1
|
Valeria C, Salvatore P, Luca V, Maria G, Ludovica M, Cristina S, Lucia M, Angela C, Valeria S. Innovative snail-mucus-extract (SME)-coated nanoparticles exhibit anti-inflammatory and anti-proliferative effects for potential skin cancer prevention and treatment. RSC Adv 2024; 14:7655-7663. [PMID: 38440280 PMCID: PMC10911411 DOI: 10.1039/d4ra00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Nowadays, several studies have highlighted the ability of snail mucus in maintaining healthy skin conditions due to its emollient, regenerative and protective properties. In particular, mucus derived from H. aspersa muller has been reported to have beneficial effects such as antioxidant, antimicrobial activity and wound repair capacity. To enhance antioxidant activity of snail mucus, it was extracted in a hydroalcoholic solution and consequently freeze-dried. The obtained snail mucus extract (SME) was indeed endowed with higher antioxidant activity observed in cell-free models, however it was not possible to test its effects in cellular models as it creates a thick film on the cell surface. Therefore, in order to enhance beneficial effects of snail mucus and extend its potential use, SME was used to develop snail mucus extract-coated gold nanoparticles (AuNPs-SME) which exhibited anti-inflammatory properties on non-tumorigenic cells. LPS-induced inflammation in human NCTC keratinocytes was used as model to investigate the in vitro cytoprotective effects of nanoparticles. Co-treatment with LPS and AuNPs-SME significantly reduced pro-inflammatory cytokine transcription. Moreover, we demonstrated that AuNPs-SME not only can be used for anti-inflammatory treatments, but also as a sunscreen and antioxidant for potential cosmetic applications. Furthermore, AuNPs-SME's ability to selectively inhibit the growth of two human melanoma cell lines without affecting immortalized human keratinocyte viability in the same conditions was assessed. Thus, we demonstrated that snail mucus is suitable for creating innovative formulations and it can be considered a valid candidate for cosmeceutical applications to enrich the snail mucus based anti-age and sunscreen products already present on the market. Moreover, innovative formulations containing snail mucus can be potentially used for the treatment of specific skin neoplasms.
Collapse
Affiliation(s)
- Consoli Valeria
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| | - Petralia Salvatore
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CNR-Institute of Biomolecular Chemistry Via Paolo Gaifami 18 95126 Catania Italy
| | - Vanella Luca
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| | - Gulisano Maria
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
| | - Maugeri Ludovica
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
| | - Satriano Cristina
- NanoHybrid Biointerfaces Laboratory (NHBIL), Department of Chemical Sciences, University of Catania Viale Andrea Doria, 6 95125 Catania Italy
| | - Montenegro Lucia
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| | - Castellano Angela
- Mediterranean Nutraceutical Extracts (Medinutrex) Via Vincenzo Giuffrida 202 95128 Catania Italy
| | - Sorrenti Valeria
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| |
Collapse
|
2
|
Brooks S. Lectins as versatile tools to explore cellular glycosylation. Eur J Histochem 2024; 68:3959. [PMID: 38285057 PMCID: PMC11059468 DOI: 10.4081/ejh.2024.3959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping - and understanding - of the glycome.
Collapse
|
3
|
Bindeman WE, Fingleton B. Glycosylation as a regulator of site-specific metastasis. Cancer Metastasis Rev 2022; 41:107-129. [PMID: 34967926 PMCID: PMC8930623 DOI: 10.1007/s10555-021-10015-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Metastasis is considered to be responsible for 90% of cancer-related deaths. Although it is clinically evident that metastatic patterns vary by primary tumor type, the molecular mechanisms underlying the site-specific nature of metastasis are an area of active investigation. One mechanism that has emerged as an important player in this process is glycosylation, or the addition of sugar moieties onto protein and lipid substrates. Glycosylation is the most common post-translational modification, occurring on more than 50% of translated proteins. Many of those proteins are either secreted or expressed on the cell membrane, thereby making glycosylation an important mediator of cell-cell interactions, including tumor-microenvironment interactions. It has been recently discovered that alteration of glycosylation patterns influences cancer metastasis, both globally and in a site-specific manner. This review will summarize the current knowledge regarding the role of glycosylation in the tropism of cancer cells for several common metastatic sites, including the bone, lung, brain, and lymph nodes.
Collapse
Affiliation(s)
- Wendy E Bindeman
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Barbara Fingleton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
5
|
Rømer TB, Aasted MKM, Dabelsteen S, Groen A, Schnabel J, Tan E, Pedersen JW, Haue AD, Wandall HH. Mapping of truncated O-glycans in cancers of epithelial and non-epithelial origin. Br J Cancer 2021; 125:1239-1250. [PMID: 34526666 DOI: 10.1038/s41416-021-01530-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Novel immunotherapies targeting cancer-associated truncated O-glycans Tn (GalNAcα-Ser/Thr) and STn (Neu5Acα2-6GalNacα-Ser/Thr) are promising strategies for cancer treatment. However, no comprehensive, antibody-based mapping of truncated O-glycans in tumours exist to guide drug development. METHODS We used monoclonal antibodies to map the expression of truncated O-glycans in >700 tissue cores representing healthy and tumour tissues originating from breast, colon, lung, pancreas, skin, CNS and mesenchymal tissue. Patient-derived xenografts were used to evaluate Tn expression upon tumour engraftment. RESULTS The Tn-antigen was highly expressed in breast (57%, n = 64), colorectal (51%, n = 140) and pancreatic (53%, n = 108) tumours, while STn was mainly observed in colorectal (80%, n = 140) and pancreatic (56%, n = 108) tumours. We observed no truncated O-glycans in mesenchymal tumours (n = 32) and low expression of Tn (5%, n = 87) and STn (1%, n = 75) in CNS tumours. No Tn-antigen was found in normal tissue (n = 124) while STn was occasionally observed in healthy gastrointestinal tissue. Surface expression of Tn-antigen was identified across several cancers. Tn and STn expression decreased with tumour grade, but not with cancer stage. Numerous xenografts maintained Tn expression. CONCLUSIONS Surface expression of truncated O-glycans is limited to cancers of epithelial origin, making Tn and STn attractive immunological targets in the treatment of human carcinomas.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Mikkel Koed Møller Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Sally Dabelsteen
- Department of Pathology and Medicine, School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | - Johannes Wirenfeldt Pedersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Amalie Dahl Haue
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Hans Heugh Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
6
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
7
|
Lomax-Browne HJ, Robertson C, Antonopoulos A, Leathem AJC, Haslam SM, Dell A, Dwek MV. Serum IgA1 shows increased levels of α2,6-linked sialic acid in breast cancer. Interface Focus 2019; 9:20180079. [PMID: 30842877 DOI: 10.1098/rsfs.2018.0079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
The lectin Helix pomatia agglutinin (HPA) recognizes altered glycosylation in solid cancers and the identification of HPA binding partners in tumour tissue and serum is an important aim. Among the many HPA binding proteins, IgA1 has been reported to be the most abundant in liver metastases. In this study, the glycosylation of IgA1 was evaluated using serum samples from patients with breast cancer (BCa) and the utility of IgA1 glycosylation as a biomarker was assessed. Detailed mass spectrometric structural analysis showed an increase in disialo-biantennary N-linked glycans on IgA1 from BCa patients (p < 0.0001: non-core fucosylated; p = 0.0345: core fucosylated) and increased asialo-Thomsen-Friedenreich antigen (TF) and disialo-TF antigens in the O-linked glycan preparations from IgA1 of cancer patients compared with healthy control individuals. An increase in Sambucus nigra binding was observed, suggestive of increased α2,6-linked sialic acid on IgA1 in BCa. Logistic regression analysis showed HPA binding to IgA1 and tumour size to be significant independent predictors of distant metastases (χ 2 13.359; n = 114; p = 0.020) with positive and negative predictive values of 65.7% and 64.6%, respectively. Immunohistochemical analysis of tumour tissue samples showed IgA1 to be detectable in BCa tissue. This report provides a detailed analysis of serum IgA1 glycosylation in BCa and illustrates the potential utility of IgA1 glycosylation as a biomarker for BCa prognostication.
