0.069641-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major research priority for HIV eradication is the elucidation of the events involved in HIV reservoir establishment and persistence. Cell-to-cell transmission of HIV represents an important area of study as it allows for the infection of cell types which are not easily infected by HIV, leading to the establishment of long-lived viral reservoirs. This phenomenon enables HIV to escape elimination by the immune system. This process may also enable HIV to escape suppressive effects of anti-retroviral drugs. During cell-to-cell transmission of HIV, a dynamic series of events ensues at the virological synapse that promotes viral dissemination. Cell-to-cell transmission involves various types of cells of the immune system and this mode of transmission has been shown to have an important role in sexual and mother-to-child transmission of HIV and spread of HIV within the central nervous system and gut-associated lymphoid tissues. There is also evidence that cell-to-cell transmission of HIV occurs between thymocytes and renal tubular cells. Herein, following a brief review of the processes involved at the virological synapse, evidence supporting the role for cell-to-cell transmission of HIV in the maintenance of the HIV reservoir will be highlighted. Therapeutic considerations and future directions for this area of research will also be discussed.
Collapse
Affiliation(s)
- Cecilia T Costiniuk
- Department of Medicine, Divisions of Infectious Diseases/Chronic Viral Illness Service and Lachine Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
22
|
Clustering and mobility of HIV-1 Env at viral assembly sites predict its propensity to induce cell-cell fusion. J Virol 2013; 87:7516-25. [PMID: 23637402 DOI: 10.1128/jvi.00790-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells.
Collapse
|
23
|
Chereshnev VA, Bocharov G, Bazhan S, Bachmetyev B, Gainova I, Likhoshvai V, Argilaguet JM, Martinez JP, Rump JA, Mothe B, Brander C, Meyerhans A. Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective. Int Rev Immunol 2013; 32:282-306. [PMID: 23617796 DOI: 10.3109/08830185.2013.779375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with HIV represent a great challenge for the development of strategies for an effective cure. The spectrum of diseases associated with HIV ranges from opportunistic infections and cancers to systemic physiological disorders like encephalopathy and neurocognitive impairment. A major progress in controlling HIV infection has been achieved by highly active antiretroviral therapy (HAART). However, HAART does neither eliminate the virus reservoirs in form of latently infected cells nor does it completely reconstitute immune reactivity and physiological status. Furthermore, the failure of the STEP vaccine trial and the only marginal efficacies of the RV144 trial together suggest that the causal relationships between the complex sets of viral and immunological processes that contribute to protection or disease pathogenesis are still poorly understood. Here, we provide an up-to-date overview of HIV-host interactions at the cellular, the immune system and the neuroendocrine systems level. Only by integrating this multi-level knowledge one will be able to handle the systems complexity and develop new methodologies of analysis and prediction for a functional restoration of the immune system and the health of the infected host.
Collapse
Affiliation(s)
- V A Chereshnev
- Institute of Immunology and Physiology, Ural Branch RAS, Ekaterinburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Human immunodeficiency virus type 1 is the cause of a modern global pandemic associated with progressive acquired immune deficiency. The infection is characterized by the loss of the primary target of viral infection, the CD4+ T cell. The measurement of plasma viremia in patients can predict the rate of CD4+ cell decline; however, it is not clear whether this cell-free plasma virus represents the engine that drives viral spread. Active viral replication is mainly observed within lymphoid tissues that are hotbeds of cell-cell interactions that initiate and organize immune responses. It is well established that cell-cell interactions enhance viral spread in vitro. Dendritic cell-T cell interactions, which lie at the heart of adaptive immune responses, enhance viral infection in vitro. Interactions between infected and uninfected CD4+ T cells are a dominant route of viral spread in vitro and are likely to play a central role in viral dissemination in vivo. Future studies will test existing paradigms of HIV-1 dissemination to determine whether virus-transmitting contacts between infected and uninfected T cells called virological synapses are the dominant mode of viral spread in vivo. Here, we review the status of our understanding of this mode of infection with a focus on T cell-T cell interactions and examine how it may explain resistance to neutralizing antibodies and or the generation of genetic diversity of HIV.
