1
|
Golla U, Patel S, Shah N, Talamo S, Bhalodia R, Claxton D, Dovat S, Sharma A. From Deworming to Cancer Therapy: Benzimidazoles in Hematological Malignancies. Cancers (Basel) 2024; 16:3454. [PMID: 39456548 PMCID: PMC11506385 DOI: 10.3390/cancers16203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Drug repurposing is a strategy to discover new therapeutic uses for existing drugs, which have well-established toxicity profiles and are often more affordable. This approach has gained significant attention in recent years due to the high costs and low success rates associated with traditional drug development. Drug repositioning offers a more time- and cost-effective path for identifying new treatments. Several FDA-approved non-chemotherapy drugs have been investigated for their anticancer potential. Among these, anthelmintic benzimidazoles (such as albendazole, mebendazole, and flubendazole) have garnered interest due to their effects on microtubules and oncogenic signaling pathways. Blood cancers, which frequently develop resistance and have high mortality rates, present a critical need for effective therapies. This review highlights the recent advances in repurposing benzimidazoles for blood malignancies. These compounds induce cell cycle arrest, differentiation, tubulin depolymerization, loss of heterozygosity, proteasomal degradation, and inhibit oncogenic signaling to exert their anticancer effects. We also discuss current limitations and strategies to overcome them, emphasizing the potential of combining benzimidazoles with standard therapies for improved treatment of hematological cancers.
Collapse
Affiliation(s)
- Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nyah Shah
- Department of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Stella Talamo
- Department of Medicine, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA;
| | - Riya Bhalodia
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
2
|
Naser-Khdour S, Scheuber F, Fields PD, Ebert D. The Evolution of Extreme Genetic Variability in a Parasite-Resistance Complex. Genome Biol Evol 2024; 16:evae222. [PMID: 39391977 PMCID: PMC11500718 DOI: 10.1093/gbe/evae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Genomic regions that play a role in parasite defense are often found to be highly variable, with the major histocompatibility complex serving as an iconic example. Single nucleotide polymorphisms may represent only a small portion of this variability, with Indel polymorphisms and copy number variation further contributing. In extreme cases, haplotypes may no longer be recognized as orthologous. Understanding the evolution of such highly divergent regions is challenging because the most extreme variation is not visible using reference-assisted genomic approaches. Here we analyze the case of the Pasteuria Resistance Complex in the crustacean Daphnia magna, a defense complex in the host against the common and virulent bacterium Pasteuria ramosa. Two haplotypes of this region have been previously described, with parts of it being nonhomologous, and the region has been shown to be under balancing selection. Using pan-genome analysis and tree reconciliation methods to explore the evolution of the Pasteuria Resistance Complex and its characteristics within and between species of Daphnia and other Cladoceran species, our analysis revealed a remarkable diversity in this region even among host species, with many nonhomologous hyper-divergent haplotypes. The Pasteuria Resistance Complex is characterized by extensive duplication and losses of Fucosyltransferase (FuT) and Galactosyltransferase (GalT) genes that are believed to play a role in parasite defense. The Pasteuria Resistance Complex region can be traced back to common ancestors over 250 million years. The unique combination of an ancient resistance complex and a dynamic, hyper-divergent genomic environment presents a fascinating opportunity to investigate the role of such regions in the evolution and long-term maintenance of resistance polymorphisms. Our findings offer valuable insights into the evolutionary forces shaping disease resistance and adaptation, not only in the genus Daphnia, but potentially across the entire Cladocera class.
Collapse
Affiliation(s)
- Suha Naser-Khdour
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Fabian Scheuber
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
3
|
Zhang L, Lee M, Hao X, Ehlert J, Chi Z, Jin B, Maslov AY, Barabási AL, Hoeijmakers JHJ, Edelmann W, Vijg J, Dong X. Negative Selection Allows DNA Mismatch Repair-Deficient Mouse Fibroblasts In Vitro to Tolerate High Levels of Somatic Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592535. [PMID: 38766154 PMCID: PMC11100588 DOI: 10.1101/2024.05.04.592535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Substantial numbers of somatic mutations have been found to accumulate with age in different human tissues. Clonal cellular amplification of some of these mutations can cause cancer and other diseases. However, it is as yet unclear if and to what extent an increased burden of random mutations can affect cellular function without clonal amplification. We tested this in cell culture, which avoids the limitation that an increased mutation burden in vivo typically leads to cancer. We performed single-cell whole-genome sequencing of primary fibroblasts from DNA mismatch repair (MMR) deficient Msh2-/- mice and littermate control animals after long-term passaging. Apart from analyzing somatic mutation burden we analyzed clonality, mutational signatures, and hotspots in the genome, characterizing the complete landscape of somatic mutagenesis in normal and MMR-deficient mouse primary fibroblasts during passaging. While growth rate of Msh2-/- fibroblasts was not significantly different from the controls, the number of de novo single-nucleotide variants (SNVs) increased linearly up until at least 30,000 SNVs per cell, with the frequency of small insertions and deletions (INDELs) plateauing in the Msh2-/- fibroblasts to about 10,000 INDELS per cell. We provide evidence for negative selection and large-scale mutation-driven population changes, including significant clonal expansion of preexisting mutations and widespread cell-strain-specific hotspots. Overall, our results provide evidence that increased somatic mutation burden drives significant cell evolutionary changes in a dynamic cell culture system without significant effects on growth. Since similar selection processes against mutations preventing organ and tissue dysfunction during aging are difficult to envision, these results suggest that increased somatic mutation burden can play a causal role in aging and diseases other than cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoxiao Hao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Current affiliation: the Big Data Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510123, China
| | - Joseph Ehlert
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Zhongxuan Chi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bo Jin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexander Y. Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Jan H. J. Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany
- Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Işıksaçan N, Adaş G, Kasapoğlu P, Çukurova Z, Yılmaz R, Kurt Yaşar K, Irmak Koyuncu D, Tuncel FC, Şahingöz Erdal G, Gedikbaşı A, Pehlivan S, Karaoz E. The effect of mesenchymal stem cells administration on DNA repair gene expressions in critically ill COVID-19 patients: prospective controlled study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 38459810 DOI: 10.1080/15257770.2024.2327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
When the studies are evaluated, immunomodulatory effect of MSCs, administration in critically ill patients, obstacle situations in use and side effects, pulmonary fibrosis prevention, which stem cells and their products, regeneration effect, administration route, and dosage are listed under the main heading like. The effect of MSC administration on DNA repair genes in COVID-19 infection is unknown. Our aim is to determine the effect of mesenchymal stem cells (MSCs) therapy applied in critically ill patients with coronavirus infection on DNA repair pathways and genes associated with those pathways. Patients (n = 30) divided into two equal groups. Group-1: Patients in a critically ill condition, Group-2: Patients in critically ill condition and transplanted MSCs. The mechanism was investigated in eleven genes of five different pathways; Base excision repair: PARP1, Nucleotide excision repair (NER): RAD23B and ERCC1, Homologous recombinational repair (HR): ATM, RAD51, RAD52 and WRN, Mismatch repair (MMR): MLH1, MSH2, and MSH6, Direct reversal repair pathway: MGMT. It was found that MSCs application had a significant effect on 6 genes located in 3 different DNA damage response pathways. These are NER pathway genes; RAD23 and ERCC1, HR pathway genes; ATM and RAD51, MMR pathway genes; MSH2 and MSH6 (p < 0.05). Two main points were shown. First, as a result of cellular damage in critical patients with COVID-19, DNA damage occurs and then DNA repair pathways and genes are activated in reaction to this situation. Second, administration of MSC to patients with COVID-19 infection plays a positive role by increasing the expression of DNA repair genes located in DNA damage pathways.
Collapse
Affiliation(s)
- Nilgün Işıksaçan
- Department of Biochemistry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gökhan Adaş
- Stem Cell And Gene Therapies Application And Research Center, Department Of Surgery, Bakırköy Dr. Sadi Konuk Training And Research Hospital, University Of Health Sciences, Istanbul, Turkey
| | - Pınar Kasapoğlu
- Department of Biochemistry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Zafer Çukurova
- Department of Anesthesia and Intensive Care, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Rabia Yılmaz
- Department of Anesthesia and Intensive Care, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kadriye Kurt Yaşar
- Department of Infectious Disease, Istanbul Bakırköy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Duygu Irmak Koyuncu
- Center of Stem Cells and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey
| | - Fatima Ceren Tuncel
- Department of Medical Biology Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gülçin Şahingöz Erdal
- Department of Oncology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Asuman Gedikbaşı
- Department of Pediatric Basic Science, Division of Medical Genetics, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdal Karaoz
- Department of Histology & Embrology, Faculty of Medicine, Istinye University, LIV Hospital, Center of Regenerative Medicine and Stem Cell Manufacturing, Istanbul, Turkey
| |
Collapse
|
5
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
El Hajj J, Reddy S, Verma N, Huang EH, Kazmi SM. Immune Checkpoint Inhibitors in pMMR/MSS Colorectal Cancer. J Gastrointest Cancer 2023; 54:1017-1030. [PMID: 37009977 DOI: 10.1007/s12029-023-00927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors have recently replaced over chemotherapy as the first-line treatment for microsatellite instability-high or mismatch repair deficient (dMMR/MSI-H) stage 4 colorectal cancers. Considering this success, many studies have tried to replicate the use of immune checkpoint inhibitors, either as a single agent or in combination with other therapeutic agents, in the treatment of proficient mismatch repair (pMMR/MSS) stage 4 colorectal cancers. This review summarizes the seminal clinical data about the immune checkpoint inhibitors used in pMMR/MSS colorectal cancers and some future directions. RESULTS Studies concerning the use of immune checkpoint inhibitors as a single agent or in combination with other immune checkpoint inhibitors, targeted therapy, chemotherapy, or radiotherapy have proven inefficient in the treatment of pMMR/MSS colorectal cancer. However, a small subset of patients with pMMR/MSS colorectal cancer who has a mutation in POLE and POLD1 enzymes may respond to immunotherapy. Moreover, patients without liver metastasis appear to have a better chance of response. New immune checkpoint targets are being identified, such as VISTA, TIGIT, LAG3, STING signal pathway, and BTLA, and studies are ongoing to determine their efficiency in this disease type. CONCLUSION Immune checkpoint inhibitor-based regimens have not yet shown any meaningful positive outcomes for most pMMR/MSS colorectal cancers. A beneficial effect among a minority of these patients has been observed, but concrete biomarkers of response are lacking. Understanding the underlying mechanisms of immune resistance should guide further research for overcoming these obstacles.