Collapse
Affiliation(s)
- Hannah J Lomax-Browne
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Claire Robertson
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anthony J C Leathem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Miriam V Dwek
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
8
|
Parameswaran R, Tan WB, Nga ME, Soon GST, Ngiam KY, Brooks SA, Sadler GP, Mihai R. Binding of aberrant glycoproteins recognizable by Helix pomatia agglutinin in adrenal cancers. BJS Open 2018; 2:353-359. [PMID: 30263987 PMCID: PMC6156166 DOI: 10.1002/bjs5.70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/16/2018] [Indexed: 01/28/2023] Open
Abstract
Background Aberrant glycosylation is a hallmark of cancer cells and plays an important role in oncogenesis and cancer progression including metastasis. This study aimed to assess alteration in cellular glycosylation, detected by lectin Helix pomatia agglutinin (HPA) binding, in adrenal cancers and to determine whether such altered glycosylation has prognostic significance. Methods HPA binding lectin histochemistry was performed on archival paraffin wax‐embedded specimens of adrenocortical cancers excised from patients attending two tertiary referral centres. Benign tumours were used as controls. Demographic, histological and survival data were collected and compared between patients with HPA‐positive and HPA‐negative tumours. Results Thirty‐two patients were treated for adrenal cancer between 2000 and 2016; their median age was 49 (range 23–79) years. Fifteen patients had functioning tumours (14 adrenal Cushing's tumours and 1 Conn's tumour). Mean(s.d.) tumour size was 127·71(49·70) mm. None of 10 control tumours expressed HPA‐binding glycoproteins. Invasion was associated with HPA‐binding glycoproteins (P = 0·018). Local recurrence or metastatic disease did not significantly differ between HPA‐positive and HPA‐negative adrenocortical cancers. Overall survival was significantly longer in patients with HPA‐negative tumours (median survival not reached versus 22 months in patients with HPA‐positive tumours; P = 0·002). Conclusion Altered cellular glycosylation detected by lectin HPA is associated with poor survival in patients with adrenocortical cancer.
Collapse
Affiliation(s)
- R Parameswaran
- Department of Endocrine Surgery National University Hospital Singapore
| | - W B Tan
- Department of Endocrine Surgery National University Hospital Singapore
| | - M E Nga
- Department of Pathology National University Hospital Singapore
| | - G S T Soon
- Department of Pathology National University Hospital Singapore
| | - K Y Ngiam
- Department of Endocrine Surgery National University Hospital Singapore
| | - S A Brooks
- School of Biological and Medical Sciences, Oxford Brookes University Oxford UK
| | - G P Sadler
- Department of Endocrine Surgery Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - R Mihai
- Department of Endocrine Surgery Oxford University Hospitals NHS Foundation Trust Oxford UK
| |
Collapse
|
9
|
Jeschke U. Can We Find Breast Cancer via Salivary Fluid Glycosylation Analyses? EBioMedicine 2018; 28:4. [PMID: 29397367 PMCID: PMC5835574 DOI: 10.1016/j.ebiom.2018.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 11/23/2022] Open
Affiliation(s)
- Udo Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| |
Collapse
|
10
|
Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem Neurosci 2018; 9:51-72. [PMID: 28982002 DOI: 10.1021/acschemneuro.7b00271] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a posttranslational modification that affects more than half of all known proteins. Glycans covalently bound to biomolecules modulate their functions by both direct interactions, such as the recognition of glycan structures by binding partners, and indirect mechanisms that contribute to the control of protein conformation, stability, and turnover. The focus of this Review is the discussion of aberrant glycosylation related to brain cancer. Altered sialylation and fucosylation of N- and O-glycans play a role in the development and progression of brain cancer. Additionally, aberrant O-glycan expression has been implicated in brain cancer. This Review also addresses the clinical potential and applications of aberrant glycosylation for the detection and treatment of brain cancer. The viable roles glycans may play in the development of brain cancer therapeutics are addressed as well as cancer-glycoproteomics and personalized medicine. Glycoprotein alterations are considered as a hallmark of cancer while high expression in body fluids represents an opportunity for cancer assessment.
Collapse
Affiliation(s)
- Lucas Veillon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| | - Christina Fakih
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| |
Collapse
|
11
|
Wolters-Eisfeld G, Schumacher U. Lectin Histochemistry for Metastasizing and Non-metastasizing Cancer Cells. Methods Mol Biol 2017; 1560:121-132. [PMID: 28155149 DOI: 10.1007/978-1-4939-6788-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in glycosylation of the cancer cell glycocalyx are a hallmark of metastasizing cancers and critically contribute to distant metastasis. In this chapter we concentrate on two lectins capable of specifically binding tumor-associated glycans in cryostat or formalin-fixed, paraffin-embedded tissue sections derived from primary clinical material, genetically engineered mouse models with endogenous cancer formation or xenograft mouse models. The snail lectin of Helix pomatia (HPA) binds N-acetylgalactosamine (GalNAc) that is expressed among others as Tn antigen (O-linked GalNAc) in primary tumors and metastases in several human adenocarcinomas. Another lectin, Phaseolus vulgaris leucoagglutinin (PHA-L) binds to complex β1-6 branched N-linked oligosaccharides associated with increased metastatic potential in breast, colon, and prostate cancer. Using these two lectins both O- and N-linked alterations in the glycocalyx of cancer cells can be monitored. As they are commercially available in a biotinylated or fluorescence-labeled form they can be readily used in cancer metastasis studies.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Medical Glycobiology Group, Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
12
|
Bapu D, Runions J, Kadhim M, Brooks SA. N-acetylgalactosamine glycans function in cancer cell adhesion to endothelial cells: A role for truncated O-glycans in metastatic mechanisms. Cancer Lett 2016; 375:367-374. [PMID: 26994652 DOI: 10.1016/j.canlet.2016.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023]
Abstract
Failure in O-glycan chain extension exposing Tn antigen (GalNAc-O-Ser/Thr) is clinically associated with cancer metastasis. This study provides evidence of a functional role for aberrant GalNAc-glycans in cancer cell capture from blood flow and/or adhesion to endothelium. Adhesion of breast cancer cells to human umbilical vein endothelial cell monolayers was modelled under sweeping flow. Adhesion of metastatic, GalNAc glycan-rich, MCF7 and ZR 75 1 cells to endothelium increased over timepoints up to 1.5 hour, after which it plateaued. Adhesion was significantly inhibited (p < 0.001) when cell surface GalNAc-glycans were masked, an effect not seen in GalNAc glycan-poor, non-metastatic BT 474 cells. Masking irrelevant galactose- and mannose-glycans had no inhibitory effect. Imaging of cells post-adhesion over a 24 hour time course using confocal and scanning electron microscopy revealed that up to 6 hours post-adhesion, motile, rounded cancer cells featuring lamellipodia-like processes crawled on an intact endothelial monolayer. From 6-12 hours post-adhesion, cancer cells became stationary, adopted a smooth, circular flattened morphology, and endothelial cells retracted from around them leaving cleared zones in which the cancer cells proceeded to form colonies through cell division.