Collapse
Affiliation(s)
- Benjamin K Chen
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1630, New York, NY 10029, USA.
| |
Collapse
|
25
|
Abstract
The determinants of HIV-1-associated lymphadenopathy are poorly understood. We hypothesized that lymphocytes could be sequestered in the HIV-1+ lymph node (LN) through impairments in sphingosine-1-phosphate (S1P) responsiveness. To test this hypothesis, we developed novel assays for S1P-induced Akt phosphorylation and actin polymerization. In the HIV-1+ LN, naïve CD4 T cells and central memory CD4 and CD8 T cells had impaired Akt phosphorylation in response to S1P, whereas actin polymerization responses to S1P were impaired dramatically in all LN maturation subsets. These defects were improved with antiretroviral therapy. LN T cells expressing CD69 were unable to respond to S1P in either assay, yet impaired S1P responses were also seen in HIV-1+ LN T cells lacking CD69 expression. Microbial elements, HIV-1, and interferon α - putative drivers of HIV-1 associated immune activation all tended to increase CD69 expression and reduce T-cell responses to S1P in vitro. Impairment in T-cell egress from lymph nodes through decreased S1P responsiveness may contribute to HIV-1-associated LN enlargement and to immune dysregulation in a key organ of immune homeostasis.
Collapse
|
26
|
Spatial Aspects of HIV Infection. LECTURE NOTES ON MATHEMATICAL MODELLING IN THE LIFE SCIENCES 2013. [DOI: 10.1007/978-1-4614-4178-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Suspène R, Meyerhans A. Quantification of unintegrated HIV-1 DNA at the single cell level in vivo. PLoS One 2012; 7:e36246. [PMID: 22574142 PMCID: PMC3344866 DOI: 10.1371/journal.pone.0036246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/28/2012] [Indexed: 02/06/2023] Open
Abstract
In the nucleus of HIV-1 infected cells, unintegrated HIV-1 DNA molecules exist in the form of one and two LTR circles and linear molecules with degraded extremities. In tissue culture they are invariably more numerous than the provirus, the relative proportion of integrated to unintegrated forms varies widely from ∼1∶1 to 1∶10 and even over 1∶100. In vivo, this ratio is unknown. To determine it, single nuclei from two infected patients with a known provirus copy number were microdissected, HIV DNA was amplified by nested PCR, cloned and individual clones sequenced. Given the extraordinary sequence complexity, we made the assumption that the total number of distinct sequences approximated to real number of amplifiable HIV-1 DNA templates in the nucleus. We found that the number of unintegrated DNA molecules increased linearly with the proviral copy number there being on average 86 unintegrated molecules per provirus.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Department of Virology, Institute of Medical Microbiology, University of the Saarland, Homburg/Saar, Germany.
| | | |
Collapse
|
28
|
Stable multi-infection of splenocytes during SIV infection--the basis for continuous recombination. Retrovirology 2012; 9:31. [PMID: 22524249 PMCID: PMC3395872 DOI: 10.1186/1742-4690-9-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/23/2012] [Indexed: 12/03/2022] Open
Abstract
Background Recombination is an important mechanism in the generation of genetic diversity of the human (HIV) and simian (SIV) immunodeficiency viruses. It requires the co-packaging of divergent RNA genomes into the same retroviral capsid and subsequent template switching during the reverse transcription reaction. By HIV-specific fluorescence in situ hybridization (FISH), we have previously shown that the splenocytes from 2 chronically infected patients with Castelman's disease were multi-infected and thus fulfill the in vivo requirements to generate genetic diversity by recombination. In order to analyze when multi-infection first occurs during a lentivirus infection and how the distribution of multi-infection evolves during the disease course, we now determined the SIV copy numbers from splenocytes of 11 SIVmac251-infected rhesus macaques cross-sectionally covering the time span of primary infection throughout to end-stage immunodeficiency. Results SIV multi-infection of single splenocytes was readily detected in all monkeys and all stages of the infection. Single-infected cells were more frequent than double- or triple- infected cells. There was no strong trend linking the copy number distribution to plasma viral load, disease stage, or CD4 cell counts. Conclusions SIV multi-infection of single cells is already established during the primary infection phase thus enabling recombination to affect viral evolution in vivo throughout the disease course.