Collapse
Affiliation(s)
- Joanna El Hajj
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology and Oncology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Sarah Reddy
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nilesh Verma
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology and Oncology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Emina H Huang
- Department of Surgery, Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Syed M Kazmi
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Hematology and Oncology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Thomas EM, Wright JA, Blake SJ, Page AJ, Worthley DL, Woods SL. Advancing translational research for colorectal immuno-oncology. Br J Cancer 2023; 129:1442-1450. [PMID: 37563222 PMCID: PMC10628092 DOI: 10.1038/s41416-023-02392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Colorectal cancer (CRC) is a common and deadly disease. Unfortunately, immune checkpoint inhibitors (ICIs) fail to elicit effective anti-tumour responses in the vast majority of CRC patients. Patients that are most likely to respond are those with DNA mismatch repair deficient (dMMR) and microsatellite instability (MSI) disease. However, reliable predictors of ICI response are lacking, even within the dMMR/MSI subtype. This, together with identification of novel mechanisms to increase response rates and prevent resistance, are ongoing and vitally important unmet needs. To address the current challenges with translation of early research findings into effective therapeutic strategies, this review summarises the present state of preclinical testing used to inform the development of immuno-regulatory treatment strategies for CRC. The shortfalls and advantages of commonly utilised mouse models of CRC, including chemically induced, transplant and transgenic approaches are highlighted. Appropriate use of existing models, incorporation of patient-derived data and development of cutting-edge models that recapitulate important features of human disease will be key to accelerating clinically relevant research in this area.
Collapse
Affiliation(s)
- Elaine M Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Josephine A Wright
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Cerretelli G, Zhou Y, Müller MF, Adams DJ, Arends MJ. Acetaldehyde and defective mismatch repair increase colonic tumours in a Lynch syndrome model with Aldh1b1 inactivation. Dis Model Mech 2023; 16:dmm050240. [PMID: 37395714 PMCID: PMC10417510 DOI: 10.1242/dmm.050240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
ALDH1B1 expressed in the intestinal epithelium metabolises acetaldehyde to acetate, protecting against acetaldehyde-induced DNA damage. MSH2 is a key component of the DNA mismatch repair (MMR) pathway involved in Lynch syndrome (LS)-associated colorectal cancers. Here, we show that defective MMR (dMMR) interacts with acetaldehyde, in a gene/environment interaction, enhancing dMMR-driven colonic tumour formation in a LS murine model of Msh2 conditional inactivation (Lgr5-CreER; Msh2flox/-, or Msh2-LS) combined with Aldh1b1 inactivation. Conditional (Aldh1b1flox/flox) or constitutive (Aldh1b1-/-) Aldh1b1 knockout alleles combined with the conditional Msh2flox/- intestinal knockout mouse model of LS (Msh2-LS) received either ethanol, which is metabolised to acetaldehyde, or water. We demonstrated that 41.7% of ethanol-treated Aldh1b1flox/flox Msh2-LS mice and 66.7% of Aldh1b1-/- Msh2-LS mice developed colonic epithelial hyperproliferation and adenoma formation, in 4.5 and 6 months, respectively, significantly greater than 0% in water-treated control mice. Significantly higher numbers of dMMR colonic crypt foci precursors and increased plasma acetaldehyde levels were observed in ethanol-treated Aldh1b1flox/flox Msh2-LS and Aldh1b1-/- Msh2-LS mice compared with those in water-treated controls. Hence, ALDH1B1 loss increases acetaldehyde levels and DNA damage that interacts with dMMR to accelerate colonic, but not small intestinal, tumour formation.
Collapse
Affiliation(s)
- Guia Cerretelli
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ying Zhou
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Mike F. Müller
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - David J. Adams
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Mark J. Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
9
|
Kristmundsdottir S, Jonsson H, Hardarson MT, Palsson G, Beyter D, Eggertsson HP, Gylfason A, Sveinbjornsson G, Holley G, Stefansson OA, Halldorsson GH, Olafsson S, Arnadottir GA, Olason PI, Eiriksson O, Masson G, Thorsteinsdottir U, Rafnar T, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Sequence variants affecting the genome-wide rate of germline microsatellite mutations. Nat Commun 2023; 14:3855. [PMID: 37386006 PMCID: PMC10310707 DOI: 10.1038/s41467-023-39547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Microsatellites are polymorphic tracts of short tandem repeats with one to six base-pair (bp) motifs and are some of the most polymorphic variants in the genome. Using 6084 Icelandic parent-offspring trios we estimate 63.7 (95% CI: 61.9-65.4) microsatellite de novo mutations (mDNMs) per offspring per generation, excluding one bp repeats motifs (homopolymers) the estimate is 48.2 mDNMs (95% CI: 46.7-49.6). Paternal mDNMs occur at longer repeats than maternal ones, which are in turn larger with a mean size of 3.4 bp vs 3.1 bp for paternal ones. mDNMs increase by 0.97 (95% CI: 0.90-1.04) and 0.31 (95% CI: 0.25-0.37) per year of father's and mother's age at conception, respectively. Here, we find two independent coding variants that associate with the number of mDNMs transmitted to offspring; The minor allele of a missense variant (allele frequency (AF) = 1.9%) in MSH2, a mismatch repair gene, increases transmitted mDNMs from both parents (effect: 13.1 paternal and 7.8 maternal mDNMs). A synonymous variant (AF = 20.3%) in NEIL2, a DNA damage repair gene, increases paternally transmitted mDNMs (effect: 4.4 mDNMs). Thus, the microsatellite mutation rate in humans is in part under genetic control.
Collapse
Affiliation(s)
- Snaedis Kristmundsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Marteinn T Hardarson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Doruk Beyter
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gudny A Arnadottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Gisli Masson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Agnar Helgason
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavik, Iceland.
| | | |
Collapse
|
10
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. Genome-wide contributions of the MutSα- and MutSβ-dependent DNA mismatch repair pathways to the maintenance of genetic stability in S. cerevisiae. J Biol Chem 2023; 299:104705. [PMID: 37059180 DOI: 10.1016/j.jbc.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses inherited and sporadic cancers in humans. In eukaryotes the MutSα-dependent and MutSβ-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole-genome level in S. cerevisiae. We found that inactivation of MutSα-dependent MMR by deletion of the MSH6 gene increases the genome-wide mutation rate by ∼17-fold, and loss of MutSβ-dependent MMR via deletion of MSH3 elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSβ-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1-6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSβ-dependent MMR for protection from 1-bp insertions, while MutSβ-dependent MMR has a more critical role in the defense against 1-bp deletions and 2-6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSβ-dependent MMR pathways.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
11
|
Honma H, Takahashi N, Arisue N, Sugishita T. Analysis of genome instability and implications for the consequent phenotype in Plasmodium falciparum containing mutated MSH2-1 (P513T). Microb Genom 2023; 9. [PMID: 37083479 DOI: 10.1099/mgen.0.001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Malarial parasites exhibit extensive genomic plasticity, which induces the antigen diversification and the development of antimalarial drug resistance. Only a few studies have examined the genome maintenance mechanisms of parasites. The study aimed at elucidating the impact of a mutation in a DNA mismatch repair gene on genome stability by maintaining the mutant and wild-type parasites through serial in vitro cultures for approximately 400 days and analysing the subsequent spontaneous mutations. A P513T mutant of the DNA mismatch repair protein PfMSH2-1 from Plasmodium falciparum 3D7 was created. The mutation did not influence the base substitution rate but significantly increased the insertion/deletion (indel) mutation rate in short tandem repeats (STRs) and minisatellite loci. STR mutability was affected by allele size, genomic category and certain repeat motifs. In the mutants, significant telomere healing and homologous recombination at chromosomal ends caused extensive gene loss and generation of chimeric genes, resulting in large-scale chromosomal alteration. Additionally, the mutant showed increased tolerance to N-methyl-N'-nitro-N-nitrosoguanidine, suggesting that PfMSH2-1 was involved in recognizing DNA methylation damage. This work provides valuable insights into the role of PfMSH2-1 in genome stability and demonstrates that the genomic destabilization caused by its dysfunction may lead to antigen diversification.
Collapse
Affiliation(s)
- Hajime Honma
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Nobuyuki Takahashi
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Nobuko Arisue
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tomohiko Sugishita
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
12
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
13
|
Biswas K, Mohammed A, Sharan SK, Shoemaker RH. Genetically engineered mouse models for hereditary cancer syndromes. Cancer Sci 2023; 114:1800-1815. [PMID: 36715493 PMCID: PMC10154891 DOI: 10.1111/cas.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.