Collapse
Affiliation(s)
- Deepashree Bapu
- Department of Biological & Medical Sciences, Faculty of Health & Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - John Runions
- Department of Biological & Medical Sciences, Faculty of Health & Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Munira Kadhim
- Department of Biological & Medical Sciences, Faculty of Health & Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Susan Ann Brooks
- Department of Biological & Medical Sciences, Faculty of Health & Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK.
| |
Collapse
|
13
|
Peiris D, Ossondo M, Fry S, Loizidou M, Smith-Ravin J, Dwek MV. Identification of O-Linked Glycoproteins Binding to the Lectin Helix pomatia Agglutinin as Markers of Metastatic Colorectal Cancer. PLoS One 2015; 10:e0138345. [PMID: 26495974 PMCID: PMC4619703 DOI: 10.1371/journal.pone.0138345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. METHODOLOGY In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. RESULTS Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). CONCLUSION Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Diluka Peiris
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Marlène Ossondo
- Universite des Antilles et de la Guyane, Département Scientifique Interfacultaire, EA929 AIHP-GEODE (BIOSPHERES), Campus de Schœlcher, Martinique
| | - Simon Fry
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London School of Life and Medical Sciences, Royal Free Campus, Pond Street, London, United Kingdom
| | - Juliette Smith-Ravin
- Universite des Antilles et de la Guyane, Département Scientifique Interfacultaire, EA929 AIHP-GEODE (BIOSPHERES), Campus de Schœlcher, Martinique
| | - Miriam V. Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| |
Collapse
|
14
|
Kölbl AC, Andergassen U, Jeschke U. The Role of Glycosylation in Breast Cancer Metastasis and Cancer Control. Front Oncol 2015; 5:219. [PMID: 26528431 PMCID: PMC4602128 DOI: 10.3389/fonc.2015.00219] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
Glycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques, new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood–brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumor stage, and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worthwhile for cancer combating.
Collapse
Affiliation(s)
- Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich , Munich , Germany
| | - Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich , Munich , Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich , Munich , Germany
| |
Collapse
|
15
|
Lange T, Samatov TR, Tonevitsky AG, Schumacher U. Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydr Res 2014; 389:39-45. [DOI: 10.1016/j.carres.2014.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/22/2013] [Accepted: 01/08/2014] [Indexed: 01/25/2023]
|
16
|
Eiró N, González LO, Atienza S, González-Quintana JM, Beridze N, Fernandez-Garcia B, Pérez-Fernández R, García-Caballero T, Schneider J, Vizoso FJ. Prediction of metastatic breast cancer in non-sentinel lymph nodes based on metalloprotease-1 expression by the sentinel lymph node. Eur J Cancer 2013; 49:1009-17. [DOI: 10.1016/j.ejca.2012.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/20/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023]
|
17
|
Abstract
Lectins are naturally occurring carbohydrate-binding molecules. A very wide range of purified lectins are commercially available which exhibit a diversity of carbohydrate-binding preferences. They can be used in the laboratory to detect carbohydrate structures on, or in, cells and tissues in much the same way that purified antibodies can be employed to detect cell- or tissue-bound antigens using immunocytochemistry. As lectins can distinguish subtle alterations in cellular glycosylation, they are helpful in exploring the glycosylation changes that attend both transformation to malignancy and tumour progression. In this chapter, methodologies are given for appropriate preparation of many types of cell and tissue preparations, including cells cultured on coverslips (which can be used for live-cell imaging), cell smears, and frozen (cryostat) and fixed, paraffin wax-embedded tissue sections. Heat- and enzyme-based carbohydrate retrieval methods are covered. Basic detection methods, which can be readily adapted to the researcher's needs, are given for direct (labelled lectin), simple indirect (labelled secondary antibody directed against the lectin), and avidin-biotin (biotinylated lectin) and avidin-biotin complex. The use of both the enzyme label, horseradish peroxidase, and fluorescent labels is considered.
Collapse
|
18
|
Shi YQ, He Q, Zhao YJ, Wang EH, Wu GP. Lectin microarrays differentiate carcinoma cells from reactive mesothelial cells in pleural effusions. Cytotechnology 2012; 65:355-62. [PMID: 22875282 DOI: 10.1007/s10616-012-9474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/05/2012] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the diagnostic utility of lectin microarrays in pleural effusions of patients with lung cancer. A lectin microarray, LTL, PSA, LCA, UEA-1, AAL, MAL-I, MAL-II, SNA, WGA, ECL, DSA, STL, SWGA, HPA, ConA, GNA, HHL, BPL, EEL, Jacalin, WFA, ACL, MPL, DBA, SBA, was used to determine the glycoprotein profile of cells in pleural effusions from patients with lung cancer (54 cases), and with benign lung disease (54 cases). The A549 cell line, used as an experimental control, was positive for AAL, MAL-I, WGA, STL, Jacalin and ACL binding. Adenocarcinoma cells in pleural effusions were positive for ECL, DSA, AAL, MAL-I, WGA, STL, Jacalin, and ACL binding. AAL, WGA, and ACL positive binding was the most common, found in 54, 48, and 38 samples, respectively. ECL and DSA binding was positive in only 4 samples. In comparison, reactive mesothelial cells displayed positive binding for all markers in the microarray panel. SNA and AAL positive binding was detected in the majority of samples; 50/54 and 48/54 samples, respectively. Positive binding of DBA, MAL-II and EEL was present in only 2, 4 and 4 samples, respectively. SNA binding had the highest sensitivity (92.6 %), specificity (100 %), and accuracy (96.3 %). SNA may be used as a biomarker to distinguish reactive mesothelial cells from adenocarcinoma cells. The lectin microarrays proved able to distinguish carcinoma cells from reactive mesothelial cells in pleural effusions.
Collapse
Affiliation(s)
- Yu-Qing Shi
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China,
| | | | | | | | | |
Collapse
|
19
|
Stübke K, Wicklein D, Herich L, Schumacher U, Nehmann N. Selectin-deficiency reduces the number of spontaneous metastases in a xenograft model of human breast cancer. Cancer Lett 2012; 321:89-99. [PMID: 22366582 DOI: 10.1016/j.canlet.2012.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 01/02/2023]
Abstract
Metastasis formation is a complex process still poorly understood. Previous work in a colon cancer xenograft model showed that E(ndothelial) and P(latelet) selectins mediate spontaneous metastasis to the lungs. To investigate the functional role of selectins in breast cancer, human DU4475 breast cancer cells were injected subcutaneously into pfp-/-rag2-/- mice and in all their selectin-deficient variants (EP-/-, E-/- and P-/-). Pfp-/-rag2-/- mice as well as all their selectin-deficient variants developed primary tumours and spontaneous metastases. Compared with the wild-type mice, disseminated tumours cells were significantly lower (74% reduction, P=0.046) in the bone marrow of selectin-deficient mice. Pfp-/-rag2-/- mice developed significantly higher numbers of lung metastases (6644.83±741.77) than the E-/- (4053.33±112.58; P=0.002) and the EP-/- pfp-/-rag2-/- mice (4665.65±754.50; P<0.001). The results indicate that E- and P-selectins play a role in spontaneous metastasis formation both into bone marrow and lungs. However, spontaneous metastasis was not completely abrogated, hence additional cell adhesion molecules must be involved in the metastatic spread.