Collapse
|
29
|
Descours B, Avettand-Fenoel V, Blanc C, Samri A, Mélard A, Supervie V, Theodorou I, Carcelain G, Rouzioux C, Autran B. Immune Responses Driven by Protective Human Leukocyte Antigen Alleles From Long-term Nonprogressors Are Associated With Low HIV Reservoir in Central Memory CD4 T Cells. Clin Infect Dis 2012; 54:1495-503. [DOI: 10.1093/cid/cis188] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
30
|
Cuadros DF, García-Ramos G. Variable effect of co-infection on the HIV infectivity: within-host dynamics and epidemiological significance. Theor Biol Med Model 2012; 9:9. [PMID: 22429506 PMCID: PMC3337224 DOI: 10.1186/1742-4682-9-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/19/2012] [Indexed: 01/07/2023] Open
Abstract
Background Recent studies have implicated viral characteristics in accounting for the variation in the HIV set-point viral load (spVL) observed among individuals. These studies have suggested that the spVL might be a heritable factor. The spVL, however, is not in an absolute equilibrium state; it is frequently perturbed by immune activations generated by co-infections, resulting in a significant amplification of the HIV viral load (VL). Here, we postulated that if the HIV replication capacity were an important determinant of the spVL, it would also determine the effect of co-infection on the VL. Then, we hypothesized that viral factors contribute to the variation of the effect of co-infection and introduce variation among individuals. Methods We developed a within-host deterministic differential equation model to describe the dynamics of HIV and malaria infections, and evaluated the effect of variations in the viral replicative capacity on the VL burden generated by co-infection. These variations were then evaluated at population level by implementing a between-host model in which the relationship between VL and the probability of HIV transmission per sexual contact was used as the within-host and between-host interface. Results Our within-host results indicated that the combination of parameters generating low spVL were unable to produce a substantial increase in the VL in response to co-infection. Conversely, larger spVL were associated with substantially larger increments in the VL. In accordance, the between-host model indicated that co-infection had a negligible impact in populations where the virus had low replicative capacity, reflected in low spVL. Similarly, the impact of co-infection increased as the spVL of the population increased. Conclusion Our results indicated that variations in the viral replicative capacity would influence the effect of co-infection on the VL. Therefore, viral factors could play an important role driving several virus-related processes such as the increment of the VL induced by co-infections. These results raise the possibility that biological differences could alter the effect of co-infection and underscore the importance of identifying these factors for the implementation of control interventions focused on co-infection.
Collapse
Affiliation(s)
- Diego F Cuadros
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
31
|
Geldmacher C, Koup RA. Pathogen-specific T cell depletion and reactivation of opportunistic pathogens in HIV infection. Trends Immunol 2012; 33:207-14. [PMID: 22398371 DOI: 10.1016/j.it.2012.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 01/05/2012] [Accepted: 01/18/2012] [Indexed: 01/28/2023]
Abstract
During HIV infection, it is unclear why different opportunistic pathogens cause disease at different CD4 T cell count thresholds. Early work has shown that CD4 T cell depletion is influenced both by cellular activation status and expression of viral entry receptors. More recently, functional characteristics of the CD4 T cells, such as cytokine and chemokine production, have also been shown to influence cellular susceptibility to HIV. Here, we examine how functional differences in pathogen-specific CD4 T cells could lead to their differential loss during HIV infection. This may have implications for when different opportunistic infections occur, and a better understanding of the mechanisms for functional imprinting of antigen-specific T cells may lead to improvements in design of vaccines against HIV and opportunistic pathogens.
Collapse
Affiliation(s)
- Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of University of Munich (LMU), Munich, Germany.
| | | |
Collapse
|
32
|
Immune reconstitution after a decade of combined antiretroviral therapies for human immunodeficiency virus. Trends Immunol 2011; 32:131-7. [PMID: 21317040 DOI: 10.1016/j.it.2010.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 12/04/2010] [Accepted: 12/09/2010] [Indexed: 01/26/2023]
Abstract
The introduction of combined antiretroviral therapies (HAART) has reversed the fatal course of human immunodeficiency virus (HIV) infection. HAART controls virus production and, in most cases, allows the quantitative and functional immune defects caused by HIV to be reversed. Here, we review T cell homeostatic mechanisms that drive immune recovery. These homeostatic mechanisms, as well as differences in T cell antigen exposure, explain the distinct patterns of recovery for HIV-specific T cells versus T cells specific for other pathogens. Immune restoration during HAART can, however, have adverse effects. Immune restoration syndrome occurs in some patients as a result of successful but unbalanced immunity.