Collapse
Affiliation(s)
- Kajal Biswas
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
14
|
Bruekner SR, Pieters W, Fish A, Liaci AM, Scheffers S, Rayner E, Kaldenbach D, Drost L, Dekker M, van Hees-Stuivenberg S, Delzenne-Goette E, de Konink C, Houlleberghs H, Dubbink H, AlSaegh A, de Wind N, Förster F, te Riele H, Sixma T. Unexpected moves: a conformational change in MutSα enables high-affinity DNA mismatch binding. Nucleic Acids Res 2023; 51:1173-1188. [PMID: 36715327 PMCID: PMC9943660 DOI: 10.1093/nar/gkad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The DNA mismatch repair protein MutSα recognizes wrongly incorporated DNA bases and initiates their correction during DNA replication. Dysfunctions in mismatch repair lead to a predisposition to cancer. Here, we study the homozygous mutation V63E in MSH2 that was found in the germline of a patient with suspected constitutional mismatch repair deficiency syndrome who developed colorectal cancer before the age of 30. Characterization of the mutant in mouse models, as well as slippage and repair assays, shows a mildly pathogenic phenotype. Using cryogenic electron microscopy and surface plasmon resonance, we explored the mechanistic effect of this mutation on MutSα function. We discovered that V63E disrupts a previously unappreciated interface between the mismatch binding domains (MBDs) of MSH2 and MSH6 and leads to reduced DNA binding. Our research identifies this interface as a 'safety lock' that ensures high-affinity DNA binding to increase replication fidelity. Our mechanistic model explains the hypomorphic phenotype of the V63E patient mutation and other variants in the MBD interface.
Collapse
Affiliation(s)
| | | | - Alexander Fish
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - A Manuel Liaci
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Serge Scheffers
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - Emily Rayner
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600 2300RC Leiden, The Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Lisa Drost
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | | | - Elly Delzenne-Goette
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Charlotte de Konink
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hellen Houlleberghs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hendrikus Jan Dubbink
- Department of Pathology, Erasmus Medical Center, PO Box 2040 3000CA Rotterdam, The Netherlands
| | - Abeer AlSaegh
- Sultan Qaboos Comprehensive Cancer Care and Research Center, PO Box 787, 117 Muscat, Oman
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600 2300RC Leiden, The Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Hein te Riele
- Correspondence may also be addressed to Hein te Riele. Tel: +31 20 512 2084;
| | - Titia K Sixma
- To whom correspondence should be addressed: Tel: +31 20 512 1959;
| |
Collapse
|
15
|
Chan LL, Hill A, Lu G, Van Raamsdonk J, Gascoyne R, Hayden MR, Leavitt BR. Huntingtin Overexpression Does Not Alter Overall Survival in Murine Cancer Models. J Huntingtons Dis 2022; 11:383-389. [PMID: 36442204 DOI: 10.3233/jhd-220554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A reduced incidence of various forms of cancer has been reported in Huntington's disease patients and may be due to pro-apoptotic effects of mutant huntingtin. We tested this hypothesis by assessing the effects of huntingtin protein overexpression on survival in two murine cancer models. We generated YAC HD mice containing human huntingtin transgenes with various CAG tract lengths (YAC18, YAC72, YAC128) on either an Msh2 or p53 null background which have increased cancer incidence. In both mouse models of cancer, the overexpression of either mutant or wild-type huntingtin had no significant effect on overall survival. These results do not support the hypothesis that mutant huntingtin expression is protective against cancer.
Collapse
Affiliation(s)
- Laura Lynn Chan
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Austin Hill
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ge Lu
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jeremy Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Randy Gascoyne
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hayden
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Blair R Leavitt
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Bozdag GO, Ono J. Evolution and molecular bases of reproductive isolation. Curr Opin Genet Dev 2022; 76:101952. [PMID: 35849861 PMCID: PMC10210581 DOI: 10.1016/j.gde.2022.101952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The most challenging problem in speciation research is disentangling the relative strength and order in which different reproductive barriers evolve. Here, we review recent developments in the study of reproductive isolation in yeasts. With over a thousand genome-sequenced isolates readily available for testing the viability, sterility, and fitness of both intraspecies and interspecies hybrid crosses, Saccharomyces yeasts are an ideal model to study such fundamental questions. Our survey demonstrates that, while chromosomal-level mutations are widespread at the intraspecific level, anti-recombination-driven chromosome missegregation is the primary reproductive barrier between species. Finally, despite their strength, all of these postzygotic barriers can be resolved through the asexual life history of hybrids.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. https://twitter.com/ozan_g_b
| | - Jasmine Ono
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Acurzio B, Cecere F, Giaccari C, Verma A, Russo R, Valletta M, Hay Mele B, Angelini C, Chambery A, Riccio A. The mismatch-repair proteins MSH2 and MSH6 interact with the imprinting control regions through the ZFP57-KAP1 complex. Epigenetics Chromatin 2022; 15:27. [PMID: 35918739 PMCID: PMC9344765 DOI: 10.1186/s13072-022-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Imprinting Control Regions (ICRs) are CpG-rich sequences acquiring differential methylation in the female and male germline and maintaining it in a parental origin-specific manner in somatic cells. Despite their expected high mutation rate due to spontaneous deamination of methylated cytosines, ICRs show conservation of CpG-richness and CpG-containing transcription factor binding sites in mammalian species. However, little is known about the mechanisms contributing to the maintenance of a high density of methyl CpGs at these loci. Results To gain functional insights into the mechanisms for maintaining CpG methylation, we sought to identify the proteins binding the methylated allele of the ICRs by determining the interactors of ZFP57 that recognizes a methylated hexanucleotide motif of these DNA regions in mouse ESCs. By using a tagged approach coupled to LC–MS/MS analysis, we identified several proteins, including factors involved in mRNA processing/splicing, chromosome organization, transcription and DNA repair processes. The presence of the post-replicative mismatch-repair (MMR) complex components MSH2 and MSH6 among the identified ZFP57 interactors prompted us to investigate their DNA binding profile by chromatin immunoprecipitation and sequencing. We demonstrated that MSH2 was enriched at gene promoters overlapping unmethylated CpG islands and at repeats. We also found that both MSH2 and MSH6 interacted with the methylated allele of the ICRs, where their binding to DNA was mediated by the ZFP57/KAP1 complex. Conclusions Our findings show that the MMR complex is concentrated on gene promoters and repeats in mouse ESCs, suggesting that maintaining the integrity of these regions is a primary function of highly proliferating cells. Furthermore, the demonstration that MSH2/MSH6 are recruited to the methylated allele of the ICRs through interaction with ZFP57/KAP1 suggests a role of the MMR complex in the maintenance of the integrity of these regulatory regions and evolution of genomic imprinting in mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00462-7.
Collapse
Affiliation(s)
- Basilia Acurzio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), 80131, Naples, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), 80131, Naples, Italy
| | - Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), 80131, Naples, Italy
| | - Ankit Verma
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), 80131, Naples, Italy
| | - Rosita Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Bruno Hay Mele
- Department of Biology, Università Degli Studi Di Napoli "Federico II", 80126, Naples, Italy
| | - Claudia Angelini
- Istituto Per Le Applicazioni del Calcolo "Mauro Picone" (IAC), CNR, 80131, Naples, Italy
| | - Angela Chambery
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", 81100, Caserta, Italy. .,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), 80131, Naples, Italy.
| |
Collapse
|
18
|
Crosby ME, Ciurlionis R, Brayman TG, Kondratiuk A, Nicolette JJ. Exploring the molecular and functional cellular response to hydrazine via transcriptomics and DNA repair mutant cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:336-350. [PMID: 36176055 PMCID: PMC9828720 DOI: 10.1002/em.22508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/23/2022] [Indexed: 05/04/2023]
Abstract
Hydrazine is a rodent carcinogen and is classified as a probable human carcinogen by IARC. Though hydrazine is positive in both in vitro and in vivo DNA strand break (comet) assays, hydrazine was reported to be negative in an in vitro mutation Muta Mouse lung epithelial cell (FE1) test, as well as in a regulatory-compliant, in vivo Big Blue mouse mutation test. In this article, mechanistic studies explored the cellular response to hydrazine. When tested in a regulatory-compliant mouse lymphoma assay, hydrazine yielded unusual, weakly positive results. This prompted an investigation into the transcriptional response to hydrazine in FE1 cells via RNA sequencing. Amongst the changes identified was a dose-dependent increase in G2/M DNA damage checkpoint activation associated genes. Flow cytometric experiments in FE1 cells revealed that hydrazine exposure led to S-phase cell cycle arrest. Clonogenic assays in a variety of cell lines harboring key DNA repair protein deficiencies indicated that hydrazine could sensitize cells lacking homology dependent repair proteins (Brca2 and Fancg). Lastly, hprt assays with hydrazine were conducted to determine whether a lack of DNA repair could lead to mutagenicity. However, no robust, dose-dependent induction of mutations was noted. The transcriptional and cell cycle response to hydrazine, coupled with functional investigations of DNA repair-deficient cell lines support the inconsistencies noted in the genetic toxicology regulatory battery. In summary, while hydrazine may be genotoxic, transcriptional and functional processes involved in cell cycle regulation and DNA repair appear to play a nuanced role in mediating the mutagenic potential.