Collapse
Affiliation(s)
- Katrin Stübke
- University Medical Center Hamburg-Eppendorf, Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Rambaruth ND, Greenwell P, Dwek MV. The lectin Helix pomatia agglutinin recognizes O-GlcNAc containing glycoproteins in human breast cancer. Glycobiology 2012; 22:839-48. [DOI: 10.1093/glycob/cws051] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
21
|
|
22
|
Missori P, Currà A. Plastering the head with crushed snails to treat pediatric hydrocephalus: an ancient therapy with a pharmacological basis. Neuroscientist 2011; 18:399-406. [PMID: 21873274 DOI: 10.1177/1073858411417450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the Middle Ages, medical therapy for pediatric hydrocephalus was characterized by the application of drying substances to decrease the size of the heads of affected children. A poultice of crushed snails applied to the head was considered to be one of the most powerful therapies for reducing swelling caused by excessive humors. Incunabula (texts printed in Europe before 1501 CE) and Renaissance texts document the extended use of this therapy, which was considered by physicians to be effective and less dangerous than surgical treatment.
Collapse
Affiliation(s)
- Paolo Missori
- Department of Neurology and Psychiatry, Neurosurgery, Sapienza University of Rome, Rome, Italy.
| | | |
Collapse
|
23
|
Parameswaran R, Sadler G, Brooks S. Helix pomatia Agglutinin Binding Glycoproteins in Thyroid Tumors. World J Surg 2011; 35:2219-27. [DOI: 10.1007/s00268-011-1196-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Abstract
A common phenotypic change in cancer is a dramatic transformation of cellular glycosylation. Functional studies of particular tumour-associated oligosaccharides are difficult to interpret conclusively, but carbohydrate-binding proteins are likely to contribute to progression of the tumour. This review discusses the potential role of CLRs (C-type lectin receptors), expressed by antigen-presenting cells of the immune system, in tumour recognition and immune modulation. Studies in recent years have provided significant insight into the immunomodulatory function of CLR during infections, but their role in cancer remains elusive; some strongly bind tumour cells and antigens, indicating participation in malignancy. The potential to use recombinant CLR as diagnostic tools will also be discussed.
Collapse
|
25
|
Markiv A, Peiris D, Curley GP, Odell M, Dwek MV. Identification, cloning, and characterization of two N-acetylgalactosamine-binding lectins from the albumen gland of Helix pomatia. J Biol Chem 2011; 286:20260-6. [PMID: 21372134 DOI: 10.1074/jbc.m110.184515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Helix pomatia agglutinin (HPA), the lectin from the albumen gland of the Roman snail, has been used in histochemical studies relating glycosylation changes to the metastatic potential of solid tumors. To facilitate the use of HPA in a clinical (diagnostic) setting, detailed analysis of the lectin, including cloning and recombinant production of HPA, is required. A combination of isoelectric focusing, amino acid sequence analysis, and cloning revealed two polypeptides in native HPA preparations (HPAI and HPAII), both consistent with GalNAc-binding lectins of the H-type family. Pairwise sequence alignment showed that HPAI and HPAII share 54% sequence identity whereas molecular modeling using SWISS-MODEL suggests they are likely to adopt similar tertiary structure. The inherent heterogeneity of native HPA highlighted the need for production of functional recombinant protein; this was addressed by preparing His-thioredoxin-tagged fusion products in Escherichia coli Rosetta-gami B (DE3) cells. The recombinant lectins agglutinated human blood group A erythrocytes whereas their oligosaccharide specificity, evaluated using glycan microarrays, showed that they predominantly bind glycans with terminal α-GalNAc residues. Surface plasmon resonance with immobilized GalNAc-BSA confirmed that recombinant HPAI and HPAII bind strongly with this ligand (K(d) = 0.60 nm and 2.00 nm, respectively) with a somewhat higher affinity to native HPA (K(d) = 7.67 nm). Recombinant HPAII also bound the breast cancer cells of breast cancer tissue specimens in a manner similar to native lectin. The recombinant HPA described here shows important potential for future studies of cancer cell glycosylation and as a reagent for cancer prognostication.
Collapse
Affiliation(s)
- Anatoliy Markiv
- Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Abstract
Alterations in protein glycosylation play an important role in patho-physiology, and much effort has been devoted to detecting glycoprotein biomarkers. In this manuscript, we describe the development of a novel method for monitoring alterations in protein glycosylation. Lectins are used as individual affinity reagents and coupled to magnetic beads (Dynabeads) in a microplate array format for isolation of glycosylated proteins. Isolated glycoproteins are digested with trypsin in-solution followed by LC-MS/MS, allowing a liquid handler-assisted high throughput workflow. We demonstrate the specific and reproducible affinity-isolation of glycoproteins using the lectin Dynabead array technology. When used with serum, we achieved one-step purification of glycoproteins with minimal coisolation of abundant serum proteins including albumin. We further optimized the proteomics workflow to allow transfer to a liquid handler for automation. In summary, we report the development of a high throughput platform to detect alterations in protein glycosylation which will be useful in glycoproteomics studies, particularly clinical proteomics studies where large sample sizes are required to achieve statistical power.
Collapse
Affiliation(s)
- Dorothy Loo
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Australia
| | | | | |
Collapse
|
27
|
Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 2010; 12:204. [PMID: 20550729 PMCID: PMC2917018 DOI: 10.1186/bcr2577] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed.
Collapse
Affiliation(s)
- Aurélie Cazet
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
28
|
Kuno A, Matsuda A, Ikehara Y, Narimatsu H, Hirabayashi J. Differential Glycan Profiling by Lectin Microarray Targeting Tissue Specimens. Methods Enzymol 2010; 478:165-79. [DOI: 10.1016/s0076-6879(10)78007-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, Regnier FE, Gibson BW, Fisher SJ. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 2009; 56:223-36. [PMID: 19959616 DOI: 10.1373/clinchem.2009.136333] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cancer has profound effects on gene expression, including a cell's glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate compared with their protein backbones. CONTENT In this article, we survey clinical tests that target carbohydrate modifications for diagnosing and treating cancer. We present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling, and metastasis and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies--multiple reaction monitoring and lectin-antibody arrays--as potential tools for biomarker validation studies in pursuit of clinically useful tests. SUMMARY The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses.
Collapse
|
30
|
Strategies for analysis of the glycosylation of proteins: current status and future perspectives. Mol Biotechnol 2009; 43:76-88. [PMID: 19507069 DOI: 10.1007/s12033-009-9184-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/30/2009] [Indexed: 01/27/2023]
Abstract
More than half of human proteins are glycosylated by a bewildering array of complex and heterogeneous N- and O-linked glycans. They function in myriad biological processes, including cell adhesion and signalling and influence the physical characteristics, stability, function, activity and immunogenicity of soluble glycoproteins. A single protein may be glycosylated differently to yield heterogenous glycoforms. Glycosylation analysis is of increasing interest in biomedical and biological research, the pharmaceutical and healthcare industry and biotechnology. This is because it is increasingly apparent that glycosylation changes in diseases, such as cancer, making it a promising target for development of clinically useful biomarkers and therapeutics. Furthermore, as the non-human cells employed in expression systems glycosylate their proteins very differently to human cells, and as glycosylation changes unpredictably under changing environmental conditions, glycans analysis for quality control, optimum efficacy and safety of recombinant glycoproteins destined for human therapeutic use is paramount. The complexities of carbohydrate chemistry make analysis challenging and while there are a variety of robust methodologies available for glycan analysis, there is currently a pressing need for the development of new, streamlined, high throughput approaches accessible to non-specialist laboratories.