Collapse
|
33
|
Perales C, Lorenzo-Redondo R, López-Galíndez C, Martínez MA, Domingo E. Mutant spectra in virus behavior. Future Virol 2010. [DOI: 10.2217/fvl.10.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA viruses replicate as complex mutant spectra, also termed ‘mutant clouds’, known as viral quasispecies. While this is a widely observed viral population structure, it is less known that a number of biologically relevant features of this important group of viral pathogens depend on (or are strongly influenced by) the complexity and composition of mutant spectra. Among them, fitness increase or decrease depending on intrapopulation complementation or interference, selection triggered by memory genomes, pathogenic potential of viruses, disease evolution and the response to antiviral treatments. Quasispecies represent the recognition of complex behavior in viruses, and it is an oversimplification to equate such a population structure with the classic polymorphism of population biology. Darwinian principles acting on genome collectivities that replicate with high error rates provide a unique population structure prone to flexible and largely unpredictable behavior.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ramón Lorenzo-Redondo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Cecilio López-Galíndez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | | | | |
Collapse
|
34
|
Balamurali M, Petravic J, Loh L, Alcantara S, Kent SJ, Davenport MP. Does cytolysis by CD8+ T cells drive immune escape in HIV infection? THE JOURNAL OF IMMUNOLOGY 2010; 185:5093-101. [PMID: 20881189 DOI: 10.4049/jimmunol.1002204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) "cytotoxic" T cells are important for the immune control of HIV and the closely related simian models SIV and chimeric simian-human immunodeficiency virus (SHIV), although the mechanisms of this control are unclear. One effect of CD8(+) T cell-mediated recognition of virus-infected cells is the rapid selection of escape mutant (EM) virus that is not recognized. To investigate the mechanisms of virus-specific CD8(+) T cell control during immune escape in vivo, we used a real-time PCR assay to study the dynamics of immune escape in early SHIV infection of pigtail macaques. For immune escape mediated by cytolysis, we would expect that the death rate of wild type (WT) infected cells should be faster than that of EM-infected cells. In addition, escape should be fastest during periods when the total viral load is declining. However, we find that there is no significant difference in the rate of decay of WT virus compared with EM virus. Further, immune escape is often fastest during periods of viral growth, rather than viral decline. These dynamics are consistent with an epitope-specific, MHC class I-restricted, noncytolytic mechanism of CD8(+) T cell control of SHIV that specifically inhibits the growth of WT virus in vivo.
Collapse
Affiliation(s)
- Mehala Balamurali
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Perrin D, Ruskin HJ, Crane M. Model refinement through high-performance computing: an agent-based HIV example. Immunome Res 2010; 6 Suppl 1:S3. [PMID: 20875154 PMCID: PMC2946781 DOI: 10.1186/1745-7580-6-s1-s3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. RESULTS Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. CONCLUSIONS These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.
Collapse
Affiliation(s)
- Dimitri Perrin
- Centre for Scientific Computing & Complex Systems Modelling, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | |
Collapse
|
36
|
Feldmann J, Schwartz O. HIV-1 Virological Synapse: Live Imaging of Transmission. Viruses 2010; 2:1666-1680. [PMID: 21994700 PMCID: PMC3185721 DOI: 10.3390/v2081666] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/05/2010] [Accepted: 08/11/2010] [Indexed: 11/16/2022] Open
Abstract
A relatively new aspect of HIV-1 biology is the ability of the virus to infect cells by direct cellular contacts across a specialized structure, the virological synapse. This process was recently described through live cell imaging. Together with the accumulated knowledge on cellular and molecular structures involved in cell-to-cell transmission of HIV-1, the visualization of the virological synapse in video-microscopy has brought exciting new hypotheses on its underlying mechanisms. This review will recapitulate current knowledge with a particular emphasis on the questions live microscopy has raised.