Collapse
Affiliation(s)
- Meredith E. Crosby
- Pre‐Clinical Safety, AbbVie Inc.North ChicagoIllinoisUnited States
- Drug Safety and PharmacometricsRegeneron Pharmaceuticals Inc.TarrytownNew YorkUnited States
| | - Rita Ciurlionis
- Pre‐Clinical Safety, AbbVie Inc.North ChicagoIllinoisUnited States
| | | | | | - John J. Nicolette
- Pre‐Clinical Safety, AbbVie Inc.North ChicagoIllinoisUnited States
- Preclinical Sciences and Translational SafetyJanssen Research and DevelopmentRaritanNew JerseyUnited States
| |
Collapse
|
19
|
cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 2022; 607:366-373. [PMID: 35705809 DOI: 10.1038/s41586-022-04847-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
Chromosomal instability (CIN) drives cancer cell evolution, metastasis and therapy resistance, and is associated with poor prognosis1. CIN leads to micronuclei that release DNA into the cytoplasm after rupture, which triggers activation of inflammatory signalling mediated by cGAS and STING2,3. These two proteins are considered to be tumour suppressors as they promote apoptosis and immunosurveillance. However, cGAS and STING are rarely inactivated in cancer4, and, although they have been implicated in metastasis5, it is not known why loss-of-function mutations do not arise in primary tumours4. Here we show that inactivation of cGAS-STING signalling selectively impairs the survival of triple-negative breast cancer cells that display CIN. CIN triggers IL-6-STAT3-mediated signalling, which depends on the cGAS-STING pathway and the non-canonical NF-κB pathway. Blockade of IL-6 signalling by tocilizumab, a clinically used drug that targets the IL-6 receptor (IL-6R), selectively impairs the growth of cultured triple-negative breast cancer cells that exhibit CIN. Moreover, outgrowth of chromosomally instable tumours is significantly delayed compared with tumours that do not display CIN. Notably, this targetable vulnerability is conserved across cancer types that express high levels of IL-6 and/or IL-6R in vitro and in vivo. Together, our work demonstrates pro-tumorigenic traits of cGAS-STING signalling and explains why the cGAS-STING pathway is rarely inactivated in primary tumours. Repurposing tocilizumab could be a strategy to treat cancers with CIN that overexpress IL-6R.
Collapse
|
20
|
Noel K, Bokhari A', Bertrand R, Renaud F, Bourgoin P, Cohen R, Svrcek M, Joly AC, Duval A, Collura A. Consequences of the Hsp110DE9 mutation in tumorigenesis and the 5-fluorouracil-based chemotherapy response in Msh2-deficient mice. Cell Mol Life Sci 2022; 79:332. [PMID: 35648235 PMCID: PMC11072706 DOI: 10.1007/s00018-022-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
Abstract
Heat shock proteins (HSPs) play oncogenic roles in human tumours. We reported a somatic inactivating mutation of HSP110 (HSP110DE9) in mismatch repair-deficient (dMMR) cancers displaying microsatellite instability (MSI) but did not assess its impact. We evaluated the impact of the Hsp110DE9 mutation on tumour development and the chemotherapy response in a dMMR knock-in mouse model (Hsp110DE9KIMsh2KO mice). The effect of the Hsp110DE9 mutation on tumorigenesis and survival was evaluated in Msh2KO mice that were null (Hsp110wt), heterozygous (Hsp110DE9KI/+), or homozygous (Hsp110DE9KI/KI) for the Hsp110DE9 mutation by assessing tumoral syndrome (organomegaly index, tumour staging) and survival (Kaplan-Meier curves). 5-Fluorouracil (5-FU), which is the backbone of chemotherapy regimens in gastrointestinal cancers and is commonly used in other tumour types but is not effective against dMMR cells in vivo, was administered to Hsp110DE9KI/KI, Hsp110DE9KI/+, and Hsp110wtMsh2KO mice. Hsp110, Ki67 (proliferation marker) and activated caspase-3 (apoptosis marker) expression were assessed in normal and tumour tissue samples by western blotting, immunophenotyping and cell sorting. Hsp110wt expression was drastically reduced or totally lost in tumours from Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice. The Hsp110DE9 mutation did not affect overall survival or tumoral syndrome in Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice but drastically improved the 5-FU response in all cohorts (Msh2KOHsp110DE9KI/KI: P5fu = 0.001; Msh2KOHsp110DE9KI/+: P5fu = 0.005; Msh2KOHsp110wt: P5fu = 0.335). Histopathological examination and cell sorting analyses confirmed major hypersensitization to 5-FU-induced death of both Hsp110DE9KI/KI and Hsp110DE9KI/+ dMMR cancer cells. This study highlights how dMMR tumour cells adapt to HSP110 inactivation but become hypersensitive to 5-FU, suggesting Hsp110DE9 as a predictive factor of 5-FU efficacy.
Collapse
Affiliation(s)
- Kathleen Noel
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - A 'dem Bokhari
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Romane Bertrand
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Florence Renaud
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Pierre Bourgoin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Romain Cohen
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
- Sorbonne Université, Service D'oncologie Médicale, Hôpital Saint-Antoine, AP-HP, 75012, Paris, France
| | - Magali Svrcek
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
- Sorbonne Université, Laboratoire D'anatomie Et Cytologie Pathologiques, Hôpital Saint-Antoine, AP-HP, 75012, Paris, France
| | - Anne-Christine Joly
- UPAC and C (Unité De Préparation Des Anticancéreux Et Contrôle), Saint Antoine Hospital, AP-HP, Paris, France
| | - Alex Duval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Ada Collura
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France.
| |
Collapse
|
21
|
Pieters W, Hugenholtz F, Kos K, Cammeraat M, Moliej TC, Kaldenbach D, Klarenbeek S, Davids M, Drost L, de Konink C, Delzenne-Goette E, de Visser KE, te Riele H. Pro-mutagenic effects of the gut microbiota in a Lynch syndrome mouse model. Gut Microbes 2022; 14:2035660. [PMID: 35188867 PMCID: PMC8865281 DOI: 10.1080/19490976.2022.2035660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota strongly impacts the development of sporadic colorectal cancer (CRC), but it is largely unknown how the microbiota affects the pathogenesis of mismatch-repair-deficient CRC in the context of Lynch syndrome. In a mouse model for Lynch syndrome, we found a nearly complete loss of intestinal tumor development when animals were transferred from a conventional "open" animal facility to specific-pathogen-free (SPF) conditions. Using 16S sequencing we detected large changes in microbiota composition between the two facilities. Transcriptomic analyses of tumor-free intestinal tissues showed signs of strong intestinal inflammation in conventional mice. Whole exome sequencing of tumors developing in Msh2-Lynch mice revealed a much lower mutational load in the single SPF tumor than in tumors developing in conventional mice, suggesting reduced epithelial proliferation in SPF mice. Fecal microbiota transplantations with conventional feces altered the immune landscape and gut homeostasis, illustrated by increased gut length and elevated epithelial proliferation and migration. This was associated with drastic changes in microbiota composition, in particular increased relative abundances of different mucus-degrading taxa such as Desulfovibrio and Akkermansia, and increased bacterial-epithelial contact. Strikingly, transplantation of conventional microbiota increased microsatellite instability in untransformed intestinal epithelium of Msh2-Lynch mice, indicating that the composition of the microbiota influences the rate of mutagenesis in MSH2-deficient crypts.
Collapse
Affiliation(s)
- Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Kevin Kos
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Oncode Institute, Utrecht, The Netherlands
| | - Maxime Cammeraat
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teddy C. Moliej
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Davids
- Microbiota Center Amsterdam, Amsterdam, The Netherlands
| | - Lisa Drost
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte de Konink
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elly Delzenne-Goette
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karin E. de Visser
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Oncode Institute, Utrecht, The Netherlands
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,CONTACT Hein te Riele The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam1066 CX, The Netherlands
| |
Collapse
|
22
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Cerebral Cavernous Malformation Pathogenesis: Investigating Lesion Formation and Progression with Animal Models. Int J Mol Sci 2022; 23:5000. [PMID: 35563390 PMCID: PMC9105545 DOI: 10.3390/ijms23095000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a cerebromicrovascular disease that affects up to 0.5% of the population. Vessel dilation, decreased endothelial cell-cell contact, and loss of junctional complexes lead to loss of brain endothelial barrier integrity and hemorrhagic lesion formation. Leakage of hemorrhagic lesions results in patient symptoms and complications, including seizures, epilepsy, focal headaches, and hemorrhagic stroke. CCMs are classified as sporadic (sCCM) or familial (fCCM), associated with loss-of-function mutations in KRIT1/CCM1, CCM2, and PDCD10/CCM3. Identifying the CCM proteins has thrust the field forward by (1) revealing cellular processes and signaling pathways underlying fCCM pathogenesis, and (2) facilitating the development of animal models to study CCM protein function. CCM animal models range from various murine models to zebrafish models, with each model providing unique insights into CCM lesion development and progression. Additionally, these animal models serve as preclinical models to study therapeutic options for CCM treatment. This review briefly summarizes CCM disease pathology and the molecular functions of the CCM proteins, followed by an in-depth discussion of animal models used to study CCM pathogenesis and developing therapeutics.
Collapse
Affiliation(s)
- Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
23
|
Yuan C, Zhao X, Wangmo D, Alshareef D, Gates TJ, Subramanian S. Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer. Pharmacol Ther 2022; 231:107981. [PMID: 34480964 PMCID: PMC8844062 DOI: 10.1016/j.pharmthera.2021.107981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.