Collapse
|
31
|
Singh SK, Streng-Ouwehand I, Litjens M, Weelij DR, García-Vallejo JJ, van Vliet SJ, Saeland E, van Kooyk Y. Characterization of murine MGL1 and MGL2 C-type lectins: distinct glycan specificities and tumor binding properties. Mol Immunol 2009; 46:1240-9. [PMID: 19162326 DOI: 10.1016/j.molimm.2008.11.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/17/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022]
Abstract
Antigen presenting cells (APC) express a variety of pattern recognition receptors, including the C-type lectin receptors (CLR) that specifically recognize carbohydrate structures expressed on self-tissue and pathogens. The CLR play an important role in antigen uptake and presentation and have been shown to mediate cellular interactions. The ligand specificity of the human macrophage galactose-type lectin (MGL) has been characterized extensively. Here, we set out to determine the glycan specificity of the murine homologues, MGL1 and MGL2, using a glycan array. Murine MGL1 was found to be highly specific for Lewis X and Lewis A structures, whereas mMGL2, more similar to the human MGL, recognized N-acetylgalactosamine (GalNAc) and galactose, including the O-linked Tn-antigen, TF-antigen and core 2. The generation of MGL1 and MGL2-Fc proteins allowed us to identify ligands in lymph nodes, and MGL1-Fc additionally recognized high endothelial venules. Strikingly, MGL2 interacted strongly to adenocarcinoma cells, suggesting a potential role in tumor immunity.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Welinder C, Jansson B, Fernö M, Olsson H, Baldetorp B. Expression of Helix pomatia Lectin Binding Glycoproteins in Women with Breast Cancer in Relationship to Their Blood Group Phenotypes. J Proteome Res 2008; 8:782-7. [DOI: 10.1021/pr800444b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bo Jansson
- Department of Oncology, Lund University, SE-221 85, Lund, Sweden
| | - Mårten Fernö
- Department of Oncology, Lund University, SE-221 85, Lund, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University, SE-221 85, Lund, Sweden
| | - Bo Baldetorp
- Department of Oncology, Lund University, SE-221 85, Lund, Sweden
| |
Collapse
|
33
|
Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 2008; 18:761-9. [PMID: 18625848 DOI: 10.1093/glycob/cwn063] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is among the most complex posttranslational modifications with an extremely high level of diversity that has made it refractory to high-throughput analyses. Despite its resistance to high-throughput techniques, glycosylation is important in many critical cellular processes that necessitate a productive approach to their analysis. To facilitate studies in glycosylation, we developed a high-throughput lectin microarray for defining mammalian cell surface glycan signatures. Using the lectin microarray we established a binary analysis of cell binding and hierarchical organization of 24 mammalian cell lines. The array was also used to document changes in cell surface glycosylation during cell development and differentiation of primary murine immune system cells. To establish the biological and clinical importance of glycan signatures, the lectin microarray was applied in two systems. First, we analyzed the cell surface glycan signatures and were able to predict mannose-dependent tropism using a model pathogen. Second, we used the glycan signatures to identify novel lectin biomarkers for cancer stem-like cells in a murine model. Thus, lectin microarrays are an effective tool for analyzing diverse cell processes including cell development and differentiation, cell-cell communication, pathogen-host recognition, and cell surface biomarker identification.
Collapse
Affiliation(s)
- Sheng-Ce Tao
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saeland E, van Vliet SJ, Bäckström M, van den Berg VCM, Geijtenbeek TBH, Meijer GA, van Kooyk Y. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immunother 2007; 56:1225-36. [PMID: 17195076 PMCID: PMC11031027 DOI: 10.1007/s00262-006-0274-z] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/25/2006] [Indexed: 10/23/2022]
Abstract
The epithelial mucin MUC1 is a high molecular weight membrane glycoprotein frequently overexpressed and aberrantly glycosylated in adenocarcinoma. Mucins normally contain high amounts of O-linked carbohydrate structures that may influence immune reactions to this antigen. During malignant transformation, certain glyco-epitopes of MUC1, such as Tn-antigen, TF-antigen and their sialylated forms become exposed. The role of these glycan structures in tumor biology is unknown, but their presence is known to correlate with poor prognosis in several adenocarcinomas. We analyzed the potency of MUC1 containing Tn-antigens (MUC1-Tn) to target C-type lectins that function as carbohydrate recognition and uptake molecules on dendritic cells (DC). We identified the macrophage galactose type C-type lectin (MGL), expressed by both DC and macrophages, as the receptor for recognition and binding of MUC1-Tn. To validate the occurrence of MGL-MUC1 interactions in situ, we studied the binding of MGL to MUC1 in primary colon carcinoma tissue. Isolation of MUC1 out of colon carcinoma tissue showed strong binding activity to MGL. Interestingly, MGL binding to MUC1 was highly correlated to binding by the lectin Helix pomatia agglutinin (HPA), which is associated with poor prognosis in colorectal cancer. The detection of MGL positive cells in situ at the tumor site together with the modified glycosylation status of MUC1 to target MGL on DC suggests that MGL positive antigen presenting cells may play a role in tumor progression.
Collapse
MESH Headings
- Acetylgalactosamine/pharmacology
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Antigens, Neoplasm/metabolism
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- CHO Cells
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Colon/chemistry
- Colon/cytology
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Cricetinae
- Cricetulus
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Endocytosis
- Female
- Glycosylation
- Humans
- Immunoglobulin G/immunology
- Intestinal Mucosa/chemistry
- Intestinal Mucosa/cytology
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred BALB C
- Monocytes/cytology
- Monosaccharides/pharmacology
- Mucin-1
- Mucins/immunology
- Mucins/isolation & purification
- Mucins/metabolism
- Neoplasm Proteins/immunology
- Neoplasm Proteins/isolation & purification
- Neoplasm Proteins/metabolism
- Protein Binding/drug effects
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- Eirikur Saeland
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Post Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Post Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Malin Bäckström
- Department of Medical Biochemistry, Gothenborg University, Gothenborg, Sweden
| | - Venice C. M. van den Berg
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Post Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Post Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Gerrit A. Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Post Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
35
|
Patani NR, Dwek MV, Douek M. Predictors of axillary lymph node metastasis in breast cancer: A systematic review. Eur J Surg Oncol 2007; 33:409-19. [PMID: 17125963 DOI: 10.1016/j.ejso.2006.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 09/06/2006] [Indexed: 11/21/2022] Open
Abstract
AIMS To review the established and emerging techniques in axillary lymph node prediction and explore their potential impact on clinical practice. To reliably identify patients in whom axillary lymph node surgery, including SLNB, can be safely omitted. METHODS Searches of PubMed were made using the search terms "axilla" (or "axillary"), "lymph", "node" and "predictor" (or "prediction"). Articles from abstracts and reports from meetings were included only when they related directly to previously published work. FINDINGS There are numerous studies in which the predictive utility of biomarkers as determinants of axillary lymph node status have been investigated. Few of these have specifically addressed the attributes of the primary tumour which could offer much potential for the prediction of tumour metastasis to the axillary lymph nodes. CONCLUSIONS Currently, no single marker is sufficiently accurate to obviate the need for formal axillary staging using SLNB or axillary clearance.