Collapse
Affiliation(s)
- Jerome Feldmann
- Authors to whom correspondence should be addressed; E-Mails: (J.F.), (O.S.); Tel.: +33-145-688-576 (J.F), Tel.: +33-145-688-353 (O.S.); Fax: +33-140-613-465 (O.S.)
| | - Olivier Schwartz
- Authors to whom correspondence should be addressed; E-Mails: (J.F.), (O.S.); Tel.: +33-145-688-576 (J.F), Tel.: +33-145-688-353 (O.S.); Fax: +33-140-613-465 (O.S.)
| |
Collapse
|
37
|
Lederman MM. Haemophilia, human immunodeficiency virus and human immunodeficiency virus pathogenesis. Thromb Haemost 2010; 104:911-4. [PMID: 20694275 DOI: 10.1160/th10-02-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/06/2010] [Indexed: 11/05/2022]
Abstract
In July 1982, the occurrence of three cases of acquired immunodeficiency syndrome (AIDS) in men with haemophilia was an immediate signal to Oscar Ratnoff that AIDS was transmissible through blood products. Work that he led provided important and clear indication that the AIDS agent was transmissible through pooled plasma products and had rapidly infected many men who had haemophilia. Before the blood supply was protected, the risk for infection in haemophilia was related directly to the intensity of therapy with pooled anti-haemophilic factor concentrates. Studies performed among the small proportion of haemophiliacs who remained uninfected despite heavy exposure to these plasma products revealed that the rare protective genotype - homozygosity for the 32 base pair deletion in the CCR5 gene was heavily concentrated in this population. Among those who did not have this protective genotype, a state of diminished immune activation distinguished these high risk uninfected haemophiliacs from haemophiliacs who later acquired human immunodeficiency virus (HIV) infection and from healthy uninfected controls. Immune activation state may not only predict risk for HIV acquisition but also appears to be an important predictor and likely determinant of HIV disease progression. The potential drivers of immune activation in chronic HIV infection include HIV itself, other co-infecting pathogens, homeostatic responses to cytopenia as well as the recently recognised phenomenon of translocation of microbial products across a damaged gut mucosal surface. This latter process is particularly compelling as clinical studies have shown a good relationship between indices of microbial translocation and markers of both immune activation and T cell homeostasis in chronic HIV infection. More recently, we have also found evidence that these microbial products also may drive a heightened tendency to thrombus formation in HIV infection via induction of monocyte tissue factor expression. Thus systemic exposure to microbial elements that are translocated through a gut mucosa damaged in the first few weeks of HIV infection may contribute to the pathogenesis of both immune deficiency and the heightened risk for vascular events that have been noted in persons with HIV infection.
Collapse
Affiliation(s)
- Michael M Lederman
- Case Western Reserve University School of Medicine, University Hospitals/Case Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
38
|
Baigent SJ, Davison TF. Development and composition of lymphoid lesions in the spleens of Marek's disease virus-infected chickens: Association with virus spread and the pathogenesis of Marek's disease. Avian Pathol 2010; 28:287-300. [DOI: 10.1080/03079459994786] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl) 2010; 2:103-22. [PMID: 22096389 PMCID: PMC3218690 DOI: 10.2147/hiv.s6882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Even though the treatment of human immunodeficiency virus (HIV)-infected individuals with highly active antiretroviral therapy (HAART) provides a complete control of plasma viremia to below detectable levels (<40 copies/mL plasma), there is an unequal distribution of all antiretroviral drugs across diverse cellular and anatomic compartments in vivo. The main consequence of this is the acquisition of resistance by HIV to all known classes of currently prescribed antiretroviral drugs and the establishment of HIV reservoirs in vivo. HIV has a distinct advantage of surviving in the host via both pre-and postintegration latency. The postintegration latency is caused by inert and metabolically inactive provirus, which cannot be accessed either by the immune system or the therapeutics. This integrated provirus provides HIV with a safe haven in the host where it is incessantly challenged by its immune selection pressure and also by HAART. Thus, the provirus is one of the strategies for viral concealment in the host and the provirus can be rekindled, through unknown stimuli, to create progeny for productive infection of the host. Thus, the reservoir establishment remains the biggest impediment to HIV eradication from the host. This review provides an overview of HIV reservoir sites and discusses both the virtues and problems associated with therapies/strategies targeting these reservoir sites in vivo.
Collapse
Affiliation(s)
- Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Maly Soedjono
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Yung Shwen Ho
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Viviane Conceicao
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| |
Collapse
|
40
|
Abstract
Tetraspanins are small integral membrane proteins that are known to control a variety of cellular processes, including signaling, migration and cell-cell fusion. Research over the past few years established that they are also regulators of various steps in the HIV-1 replication cycle, but the mechanisms through which these proteins either enhance or repress virus spread remain largely unknown.