Collapse
Affiliation(s)
- Ce Yuan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Travis J Gates
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
24
|
Radman M. Speciation of Genes and Genomes: Conservation of DNA Polymorphism by Barriers to Recombination Raised by Mismatch Repair System. Front Genet 2022; 13:803690. [PMID: 35295946 PMCID: PMC8918686 DOI: 10.3389/fgene.2022.803690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Some basic aspects of human and animal biology and evolution involve the establishment of biological uniqueness of species and individuals within their huge variety. The discrimination among closely related species occurs in their offspring at the level of chromosomal DNA sequence homology, which is required for fertility as the hallmark of species. Biological identification of individuals, i.e., of their biological “self”, occurs at the level of protein sequences presented by the MHC/HLA complex as part of the immune system that discriminates non-self from self. Here, a mechanistic molecular model is presented that can explain how DNA sequence divergence and the activity of key mismatch repair proteins, MutS and MutL, lead to 1) genetic separation of closely related species (sympatric speciation) (Fitch and Ayala, Proceedings of the National Academy of Sciences, 1994, 91, 6717–6720), 2) the stability of genomes riddled by diverged repeated sequences, and 3) conservation of highly polymorphic DNA sequence blocks that constitute the immunological self. All three phenomena involve suppression of recombination between diverged homologies, resulting in prevention of gene sharing between closely related genomes (evolution of new species) as well as sequence sharing between closely related genes within a genome (e.g., evolution of immunoglobulin, MHC, and other gene families bearing conserved polymorphisms).
Collapse
Affiliation(s)
- Miroslav Radman
- Mediterranean Institute for Life Sciences—MedILS, Split, Croatia
- Faculty of Medicine, University R. Descartes, Paris, France
- NAOS Institute for Life Sciences, Aix-en-Provence, France
- School of Medicine, University of Split, Split, Croatia
- *Correspondence: Miroslav Radman,
| |
Collapse
|
25
|
Ijsselsteijn R, van Hees S, Drost M, Jansen JG, de Wind N. Induction of mismatch repair deficiency, compromised DNA damage signaling and compound hypermutagenesis by a dietary mutagen in a cell-based model for Lynch Syndrome. Carcinogenesis 2021; 43:160-169. [PMID: 34919656 PMCID: PMC8947211 DOI: 10.1093/carcin/bgab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalent cancer predisposition Lynch syndrome (LS, OMIM #120435) is caused by an inherited heterozygous defect in any of the four core DNA mismatch repair (MMR) genes MSH2, MSH6, MLH1 or PMS2. MMR repairs errors by the replicative DNA polymerases in all proliferating tissues. Its deficiency, following somatic loss of the wild type copy, results in a spontaneous mutator phenotype that underlies the rapid development of, predominantly, colorectal cancer (CRC) in LS. Here we have addressed the hypothesis that aberrant responses of intestinal stem cells to diet-derived mutagens may be causally involved in the restricted cancer tropism of LS. To test this we have generated a panel of isogenic mouse embryonic stem (mES) cells with heterozygous or homozygous disruption of multiple MMR genes and investigated their responses to the common dietary mutagen and carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Our data reveal that PhIP can inactivate the wild type allele of heterozygous mES cells via the induction of either loss of heterozygosity (LOH) or intragenic mutations. Moreover, while protective DNA damage signaling (DDS) is compromised, PhIP induces more mutations in Msh2, Mlh1, Msh6 or Pms2-deficient mES cells than in wild type cells. Combined with their spontaneous mutator phenotypes, this results in a compound hypermutator phenotype. Together, these results indicate that dietary mutagens may promote CRC development in LS at multiple levels, providing a rationale for dietary modifications in the management of LS.
Collapse
Affiliation(s)
- Robbert Ijsselsteijn
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandrine van Hees
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark Drost
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Barroso-González J, García-Expósito L, Galaviz P, Lynskey ML, Allen JAM, Hoang S, Watkins SC, Pickett HA, O'Sullivan RJ. Anti-recombination function of MutSα restricts telomere extension by ALT-associated homology-directed repair. Cell Rep 2021; 37:110088. [PMID: 34879271 PMCID: PMC8724847 DOI: 10.1016/j.celrep.2021.110088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere-elongation mechanism observed in ~15% of cancer subtypes. Current models indicate that ALT is mediated by homology-directed repair mechanisms. By disrupting MSH6 gene expression, we show that the deficiency of MutSα (MSH2/MSH6) DNA mismatch repair complex causes striking telomere hyperextension. Mechanistically, we show MutSα is specifically recruited to telomeres in ALT cells by associating with the proliferating-cell nuclear antigen (PCNA) subunit of the ALT telomere replisome. We also provide evidence that MutSα counteracts Bloom (BLM) helicase, which adopts a crucial role in stabilizing hyper-extended telomeres and maintaining the survival of MutSα-deficient ALT cancer cells. Lastly, we propose a model in which MutSα deficiency impairs heteroduplex rejection, leading to premature initiation of telomere DNA synthesis that coincides with an accumulation of telomere variant repeats (TVRs). These findings provide evidence that the MutSα DNA mismatch repair complex acts to restrain unwarranted ALT. Barroso-Gonzalez et al. show that the mismatch repair complex MutSα restricts the alternative lengthening of telomeres (ALT) pathway in cancer cells. MutSα has an anti-recombination function and limits recombination between heteroduplex sequences at telomeres, in part by counteracting the Bloom helicase (BLM).
Collapse
Affiliation(s)
- Jonathan Barroso-González
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura García-Expósito
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pablo Galaviz
- Bioinformatics Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - SongMy Hoang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Cerretelli G, Zhou Y, Müller MF, Adams DJ, Arends MJ. Ethanol-induced formation of colorectal tumours and precursors in a mouse model of Lynch syndrome. J Pathol 2021; 255:464-474. [PMID: 34543445 PMCID: PMC9291843 DOI: 10.1002/path.5796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/02/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Lynch syndrome (LS) confers inherited cancer predisposition due to germline mutations in a DNA mismatch repair (MMR) gene, e.g. MSH2. MMR is a repair pathway for removal of base mismatches and insertion/deletion loops caused by endogenous and exogenous factors. Loss of MMR through somatic alteration of the wild-type allele in LS results in defective MMR (dMMR). Lifestyle/environmental factors can modify colorectal cancer risk in sporadic and LS patients. Ethanol and its metabolite acetaldehyde are classified as group one carcinogens, and acetaldehyde causes a range of DNA lesions. However, DNA repair pathways responsible for correcting most of such DNA lesions remain uncharacterised. We hypothesised that MMR plays a role in protecting colorectal epithelium from ethanol/acetaldehyde-induced DNA damage. Here, an LS mouse model (intestinal epithelial conditional-knockout for Msh2) was used to determine if there is a gene-environment interaction between dMMR and ethanol/acetaldehyde that accelerates colorectal tumourigenesis in LS. Mice underwent either long-term ethanol treatment or water treatment. Most ethanol-treated mice demonstrated colonic hyperproliferation and adenoma formation (with some invasive adenocarcinomas) within 6 months (15/23, 65%), compared with one colonic tumour after 15 months in water-treated mice (1/23, 4%) (p < 0.0001, Fisher's exact test). A significantly greater number of dMMR colonic crypt foci precursors were observed in ethanol-treated compared with water-treated mice (p = 0.0029, Student's t-test). Moreover, increased plasma acetaldehyde levels were detected in ethanol-treated compared with water-treated mice (p = 0.0019, Mann-Whitney U-test), along with significantly increased DNA damage response in the colonic epithelium. Long-term ethanol treatment was associated with significantly increased colonic epithelial proliferation and markedly reduced apoptosis in dMMR adenomas, consistent with enhanced survival of aberrant dMMR relative to MMR-proficient colonic epithelium. In conclusion, there is strong evidence for a gene-environment interaction between dMMR and acetaldehyde, causing acceleration of dMMR-driven colonic tumour formation in this LS model, indicating that advice to limit alcohol consumption should be considered for LS patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guia Cerretelli
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Ying Zhou
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Mike F Müller
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | | | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| |
Collapse
|
28
|
Tedjasaputra TR, Hatta M, Massi MN, Natzir R, Bukhari A, Masadah R, Parewangi ML, Prihantono P, Nariswati R, Tedjasaputra V. Prediction of hereditary nonpolyposis colorectal cancer using mRNA MSH2 quantitative and the correlation with nonmodifiable factor. World J Gastrointest Pathophysiol 2021; 12:130-142. [DOI: 10.4291/wjgp.v12.i6.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hereditary non-polyposis colon cancer is a dominantly inherited syndrome of colorectal cancer (CRC), with heightened risk for younger population. Previous studies link its susceptibility to the DNA sequence polymorphism along with Amsterdam and Bethesda criteria. However, those fail in term of applicability.
AIM To determine a clear cut-off of MSH2 gene expression for CRC heredity grouping factor. Further, the study also aims to examine the association of risk factors to the CRC heredity.
METHODS The cross-sectional study observed 71 respondents from May 2018 to December 2019 in determining the CRC hereditary status through MSH2 mRNA expression using reverse transcription-polymerase chain reaction and the disease’s risk factors. Data were analyzed through Chi-Square, Fischer exact, t-test, Mann-Whitney, and multiple logistics.