Collapse
Affiliation(s)
- N R Patani
- Department of Surgery, Royal Free and University College Medical School, The Medical School Building, 74 Huntley Street, University College London, London WC1E 6AU, UK
| | | | | |
Collapse
|
36
|
Brooks SA, Carter TM, Bennett EP, Clausen H, Mandel U. Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer. Acta Histochem 2007; 109:273-84. [PMID: 17448526 DOI: 10.1016/j.acthis.2007.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/28/2007] [Indexed: 11/18/2022]
Abstract
An extensive family of UDP-N-alpha-d-galactosamine: polypeptide N-acetylgalactosaminyltransferases (polypeptide N-acetylgalactosaminyltransferases, ppGalNAc-T's) catalyse the attachment of the first N-acetylgalactosamine (GalNAc) monosaccharide to the polypeptide at the initiation of O-linked glycosylation of proteins. Some members of the family are broadly expressed while others are more restricted in their distribution, their expression and activity being confined to certain cells or tissues, being associated with physiological states or differentiation. Their careful regulation, which is not well understood, may mediate the synthesis of varied glycoforms of cellular proteins with different biological activities. Disruptions in glycosylation are a common feature of cancer and may have functional significance. Immunocytochemistry with confocal scanning laser microscopy was employed to detect members of the ppGalNAc-T family, ppGalNAc-T1, -T2, -T3, -T4 and -T6 in a range of breast cell lines. The cells were chosen to represent a range of phenotypes from 'normal'/benign (HMT 3,522), primary, non-metastatic breast cancer (BT 474), to aggressive, metastatic breast cancer (ZR75-1, T47D, MCF-7, DU 4,475). They stably synthesise varying levels, consistent with origin and phenotype, of aberrantly glycosylated glycoproteins featuring exposed, terminal GalNAc residues, including the cancer-associated Tn antigen, which, in numerous studies, have been associated with metastatic competence and poor cancer prognosis. GalNAc-T1 and -T2 were detectable at low levels in all cell lines studied. ppGalNAc-T4, which has never been described in breast, was very weakly detectable in BT 474, MCF7 and T47D. ppGalNAc-T3 and -T6 were weakly detectable or undetectable, respectively, in the cell line HMT 3,522 derived from 'normal'/benign breast epithelium, but were readily detectable in all malignant cell lines. Thus, a broader range of ppGalNAc-T's were detectable in the malignant cell lines in comparison to the 'normal'/benign cells, where only the 'housekeeping' ppGalNAc-T1 and -T2 were present. Expression of normally tightly restricted ppGalNAc-T's may result in initiation of O-linked glycosylation at normally unoccupied potential glycosylation sites leading to altered glycoforms of proteins with changed biological activity which may contribute to the pathogenesis of cancer.
Collapse
Affiliation(s)
- Susan A Brooks
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK.
| | | | | | | | | |
Collapse
|
37
|
Irazoqui FJ, Sendra VG, Lardone RD, Nores GA. Immune response to Thomsen-Friedenreich disaccharide and glycan engineering. Immunol Cell Biol 2005; 83:405-12. [PMID: 16033536 DOI: 10.1111/j.1440-1711.2005.01348.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cancer-associated mucins show frequent alterations of their oligosaccharide chain profile, with a switch to unmask normally cryptic O-glycan backbone and core regions. Epithelial tumour cells typically show overexpression of the uncovered Gal(beta)1-3GalNAc(alpha)-O-Ser/Thr (Core 1) structure, known as the T antigen or the Thomsen-Friedenreich antigen, the oligosaccharide chain of which is called the Thomsen-Friedenreich disaccharide (TFD). T antigen expression has been associated with immunosuppression, metastasis dissemination, and the proliferation of cancer cells. Several different strategies have been used to trigger a specific immune response to TFD. Natural T antigen and synthetic TFD residues have low immunodominance. In the T antigen, flexibility of the glycosidic bond reduces the immunogenicity of the sugar residue. Enhanced rigidity should favour certain glycan conformations and thereby improve TFD immunotargeting. We propose the term 'glycan engineering' for this approach. Such engineering of TFD should reduce the flexibility of its glycan moiety and thereby enhance its stability, rigidity and immunogenicity.
Collapse
Affiliation(s)
- Fernando J Irazoqui
- CIQUIBIC-CONICET/Department of Biological Chemistry, Faculty of Chemical Sciences, National University of Cordoba, Ciudad Universitaria, Cordoba, Argentina.
| | | | | | | |
Collapse
|
38
|
Valentiner U, Hall DMS, Brooks SA, Schumacher U. HPA binding and metastasis formation of human breast cancer cell lines transplanted into severe combined immunodeficient (scid) mice. Cancer Lett 2005; 219:233-42. [PMID: 15723724 DOI: 10.1016/j.canlet.2004.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/15/2004] [Accepted: 07/27/2004] [Indexed: 11/29/2022]
Abstract
Six human breast cancer cell lines were injected subcutaneously into scid mice and their in vivo growth behaviour and HPA binding pattern were analysed. Furthermore, the role of HPA binding glycoconjugates concerning the adhesion to endothelial cells in vitro was investigated. Four of the tested cell lines engrafted in the scid mouse model but they showed considerable variations concerning their growth behaviour, their metastatic potential and their HPA binding pattern. HPA inhibited adhesive interactions between cell lines derived from metatstatic sources and tumour necrosis factor (TNF)alpha stimulated endothelial cells. The transplantation of HPA defined breast cancer cell lines into scid mice is a useful animal model for the research of breast cancer and its metastasis. The HPA binding glycoconjugates appear to be associated with adhesive interactions between metastasising tumour cells and endothelial cells.