Collapse
Affiliation(s)
- Markus Thali
- Department of Microbiology and Molecular Genetics, College of Medicine and CALS, University of Vermont, 318 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0084, USA.
| |
Collapse
|
41
|
Monotypic human immunodeficiency virus type 1 genotypes across the uterine cervix and in blood suggest proliferation of cells with provirus. J Virol 2009; 83:6020-8. [PMID: 19339344 DOI: 10.1128/jvi.02664-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the dynamics and spread of human immunodeficiency virus type 1 (HIV-1) within the body, including within the female genital tract with its central role in heterosexual and peripartum transmission, has important implications for treatment and vaccine development. To study HIV-1 populations within tissues, we compared viruses from across the cervix to those in peripheral blood mononuclear cells (PBMC) during effective and failing antiretroviral therapy (ART) and in patients not receiving ART. Single-genome sequences of the C2-V5 region of HIV-1 env were derived from PBMC and three cervical biopsies per subject. Maximum-likelihood phylogenies were evaluated for differences in genetic diversity and compartmentalization within and between cervical biopsies and PBMC. All subjects had one or more clades with genetically identical HIV-1 env sequences derived from single-genome sequencing. These sequences were from noncontiguous cervical biopsies or from the cervix and circulating PBMC in seven of eight subjects. Compartmentalization of virus between genital tract and blood was observed by statistical methods and tree topologies in six of eight subjects, and potential genital lineages were observed in two of eight subjects. The detection of monotypic sequences across the cervix and blood, especially during effective ART, suggests that cells with provirus undergo clonal expansion. Compartmentalization of viruses within the cervix appears in part due to viruses homing to and/or expanding within the cervix and is rarely due to unique viruses evolving within the genital tract. Further studies are warranted to investigate mechanisms producing monotypic viruses across tissues and, importantly, to determine whether the proliferation of cells with provirus sustain HIV-1 persistence in spite of effective ART.
Collapse
|
42
|
|
43
|
Has HIV evolved to induce immune pathogenesis? Trends Immunol 2008; 29:322-8. [PMID: 18524680 DOI: 10.1016/j.it.2008.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/07/2008] [Accepted: 04/14/2008] [Indexed: 01/10/2023]
Abstract
Human immunodeficiency virus (HIV) induces a chronic generalized activation of the immune system, which plays an important role in the pathogenesis of AIDS. This ability of the virus might either be an evolved (adaptive) trait or a coincidental side effect of jumping to a new host species. We argue that selection favours the ability of HIV to induce immune activation at the local sites of infection (e.g. lymph follicles) but not at the systemic level. Immune activation increases the supply of susceptible target cells; however, mutations that increase systemic immune activation benefit all virus variants equally and are therefore selectively neutral. We thus conclude that the generalized immune activation that is probably responsible for pathogenesis is probably not directly under selection.
Collapse
|
44
|
Abstract
Since the earliest days of the AIDS epidemic, clinicians and researchers have recognized the importance of lymphoid tissue both in the clinical manifestations of disease and in its pathogenesis. Generalized lymphadenopathy was one of the earliest harbingers of AIDS in the United States and over the past 27 years an increasing body of evidence has implicated the lymphoid organs as central to the pathogenesis of immune deficiency in chronic HIV-1 infection. In this essay, we will review some of the data that have been accumulated and propose a testable model that may reconcile them.
Collapse
Affiliation(s)
- Michael M Lederman
- Center for AIDS Research, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, OH 44118, USA.