RESULTS There are significant differences of MSH2 within CRC group among tissue and blood; yet, negative for significance between groups. Through the blood gene expression fifth percentile, the hereditary CRC cut-off is 11059 fc, dividing the 40 CRC respondents to 32.5% with hereditary CRC. Significant risk factors include age, family history, and staging. Nonetheless, after multivariate control, age is just a confounder. Further, the study develops a probability equation with area under the curve 82.2%.
CONCLUSION Numerous factors have significant relations to heredity of CRC patients. However, true important factors are staging and family history, while age and others are confounders. The study also established a definite cut-off point for heredity CRC based on mRNA MSH2 expression, 11059 fc. These findings shall act as concrete foundations on further risk factors and/or genetical CRC future studies.
Collapse
Affiliation(s)
- Tjahjadi Robert Tedjasaputra
- Department of Internal Medicine, Tarakan General Hospital, Medical Faculty University of Hasanuddin, Jakarta 10720, DKI Jakarta, Indonesia
| | - Mochammad Hatta
- Department of Immunology and Biomolecular, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Muh Nasrum Massi
- Department of Microbiology, Faculty of Medicine, University of Hasanuddin, Makassar 90245, South Sulawesi, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry Meidcal Faculty, University of Hasanuddin, Makassar 90245, South Sulawesi, Indonesia
| | - Agussalim Bukhari
- Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Rina Masadah
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar 20945, South Sulawesi, Indonesia
| | - Muh Lutfi Parewangi
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar 20945, South Sulawesi, Indonesia
| | - Prihantono Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Rinda Nariswati
- Department of Statistic, School of Computer Science, Bina Nusantara University Jakarta, Jakarta 11530, Indonesia
| | - Vincent Tedjasaputra
- American Association for the Advancement of Science (AAAS), Science and Technology Policy Fellow, Alexandria, VA 22314, United States
| |
Collapse
|
29
|
Tedjasaputra TR, Hatta M, Massi MN, Natzir R, Bukhari A, Masadah R, Parewangi ML, Prihantono P, Nariswati R, Tedjasaputra V. Prediction of hereditary nonpolyposis colorectal cancer using mRNA MSH2 quantitative and the correlation with nonmodifiable factor. World J Gastrointest Pathophysiol 2021; 12:134-146. [PMID: 34877027 PMCID: PMC8611184 DOI: 10.4291/wjgp.v12.i6.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hereditary non-polyposis colon cancer is a dominantly inherited syndrome of colorectal cancer (CRC), with heightened risk for younger population. Previous studies link its susceptibility to the DNA sequence polymorphism along with Amsterdam and Bethesda criteria. However, those fail in term of applicability. AIM To determine a clear cut-off of MSH2 gene expression for CRC heredity grouping factor. Further, the study also aims to examine the association of risk factors to the CRC heredity. METHODS The cross-sectional study observed 71 respondents from May 2018 to December 2019 in determining the CRC hereditary status through MSH2 mRNA expression using reverse transcription-polymerase chain reaction and the disease's risk factors. Data were analyzed through Chi-Square, Fischer exact, t-test, Mann-Whitney, and multiple logistics. RESULTS There are significant differences of MSH2 within CRC group among tissue and blood; yet, negative for significance between groups. Through the blood gene expression fifth percentile, the hereditary CRC cut-off is 11059 fc, dividing the 40 CRC respondents to 32.5% with hereditary CRC. Significant risk factors include age, family history, and staging. Nonetheless, after multivariate control, age is just a confounder. Further, the study develops a probability equation with area under the curve 82.2%. CONCLUSION Numerous factors have significant relations to heredity of CRC patients. However, true important factors are staging and family history, while age and others are confounders. The study also established a definite cut-off point for heredity CRC based on mRNA MSH2 expression, 11059 fc. These findings shall act as concrete foundations on further risk factors and/or genetical CRC future studies.
Collapse
Affiliation(s)
- Tjahjadi Robert Tedjasaputra
- Department of Internal Medicine, Tarakan General Hospital, Medical Faculty University of Hasanuddin, Jakarta 10720, DKI Jakarta, Indonesia
| | - Mochammad Hatta
- Department of Immunology and Biomolecular, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Muh Nasrum Massi
- Department of Microbiology, Faculty of Medicine, University of Hasanuddin, Makassar 90245, South Sulawesi, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry Meidcal Faculty, University of Hasanuddin, Makassar 90245, South Sulawesi, Indonesia
| | - Agussalim Bukhari
- Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Rina Masadah
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar 20945, South Sulawesi, Indonesia
| | - Muh Lutfi Parewangi
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar 20945, South Sulawesi, Indonesia
| | - Prihantono Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Rinda Nariswati
- Department of Statistic, School of Computer Science, Bina Nusantara University Jakarta, Jakarta 11530, Indonesia
| | - Vincent Tedjasaputra
- American Association for the Advancement of Science (AAAS), Science and Technology Policy Fellow, Alexandria, VA 22314, United States
| |
Collapse
|
30
|
Shioi S, Shimamoto A, Song Y, Hidaka K, Nakamura M, Take A, Hayashi N, Takiguchi S, Fujikane R, Hidaka M, Oda S, Nakatsu Y. DNA polymerase delta Exo domain stabilizes mononucleotide microsatellites in human cells. DNA Repair (Amst) 2021; 108:103216. [PMID: 34530183 DOI: 10.1016/j.dnarep.2021.103216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
In prokaryotes and yeasts, DNA polymerase proofreading (PPR) and DNA mismatch repair (MMR) cooperatively counteracts replication errors leading to repeat sequence destabilization (i.e. insertions/deletions of repeat units). However, PPR has not thus far been regarded as a mechanism stabilizing repeat sequences in higher eukaryotic cells. In a human cancer cell line, DLD-1, which carries mutations in both MSH6 and the Exo domain of POLD1, we previously observed that mononucleotide microsatellites were markedly destabilized whereas being stable in the simple MMR-defective backgrounds. In this study, we introduced the Exo domain mutation found in DLD-1 cells into MSH2-null HeLa cell clones, using CRISPR/Cas9 system. In the established Exo-/MMR-mutated HeLa clones, mononucleotide repeat sequences were remarkably destabilized as in DLD-1 cells. In contrast, dinucleotide microsatellites were readily destabilized in the parental MMR-deficient backgrounds, and the instability was not notably increased in the genome-edited HeLa clones. Here, we show an involvement of the Exo domain functions of DNA polymerase delta in mononucleotide repeat stabilization in human cells, which also suggests a possible role division between DNA polymerase and MMR in repeat maintenance in the human genome.
Collapse
Affiliation(s)
- Seijiro Shioi
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Akiyoshi Shimamoto
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yingxia Song
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Japan
| | - Kyoko Hidaka
- Centre for Fundamental Education, University of Kitakyushu, Kitakyushu, Japan
| | - Maki Nakamura
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Ayumi Take
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Namiko Hayashi
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Soichi Takiguchi
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Shinya Oda
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Japan.
| |
Collapse
|
31
|
Fitzgerald DM, Rosenberg SM. Biology before the SOS Response-DNA Damage Mechanisms at Chromosome Fragile Sites. Cells 2021; 10:2275. [PMID: 34571923 PMCID: PMC8465572 DOI: 10.3390/cells10092275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman's vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Rahman MM, Mohiuddin M, Shamima Keka I, Yamada K, Tsuda M, Sasanuma H, Andreani J, Guerois R, Borde V, Charbonnier JB, Takeda S. Genetic evidence for the involvement of mismatch repair proteins, PMS2 and MLH3, in a late step of homologous recombination. J Biol Chem 2021; 295:17460-17475. [PMID: 33453991 DOI: 10.1074/jbc.ra120.013521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.