Collapse
Affiliation(s)
- Ursula Valentiner
- Institute for Anatomy II: Experimental Morphology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
39
|
Kannan S, Lakku RA, Niranjali D, Jayakumar K, Steven AH, VV T, S C, Balakrishnan R, Schmidt C, Halagowder D. Expression of peanut agglutinin-binding mucin-type glycoprotein in human esophageal squamous cell carcinoma as a marker. Mol Cancer 2003; 2:38. [PMID: 14613581 PMCID: PMC280694 DOI: 10.1186/1476-4598-2-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Accepted: 11/05/2003] [Indexed: 11/22/2022] Open
Abstract
Background The TF (Thomson – Friedenreich) blood group antigen behaves as an onco-foetal carcinoma-associated antigen, showing increased expression in malignancies and its detection and quantification can be used in serologic diagnosis mainly in adenocarcinomas. This study was undertaken to analyze the sera and tissue level detectable mucin-type glycoprotein (TF-antigen) by Peanut agglutinin (PNA) and its diagnostic index in serum as well tissues of human esophageal squamous cell carcinoma as marker. Results We examined 100 patients for serological analysis by Enzyme Linked Lectin Assay (ELISA) and demonstrated a sensitivity of 87.5%, specificity of 90% and a positive predictive value of 95%. The immuno-histochemical localization of TF antigen by Fluorescence Antigen Technique (FAT) in 25 specimens of normal esophageal squamous epithelium specimens and 92 specimens with different grades of, allowed a quicker and more precise identification of its increased expression and this did not correlate with gender and tumor size. There was a positive correlation between membrane bound TF antigen expression with different histological progression, from well differentiated to poorly differentiated, determined by PNA binding. Specimens showed morphological changes and a pronounced increase in PNA binding in Golgi apparatus, secretory granules of the cytosol of well differentiated and an increased cell membrane labeling in moderately and poorly differentiated, when compared with ESCC and normal tissues. Conclusion The authors propose that the expression of TF-antigen in human may play an important role during tumorigenesis establishing it as a chemically well-defined carcinoma-associated antigen. Identification of the circulating TF-antigen as a reactive form and as a cryptic form in the healthy individuals, using PNA-ELLA and Immunohistochemical analysis of TF antigen by FAT is positively correlated with the different histological grades as a simple and cost-effective method for the early diagnosis of ESCC. The present study reveals that, during tumorigenesis, an aberrant glycosylation takes place in Golgi apparatus leading to over secretion of TF antigen into the cytoplasm along with mucin granules and later into cell membrane. We suggest that the further characterization of TF antigen may unravel pathogenetic aspects of this silent disease.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai-600 025, India
| | - Reddi A Lakku
- Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai-600 025, India
| | - Devaraj Niranjali
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, India
| | - Kamala Jayakumar
- Department of Pathology, Veterinary College, University of Agricultural Sciences, Hebbal, Bangalore-560 024, Inida
| | - Arulraj H Steven
- Barnard Institute of Radiology and Oncology, Madras Medical College and Research Institute, Chennai, 600 003, India
| | - Taralakshmi VV
- Institute of Pathology, Madras Medical College and Research Institute, Chennai-600 003, India
| | - Chandramohan S
- Department of Surgical Gastroenterology, Madras Medical College and Research Institute, Chennai-600 003, India
| | - Ramathilakam Balakrishnan
- Department of Medical Gastroenterology Madras Medical College and Research Institute, Chennai-600 003, India
| | - Christian Schmidt
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Devaraj Halagowder
- Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai-600 025, India
| |
Collapse
|
40
|
Sherwani AF, Mohmood S, Khan F, Khan RH, Azfer MA. Characterization of lectins and their specificity in carcinomas-An appraisal. Indian J Clin Biochem 2003; 18:169-80. [PMID: 23105409 PMCID: PMC3453863 DOI: 10.1007/bf02867384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lectins, a group of specific glycoproteins present in animal as well as plant cells, are used as differentiating markers to study cancers and metastatic cell lines. This property of lectins depends on the process of cellular glycosylation. Glycosylation of some of the extracellular membrane proteins and lipids maintains the cell/cell and cell/matrix interactions. Chemical alterations in glycosylation play an important role in the metastatic behavior of tumor cells. Carbohydrate residues of the membrane glycoproteins can be detected using lectins due to their binding specificity to carbohydrates. Lectins, therefore have gained an importance in the field of cancer research. Galectins, a specialized group of lectin like proteins that are Ca+ independent and galactoside binding, are also considered as differentiation markers in some specific cancers like the carcinomas of thyroid.Thus the use of lectins and galectins to identify specific carbohydrates present on cell surface help in invasion and metastasis processes.
Collapse
Affiliation(s)
| | | | - Fauzia Khan
- Department of Zoology, AMU, 202 002 Aligarh, India
| | | | | |
Collapse
|
41
|
Brooks SA, Wilkinson D. Validation of a simple avidin-biotin detection method for Helix pomatia lectin (HPA) binding as a prognostic marker in cancer. Acta Histochem 2003; 105:205-12. [PMID: 13677613 DOI: 10.1078/0065-1281-00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Helix pomatia lectin (HPA) binding is a marker of metastatic competence in several human cancers. The altered cellular glycosylation detected by HPA is of clinical interest and functional significance, but research has been hampered by uncertainty over appropriate and accessible histochemical methods. Most studies have employed a complex multi-layered detection system localising binding of unconjugated HPA by layering with a polyclonal antibody to HPA, a biotinylated secondary antibody against the first antibody and streptavidin peroxidase. This detection system is sensitive and yields accurate prognostic information, but is lengthy and requires antibodies against HPA that are not widely available. A simpler technique, that uses peroxidase-labelled HPA is inappropriate as the carbohydrate-combining characteristics of the lectin are altered, and the prognostic significance of lectin binding is lost. Therefore a valid alternative, simple and accessible technique is required. In the present study, we compare the results of labelling of HPA binding using the complex multi-layered detection system with a simple avidin-biotin method. In a series of 101 breast cancers, both methods gave comparable results. Therefore, the avidin-biotin method appears to be appropriate for studies on HPA binding to detect altered glycoforms in cancer. It is hoped that its adoption may encourage research into this clinically significant alteration in cellular glycosylation.
Collapse
Affiliation(s)
- Susan A Brooks
- Research School of Biological & Molecular Sciences, Oxford Brookes University, Headington, Oxford, UK.
| | | |
Collapse
|
42
|
Xiong L, Regnier FE. Use of a lectin affinity selector in the search for unusual glycosylation in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782:405-18. [PMID: 12458022 DOI: 10.1016/s1570-0232(02)00671-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of the work described in this paper was to develop a new approach to the identification of glycoprotein with particular types of glycosylation. The paper demonstrates N-glycosylation sites in a glycoproteins can be identified by (1) proteolysis with trypsin, (2) lectin affinity selection, (3) enzymatic deglycosylation with peptide-N-glycosidase F (PNGase F) in buffer containing 95% H(2)(18)O, which generates deglycosylated peptide pairs separated by 2 or 4 amu, (4) reversed-phase separation of the peptide mixture and MALDI mass analysis, (5) MS-MS sequencing of the ion pairs, and (6) identification of the parent protein through a database search. This process has been tested on the selection of glycopeptides from lactoferrin and mammaglobin, and the identification of the ion pairs of fetuin glycopeptides. Glycosylation sites were identified through PNGase hydrolysis in H(2)(18)O. During the process of hydrolyzing the conjugate, Asn is converted to an aspartate residue with the incorporation of (18)O. However, PNGase F was observed to incorporate two (18)O into the beta-carboxyl groups of the Asp residue. This suggests that the hydrolysis is at least partially reversible.
Collapse
Affiliation(s)
- Li Xiong
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
43
|
Laack E, Nikbakht H, Peters A, Kugler C, Jasiewicz Y, Edler L, Hossfeld DK, Schumacher U. Lectin histochemistry of resected adenocarcinoma of the lung: helix pomatia agglutinin binding is an independent prognostic factor. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1001-8. [PMID: 11891197 PMCID: PMC1867178 DOI: 10.1016/s0002-9440(10)64921-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2001] [Indexed: 10/18/2022]
Abstract
The worldwide incidence of adenocarcinoma of the lung is rising. Unfortunately, no significant prognostic marker beyond the classical TNM staging exists to stratify these patients for appropriate therapy. Because lectins, carbohydrate-binding proteins, have been shown to be useful prognostic markers in several other adenocarcinomas, a panel of lectins [Helix pomatia agglutinin (HPA), Phaseolus vulgaris leukoagglutinin, Ulex europaeus agglutinin, Maackia amurenis agglutinin, Sambucus nigra agglutinin] with different carbohydrate-binding specificities were tested for their prognostic relevance. Paraffin wax sections of 93 patients with adenocarcinomas of the lung who had undergone surgery between 1990 and 1995 were investigated by lectin histochemistry. Lectin-binding data and other known prognostic factors were correlated with survival. In univariate analysis, binding of HPA, Phaseolus vulgaris leukoagglutinin, and Ulex europaeus agglutinin to adenocarcinoma cells were prognostic indicators for overall and relapse-free survival, whereas Maackia amurenis agglutinin and Sambucus nigra agglutinin binding had no prognostic value. However, in a multivariate analysis next to stage and gender only HPA was a significant independent prognostic factor on survival. In conclusion, HPA binding was the primary marker-based predictor of prognosis in our patient population and allows to stratify patients with adenocarcinomas of the lung into a low- and a high-risk group.