| | | |
Collapse
|
45
|
Suspène R, Renard M, Henry M, Guétard D, Puyraimond-Zemmour D, Billecocq A, Bouloy M, Tangy F, Vartanian JP, Wain-Hobson S. Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs. Nucleic Acids Res 2008; 36:e72. [PMID: 18515351 PMCID: PMC2475633 DOI: 10.1093/nar/gkn295] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Unité de Rétrovirologie Moléculaire, CNRS URA 3015, Unité de Génétique Moléculaire des Bunyaviridés and Laboratoire de Génomique Virale et Vaccination, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One 2008; 3:e1915. [PMID: 18382686 PMCID: PMC2271052 DOI: 10.1371/journal.pone.0001915] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/26/2008] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recently, heightened systemic translocation of microbial products was found in persons with chronic HIV infection and this was linked to immune activation and CD4(+) T cell homeostasis. METHODOLOGY We examined here the effects of microbial Toll-like receptor (TLR) ligands on T cell activation in vitro. CONCLUSIONS/FINDINGS We show that exposure to TLR ligands results in activation of memory and effector CD4(+) and CD8(+) T cells. After exposure to each of 8 different ligands that activate TLRs 2, 3, 4, 5, 7, 8, and 9, CD8(+) T cells are activated and gain expression of the C type lectin CD69 that may promote their retention in lymphoid tissues. In contrast, CD4(+) T cells rarely increase CD69 expression but instead enter cell cycle. Despite activation and cell cycle entry, CD4(+) T cells divide poorly and instead, disproportionately undergo activation-induced cell death. Systemic exposure to TLR agonists may therefore increase immune activation, effector cell sequestration in lymphoid tissues and T cell turnover. These events may contribute to the pathogenesis of immune dysfunction and CD4+ T cell losses in chronic infection with the human immunodeficiency virus.
Collapse
|
47
|
Chen P, Hübner W, Spinelli MA, Chen BK. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 2007; 81:12582-95. [PMID: 17728240 PMCID: PMC2169007 DOI: 10.1128/jvi.00381-07] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.
Collapse
Affiliation(s)
- Ping Chen
- Department of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
48
|
Finzi D, Plaeger SF, Dieffenbach CW. Defective virus drives human immunodeficiency virus infection, persistence, and pathogenesis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:715-21. [PMID: 16829607 PMCID: PMC1489566 DOI: 10.1128/cvi.00052-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Diana Finzi
- Basic Sciences Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
49
|
Grossman Z, Meier-Schellersheim M, Paul WE, Picker LJ. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med 2006; 12:289-95. [PMID: 16520776 DOI: 10.1038/nm1380] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Upon transmission to a new host, HIV targets CCR5+ CD4+ effector memory T cells, resulting in acute, massive depletion of these cells from mucosal effector sites. This depletion does not initially compromise the regenerative capacity of the immune system because naive and most central memory T cells are spared. Here, we discuss evidence suggesting that frequent activation of these spared cells during the chronic phase of HIV infection supplies mucosal tissues with short-lived CCR5+ CD4+ effector cells that prevent life-threatening infections. This immune activation also facilitates continued viral replication, but infection and killing of target T cells by HIV are selective and the impact on effector-cell lifespan is limited. We propose, however, that persistent activation progressively disrupts the functional organization of the immune system, reducing its regenerative capacity and facilitating viral evolution that leads to loss of the exquisite target cell-sparing selectivity of viral replication, ultimately resulting in AIDS.
Collapse
Affiliation(s)
- Zvi Grossman
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
50
|
Potter SJ, Lemey P, Dyer WB, Sullivan JS, Chew CB, Vandamme AM, Dwyer DE, Saksena NK. Genetic analyses reveal structured HIV-1 populations in serially sampled T lymphocytes of patients receiving HAART. Virology 2006; 348:35-46. [PMID: 16455126 DOI: 10.1016/j.virol.2005.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/12/2005] [Accepted: 12/22/2005] [Indexed: 11/29/2022]
Abstract
HIV-1 infection and compartmentalization in diverse leukocyte targets significantly contribute to viral persistence during suppressive highly active antiretroviral therapy (HAART). Longitudinal analyses were performed on envelope sequences of HIV-1 populations from plasma, CD4+ and CD8+ T lymphocytes in 14 patients receiving HAART and 1 therapy-naive individual. Phylogenetic reconstructions and analysis of molecular variance revealed that HIV-1 populations in CD4+ and CD8+ T cells remained compartmentalized over time in most individuals. Analyses of viral genetic variation demonstrated that, despite compartmentalization remaining over time, viral subpopulations tended not to persist and evolve but instead broke down and became reconstituted by new founder viruses. Due to the profound impact of HAART on viral evolution, it was difficult to discern whether these dynamics were ongoing during treatment or predominantly established prior to the commencement of therapy. The genetic structure and viral founder effects observed in serially sampled T lymphocyte populations supported a scenario of metapopulation dynamics in the tissue(s) where different leukocytes become infected, a factor likely to contribute to the highly variable way that drug resistance evolves in different individuals during HAART.
Collapse
Affiliation(s)
- Simon J Potter
- Retroviral Genetics Laboratory, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Darcy Road, Westmead, Sydney NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|