Collapse
Affiliation(s)
- Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mohiuddin Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kousei Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valerie Borde
- Institut Curie, CNRS, UMR3244, PSL Research University, Paris, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Bommi PV, Bowen CM, Reyes-Uribe L, Wu W, Katayama H, Rocha P, Parra ER, Francisco-Cruz A, Ozcan Z, Tosti E, Willis JA, Wu H, Taggart MW, Burks JK, Lynch PM, Edelmann W, Scheet PA, Wistuba II, Sinha KM, Hanash SM, Vilar E. The Transcriptomic Landscape of Mismatch Repair-Deficient Intestinal Stem Cells. Cancer Res 2021; 81:2760-2773. [PMID: 34003775 DOI: 10.1158/0008-5472.can-20-2896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Lynch syndrome is the most common cause of hereditary colorectal cancer and is secondary to germline alterations in one of four DNA mismatch repair (MMR) genes. Here we aimed to provide novel insights into the initiation of MMR-deficient (MMRd) colorectal carcinogenesis by characterizing the expression profile of MMRd intestinal stem cells (ISC). A tissue-specific MMRd mouse model (Villin-Cre;Msh2 LoxP/LoxP ) was crossed with a reporter mouse (Lgr5-EGFP-IRES-creERT2) to trace and isolate ISCs (Lgr5+) using flow cytometry. Three different ISC genotypes (Msh2-KO, Msh2-HET, and Msh2-WT) were isolated and processed for mRNA-seq and mass spectrometry, followed by bioinformatic analyses to identify expression signatures of complete MMRd and haplo-insufficiency. These findings were validated using qRT-PCR, IHC, and whole transcriptomic sequencing in mouse tissues, organoids, and a cohort of human samples, including normal colorectal mucosa, premalignant lesions, and early-stage colorectal cancers from patients with Lynch syndrome and patients with familial adenomatous polyposis (FAP) as controls. Msh2-KO ISCs clustered together with differentiated intestinal epithelial cells from all genotypes. Gene-set enrichment analysis indicated inhibition of replication, cell-cycle progression, and the Wnt pathway and activation of epithelial signaling and immune reaction. An expression signature derived from MMRd ISCs successfully distinguished MMRd neoplastic lesions of patients with Lynch syndrome from FAP controls. SPP1 was specifically upregulated in MMRd ISCs and colocalized with LGR5 in Lynch syndrome colorectal premalignant lesions and tumors. These results show that expression signatures of MMRd ISC recapitulate the initial steps of Lynch syndrome carcinogenesis and have the potential to unveil novel biomarkers of early cancer initiation. SIGNIFICANCE: The transcriptomic and proteomic profile of MMR-deficient intestinal stem cells displays a unique set of genes with potential roles as biomarkers of cancer initiation and early progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles M Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenhui Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pedro Rocha
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alejandro Francisco-Cruz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zuhal Ozcan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jason A Willis
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Lynch
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Yeo GHT, Juez O, Chen Q, Banerjee B, Chu L, Shen MW, Sabry M, Logister I, Sherwood RI, Gifford DK. Detection of gene cis-regulatory element perturbations in single-cell transcriptomes. PLoS Comput Biol 2021; 17:e1008789. [PMID: 33711017 PMCID: PMC8011753 DOI: 10.1371/journal.pcbi.1008789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/31/2021] [Accepted: 02/13/2021] [Indexed: 12/02/2022] Open
Abstract
We introduce poly-adenine CRISPR gRNA-based single-cell RNA-sequencing (pAC-Seq), a method that enables the direct observation of guide RNAs (gRNAs) in scRNA-seq. We use pAC-Seq to assess the phenotypic consequences of CRISPR/Cas9 based alterations of gene cis-regulatory regions. We show that pAC-Seq is able to detect cis-regulatory-induced alteration of target gene expression even when biallelic loss of target gene expression occurs in only ~5% of cells. This low rate of biallelic loss significantly increases the number of cells required to detect the consequences of changes to the regulatory genome, but can be ameliorated by transcript-targeted sequencing. Based on our experimental results we model the power to detect regulatory genome induced transcriptomic effects based on the rate of mono/biallelic loss, baseline gene expression, and the number of cells per target gRNA.
Collapse
Affiliation(s)
- Grace Hui Ting Yeo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Oscar Juez
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Budhaditya Banerjee
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lendy Chu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Max W. Shen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - May Sabry
- Hubrecht Institute, Utrecht, the Netherlands
| | | | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Hubrecht Institute, Utrecht, the Netherlands
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
35
|
Will Castro LSEP, Pieters W, Alemdehy MF, Aslam MA, Buoninfante OA, Raaijmakers JA, Pilzecker B, van den Berk PCM, Te Riele H, Medema RH, Pedrosa RC, Jacobs H. The Widely Used Antihelmintic Drug Albendazole is a Potent Inducer of Loss of Heterozygosity. Front Pharmacol 2021; 12:596535. [PMID: 33679394 PMCID: PMC7935534 DOI: 10.3389/fphar.2021.596535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The antihelmintic drug ABZ and its metabolites belong to the chemical family of benzimidazoles (BZM) that act as potent tubulin polymerization inhibitors, suggesting a potential re-direction of BZMs for cancer therapy. Applying UV-Vis spectrometry we here demonstrate ABZ as a DNA intercalator. This insight led us to determine the primary mode of ABZ action in mammalian cells. As revealed by RNA sequencing, ABZ did neither grossly affect replication as analyzed by survival and replication stress signaling, nor the transcriptome. Actually, unbiased transcriptome analysis revealed a marked cell cycle signature in ABZ exposed cells. Indeed, short-term exposure to ABZ arrested mammalian cells in G2/M cell cycle stages associated with frequent gains and losses of chromatin. Cellular analyses revealed ABZ as a potent mammalian spindle poison for normal and malignant cells, explaining the serious chromosome segregation defects. Since chromosomal aberrations promote both cancer development and cell death, we determined if besides its general cytotoxicity, ABZ could predispose to tumor development. As measured by loss of heterozygosity (LOH) in vitro and in vivo ABZ was found as a potent inducer of LOH and accelerator of chromosomal missegregation.
Collapse
Affiliation(s)
- Luiza S E P Will Castro
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Muhammad A Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Jonne A Raaijmakers
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bas Pilzecker
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Paul C M van den Berk
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rozangela C Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
36
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Safavi S, Larouche A, Zahn A, Patenaude AM, Domanska D, Dionne K, Rognes T, Dingler F, Kang SK, Liu Y, Johnson N, Hébert J, Verdun RE, Rada CA, Vega F, Nilsen H, Di Noia JM. The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID. NAR Cancer 2021; 2:zcaa019. [PMID: 33554121 PMCID: PMC7848951 DOI: 10.1093/narcan/zcaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung−/− mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung−/− mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.
Collapse
Affiliation(s)
- Shiva Safavi
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Ariane Larouche
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Anne-Marie Patenaude
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Kiersten Dionne
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Felix Dingler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Seong-Kwi Kang
- ITR Laboratories Canada, Inc., 19601 Clark Graham Ave, Baie-D'Urfe, QC H9X 3T1, Canada
| | - Yan Liu
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Nathalie Johnson
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Josée Hébert
- Department of Medicine, Université de Montréal, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Ramiro E Verdun
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | | | - Francisco Vega
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Hilde Nilsen
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
38
|
A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1853-1867. [PMID: 32265288 PMCID: PMC7263696 DOI: 10.1534/g3.120.401137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.
Collapse
|
39
|
Hübbers A, Hennings J, Lambertz D, Haas U, Trautwein C, Nevzorova YA, Sonntag R, Liedtke C. Pharmacological Inhibition of Cyclin-Dependent Kinases Triggers Anti-Fibrotic Effects in Hepatic Stellate Cells In Vitro. Int J Mol Sci 2020; 21:ijms21093267. [PMID: 32380742 PMCID: PMC7246535 DOI: 10.3390/ijms21093267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a wound healing process in response to chronic liver injury, which is characterized by the accumulation of extracellular collagen produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs controlled by cyclins and associated cyclin-dependent kinases (Cdks). Cdk2 mediates the entry and progression through S-phase in complex with E-and A-type cyclins. We have demonstrated that cyclin E1 is essential for liver fibrogenesis in mice, but it is not known if this is dependent on Cdk2 or related Cdks. Here, we aimed to evaluate the benefit of the pan-Cdk inhibitor CR8 for treatment of liver fibrosis in vitro. CR8-treatment reduced proliferation and survival in immortalized HSC lines and in addition attenuated pro-fibrotic properties in primary murine HSCs. Importantly, primary murine hepatocytes were much more tolerant against the cytotoxic and anti-proliferative effects of CR8. We identified CR8 dosages mediating anti-fibrotic effects in primary HSCs without affecting cell cycle activity and survival in primary hepatocytes. In conclusion, the pharmacological pan-Cdk inhibitor CR8 restricts the pro-fibrotic properties of HSCs, while preserving proliferation and viability of hepatocytes at least in vitro. Therefore, CR8 and related drugs might be beneficial for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Anna Hübbers
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Julia Hennings
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Daniela Lambertz
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Ute Haas
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University Madrid, 28040 Madrid, Spain
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
- Correspondence: (R.S.); (C.L.)
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
- Correspondence: (R.S.); (C.L.)
| |
Collapse
|
40
|
Peterson SE, Keeney S, Jasin M. Mechanistic Insight into Crossing over during Mouse Meiosis. Mol Cell 2020; 78:1252-1263.e3. [PMID: 32362315 DOI: 10.1016/j.molcel.2020.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023]
Abstract
Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.
Collapse
Affiliation(s)
- Shaun E Peterson
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Grazielle-Silva V, Zeb TF, Burchmore R, Machado CR, McCulloch R, Teixeira SMR. Trypanosoma brucei and Trypanosoma cruzi DNA Mismatch Repair Proteins Act Differently in the Response to DNA Damage Caused by Oxidative Stress. Front Cell Infect Microbiol 2020; 10:154. [PMID: 32373549 PMCID: PMC7176904 DOI: 10.3389/fcimb.2020.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
MSH2, associated with MSH3 or MSH6, is a central component of the eukaryotic DNA Mismatch Repair (MMR) pathway responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. Previous studies have shown that MSH2 plays an additional DNA repair role in response to oxidative damage in Trypanosoma cruzi and Trypanosoma brucei. By performing co-immunoprecipitation followed by mass spectrometry with parasites expressing tagged proteins, we confirmed that the parasites' MSH2 forms complexes with MSH3 and MSH6. To investigate the involvement of these two other MMR components in the oxidative stress response, we generated knockout mutants of MSH6 and MSH3 in T. brucei bloodstream forms and MSH6 mutants in T. cruzi epimastigotes. Differently from the phenotype observed with T. cruzi MSH2 knockout epimastigotes, loss of one or two alleles of T. cruzi msh6 resulted in increased susceptibility to H2O2 exposure, besides impaired MMR. In contrast, T. brucei msh6 or msh3 null mutants displayed increased tolerance to MNNG treatment, indicating that MMR is affected, but no difference in the response to H2O2 treatment when compared to wild type cells. Taken together, our results suggest that, while T. cruzi MSH6 and MSH2 are involved with the oxidative stress response in addition to their role as components of the MMR, the DNA repair pathway that deals with oxidative stress damage operates differently in T. brucei.
Collapse
Affiliation(s)
- Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tehseen Fatima Zeb
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Richard Burchmore
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
42
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
43
|
Resveratrol and its Related Polyphenols Contribute to the Maintenance of Genome Stability. Sci Rep 2020; 10:5388. [PMID: 32214146 PMCID: PMC7096489 DOI: 10.1038/s41598-020-62292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/04/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic destabilisation is associated with the induction of mutations, including those in cancer-driver genes, and subsequent clonal evolution of cells with abrogated defence systems. Such mutations are not induced when genome stability is maintained; however, the mechanisms involved in genome stability maintenance remain elusive. Here, resveratrol (and related polyphenols) is shown to enhance genome stability in mouse embryonic fibroblasts, ultimately protecting the cells against the induction of mutations in the ARF/p53 pathway. Replication stress-associated DNA double-strand breaks (DSBs) that accumulated with genomic destabilisation were effectively reduced by resveratrol treatment. In addition, resveratrol transiently stabilised the expression of histone H2AX, which is involved in DSB repair. Similar effects on the maintenance of genome stability were observed for related polyphenols. Accordingly, we propose that polyphenol consumption can contribute to the suppression of cancers that develop with genomic instability, as well as lifespan extension.
Collapse
|
44
|
Choi JE, Matthews AJ, Michel G, Vuong BQ. AID Phosphorylation Regulates Mismatch Repair-Dependent Class Switch Recombination and Affinity Maturation. THE JOURNAL OF IMMUNOLOGY 2020; 204:13-22. [PMID: 31757865 DOI: 10.4049/jimmunol.1900809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023]
Abstract
Activation-induced cytidine deaminase (AID) generates U:G mismatches in Ig genes that can be converted into untemplated mutations during somatic hypermutation or DNA double-strand breaks during class switch recombination (CSR). Null mutations in UNG and MSH2 demonstrate the complementary roles of the base excision repair (BER) and mismatch repair pathways, respectively, in CSR. Phosphorylation of AID at serine 38 was previously hypothesized to regulate BER during CSR, as the AID phosphorylation mutant, AID(S38A), cannot interact with APE1, a BER protein. Consistent with these findings, we observe a complete block in CSR in AIDS38A/S38AMSH2-/- mouse B cells that correlates with an impaired mutation frequency at 5'Sμ. Similarly, somatic hypermutation is almost negligible at the JH4 intron in AIDS38A/S38AMSH2-/- mouse B cells, and, consistent with this, NP-specific affinity maturation in AIDS38A/S38AMSH2-/- mice is not significantly elevated in response to NP-CGG immunization. Surprisingly, AIDS38A/S38AUNG-/- mouse B cells also cannot complete CSR or affinity maturation despite accumulating significant mutations in 5'Sμ as well as the JH4 intron. These data identify a novel role for phosphorylation of AID at serine 38 in mismatch repair-dependent CSR and affinity maturation.
Collapse
Affiliation(s)
- Jee Eun Choi
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Allysia J Matthews
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Genesis Michel
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY 10016
| |
Collapse
|
45
|
Pietrantonio F, Randon G, Romagnoli D, Di Donato S, Benelli M, de Braud F. Biomarker-guided implementation of the old drug temozolomide as a novel treatment option for patients with metastatic colorectal cancer. Cancer Treat Rev 2020; 82:101935. [DOI: 10.1016/j.ctrv.2019.101935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
46
|
Hum YF, Jinks-Robertson S. Mismatch recognition and subsequent processing have distinct effects on mitotic recombination intermediates and outcomes in yeast. Nucleic Acids Res 2019; 47:4554-4568. [PMID: 30809658 PMCID: PMC6511840 DOI: 10.1093/nar/gkz126] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 01/25/2023] Open
Abstract
The post-replicative mismatch repair (MMR) system has anti-recombination activity that limits interactions between diverged sequences by recognizing mismatches in strand-exchange intermediates. In contrast to their equivalent roles during replication-error repair, mismatch recognition is more important for anti-recombination than subsequent mismatch processing. To obtain insight into this difference, ectopic substrates with 2% sequence divergence were used to examine mitotic recombination outcome (crossover or noncrossover; CO and NCO, respectively) and to infer molecular intermediates formed during double-strand break repair in Saccharomyces cerevisiae. Experiments were performed in an MMR-proficient strain, a strain with compromised mismatch-recognition activity (msh6Δ) and a strain that retained mismatch-recognition activity but was unable to process mismatches (mlh1Δ). While the loss of either mismatch binding or processing elevated the NCO frequency to a similar extent, CO events increased only when mismatch binding was compromised. The molecular features of NCOs, however, were altered in fundamentally different ways depending on whether mismatch binding or processing was eliminated. These data suggest a model in which mismatch recognition reverses strand-exchange intermediates prior to the initiation of end extension, while subsequent mismatch processing that is linked to end extension specifically destroys NCO intermediates that contain conflicting strand-discrimination signals for mismatch removal.
Collapse
Affiliation(s)
- Yee Fang Hum
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
47
|
Xing Z, Guo G, Pan X, Xu L, Guo C, An R. The Association Between hMLH1 and hMSH2 Polymorphisms and Renal Tumors in Northeastern China. Genet Test Mol Biomarkers 2019; 23:573-579. [PMID: 31373852 DOI: 10.1089/gtmb.2019.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Although hMLH1 and hMSH2 are closely associated with the development and drug resistance of multiple types of tumors, their role in renal tumors remains unclear. This study was designed to examine the relationship between renal tumor development and polymorphisms in the hMLH1 and hMSH2 genes. Methods: The study included 180 patients with renal tumors that were confirmed by pathological examination and 199 healthy controls. The clinical and pathological stages of the tumor samples were determined, and DNA was extracted from the peripheral blood of the subjects. Polymorphisms in the hMLH1 and hMSH2 loci were identified using the 1000 genomes database and the multiplex ligase detection method. Correlation analyses was performed using single nucleotide polymorphism tests. Results: 88.9% (160/180) of the tumor specimens were identified as clear cell renal cell carcinoma (CCRC) and 89.4% (161/180) were stage I carcinomas. Three hMLH1 and nine hMSH2 polymorphic sites were identified, and the frequency of the AA genotype of the hMSH2 rs2303424 variant was found to be significantly higher in the renal tumor group (odds ratio [OR] = 1.37, 95% confidence interval [CI]: 1.02-1.86) in the additive model (p = 0.029), the recessive model (p = 0.005), and codominant model (p = 0.02). Multiple testing corrections were performed and the differences between the clear cell carcinoma and control samples remained significant. Compared with the controls, the distribution of the GG genotype of the hMSH2 rs11886591 locus was significantly higher in the clear cell carcinoma group (OR = 0.80, 95% CI: 0.59-1.10, p = 0.04) after multiple testing corrections in the dominant model. Conclusion: The AA genotype at the rs2303424 locus and GG genotype at rs11886591 locus of the DNA repair gene hMSH2 were closely associated with the development of renal tumors. Further studies are needed on larger cohorts to confirm this correlation.
Collapse
Affiliation(s)
- Zhaohui Xing
- 1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiying Guo
- 1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinling Pan
- 2Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Lidan Xu
- 3Department of Genetics, Harbin Medical University, Harbin, China
| | - Chaopu Guo
- 4Department of Surgery, Traditional Chinese Medicine Hospital of Yanggu, Liaocheng, China
| | - Ruihua An
- 1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Harmsen T, Klaasen S, van de Vrugt H, Te Riele H. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res 2019; 46:2945-2955. [PMID: 29447381 PMCID: PMC5888797 DOI: 10.1093/nar/gky076] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3' half of the ssODN. Furthermore, protecting the ssODN 3' end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair.
Collapse
Affiliation(s)
- Tim Harmsen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sjoerd Klaasen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Henri van de Vrugt
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
49
|
Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst) 2019; 78:60-69. [PMID: 30959407 DOI: 10.1016/j.dnarep.2019.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/16/2019] [Indexed: 12/22/2022]
Abstract
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.
Collapse
Affiliation(s)
- Dipika Gupta
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | | |
Collapse
|
50
|
Rossing M, Sørensen CS, Ejlertsen B, Nielsen FC. Whole genome sequencing of breast cancer. APMIS 2019; 127:303-315. [PMID: 30689231 PMCID: PMC6850492 DOI: 10.1111/apm.12920] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
Abstract
Breast cancer was the first to take advantage of targeted therapy using endocrine therapy, and for up to 20% of all breast cancer patients a further significant improvement has been obtained by HER2‐targeted therapy. Greater insight in precision medicine is to some extent driven by technical and computational progress, with the first wave of a true technical advancement being the application of transcriptomic analysis. Molecular subtyping further improved our understanding of breast cancer biology and has through a new tumor classification enabled allocation of personalized treatment regimens. The next wave in technical progression must be next‐generation‐sequencing which is currently providing new and exciting results. Large‐scale sequencing data unravel novel somatic and potential targetable mutations as well as allowing the identification of new candidate genes predisposing for familial breast cancer. So far, around 15% of all breast cancer patients are genetically predisposed with most genes being factors in pathways implicated in genome maintenance. This review focuses on whole‐genome sequencing and the new possibilities that this technique, together with other high‐throughput analytic approaches, provides for a more individualized treatment course of breast cancer patients.
Collapse
Affiliation(s)
- Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Bent Ejlertsen
- Danish Breast Cancer Cooperative Group & Department of Clinical Oncology Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|