Collapse
Affiliation(s)
- Eckart Laack
- Department of Oncology and Hematology and the Institute for Anatomy, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Brooks SA, Hall DM, Buley I. GalNAc glycoprotein expression by breast cell lines, primary breast cancer and normal breast epithelial membrane. Br J Cancer 2001; 85:1014-22. [PMID: 11592774 PMCID: PMC2375105 DOI: 10.1054/bjoc.2001.2028] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Revised: 06/18/2001] [Accepted: 07/02/2001] [Indexed: 11/18/2022] Open
Abstract
Over-expression of N-acetylgalactosamine glycoproteins as detected by binding of the lectin from Helix pomatia (HPA), is associated with metastatic competence and poor patient prognosis in a range of human adenocarcinomas. These glycoproteins remain poorly characterised, and their functional role has yet to be elucidated. This study describes characterisation of a range of human breast/breast cancer cell lines for the expression of the N-acetylgalactosaminylated glycoproteins of interest, and their comparison with normal breast epithelium and a range of clinical breast carcinoma samples. Confocal and light microscopy studies revealed cytochemical HPA-binding patterns consistent with a fundamental disruption in normal glycobiosynthetic pathways attending increasing metastatic potential. We report the most complete comparative analysis of HPA-binding ligands from cultured breast cells, clinical breast carcinoma samples and normal breast epithelium to date. Lectin blotting identified 11 major HPA-binding glycoprotein bands common to both clinical tumour samples and breast cell lines and 6 of these bands were also expressed by samples of normal breast epithelium, albeit at much lower levels. Moreover, very marked quantitative but not qualitative differences in levels of expression consistent with metastatic capability were noted.
Collapse
Affiliation(s)
- S A Brooks
- School of Biological & Molecular Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | | | | |
Collapse
|
45
|
Dwek MV, Ross HA, Streets AJ, Brooks SA, Adam E, Titcomb A, Woodside JV, Schumacher U, Leathem AJ. Helix pomatia agglutinin lectin-binding oligosaccharides of aggressive breast cancer. Int J Cancer 2001; 95:79-85. [PMID: 11241316 DOI: 10.1002/1097-0215(20010320)95:2<79::aid-ijc1014>3.0.co;2-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Predicting long-term outcome after breast-cancer diagnosis remains problematic, particularly for patients with clinically small, axillary lymph node- negative tumours. Evidence suggests that the lectin Helix pomatia agglutinin (HPA) identifies oligosaccharides associated with poor-prognosis cancer. Our aim was to identify oligosaccharides that bind HPA in aggressive breast cancers. Breast-cancer cell lines (MCF-7, BT-549 and BT-20) and a cell line from human milk (HBL-100), which showed a range of HPA-binding intensities, were used to extract HPA-binding glycoproteins. Oligosaccharides were released using anhydrous hydrazine and separated on a range of HPLC matrices. We investigated whether HPA-binding oligosaccharides from cell lines were present in human breast-cancer tissues, using 69 breast-cancer specimens from patients with between 5 and 10 years' follow-up. A monosialylated oligosaccharide was over-expressed in the cell line that bound HPA strongly. Further analysis by normal-phase HPLC showed that the 2-aminobenzamide-conjugated oligosaccharide had a hydrodynamic volume of 4.58 glucose units (HPAgly1). Increased expression of HPAgly1 was associated with HPA staining of breast-cancer specimens (Student's t-test p = 0.025). Analysis of oligosaccharide levels and disease-free survival after treatment for breast cancer indicated a shorter disease-free interval for patients with elevated levels of HPAgly1. This is the first time that histochemical lectin staining has been correlated with biochemical mapping of oligosaccharides. Using this approach, we have identified a monosialylated HPA lectin-binding oligosaccharide present in breast-cancer cells grown in vitro which is elevated in breast-cancer specimens that bind the lectin.
Collapse
Affiliation(s)
- M V Dwek
- Department of Surgery, Royal Free and University College London Medical School, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Brooks SA, Carter TM. N-acetylgalactosamine, N-acetylglucosamine and sialic acid expression in primary breast cancers. Acta Histochem 2001; 103:37-51. [PMID: 11252626 DOI: 10.1078/0065-1281-00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Binding of the lectin from Helix pomatia (HPA), which recognises N-acetylgalactosamine and N-acetylglucosamine glycans, is a predictor of metastasis and poor prognosis in a number of human adenocarcinomas, including breast cancer. The glycoproteins to which it binds in these tumours have been only partially characterised, and the mechanisms underlying their biosynthesis remain unknown. In this study, 111 primary breast cancers were assessed for binding of HPA and labelling characteristics were compared directly with those of Dolichos biflorus agglutinin and soybean agglutinin, both of which also recognise N-acetylgalactosamine, Griffonia simplicifolia agglutinin II, which recognises N-acetylglucosamine, and Limax flavus agglutinin, Sambucus nigra agglutinin and Maackia amurensis lectin I, all of which recognise sialic acids. Results indicate that the HPA-binding partners expressed by cancer cells are predominantly N-acetylgalactosamine glycans, but some recognition of N-acetylglucosamine species is also likely. There was no evidence to support the hypothesis that overexpression of these moieties results from failure in sialylation. Alternative mechanisms, for example alterations in levels of activity of appropriate glycosyl transferases or disruption in transport and processing mechanisms leading to failure of normal chain extension of glycans may be responsible, and these are areas that warrant further investigation.
Collapse
Affiliation(s)
- S A Brooks
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Headington, UK.
| | | |
Collapse
|
47
|
Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:369-402. [PMID: 14533809 DOI: 10.1007/978-1-4615-1267-7_24] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tumors expressing a high level of certain types of tumor-associated carbohydrate antigens (TACAs) exhibit greater metastasis and progression than those expressing low level of TACAs, as reflected in decreased patient survival rate. Well-documented examples of such TACAs are: (i) H/Le(y)/Le(a) in primary non-small cell lung carcinoma; (ii) sialyl-Le(x) (SLe(x)) and sialyl-Le(a) (SLe(a)) in various types of cancer; (iii) Tn and sialyl-Tn in colorectal, lung, breast, and many other cancers; (iv) GM2, GD2, and GD3 gangliosides in neuroectodermal tumors (melanoma and neuroblastoma); (v) globo-H in breast, ovarian, and prostate cancer; (vi) disialylgalactosylgloboside in renal cell carcinoma. Some glycosylations and TACAs suppress invasiveness and metastatic potential. Well-documented examples are: (i) blood group A antigen in primary lung carcinoma; (ii) bisecting beta1 --> 4GlcNAc of N-linked structure in melanoma and other cancers; (iii) galactosylgloboside (GalGb4) in seminoma. The biochemical mechanisms by which the above glycosylation changes promote or suppress tumor metastasis and invasion are mostly unknown. A few exceptional cases in which we have some knowledge are: (i) SLe(x) and SLe(a) function as E-selectin epitopes promoting tumor cell interaction with endothelial cells; (ii) some tumor cells interact through binding of TACA to specific proteins other than selectin, or to specific carbohydrate expressed on endothelial cells or other target cells (carbohydrate-carbohydrate interaction); (iii) functional modification of adhesive receptor (integrin, cadherin, CD44) by glycosylation. So far, a few successful cases of anti-cancer vaccine in clinical trials have been reported, employing TACAs whose expression enhances malignancy. Examples are STn for suppression of breast cancer, GM2 and GD3 for melanoma, and globo-H for prostate cancer. Vaccine development canbe extended using other TACAs, with the following criteria for success: (i) the antigen is expressed highly on tumor cells; (ii) high antibody production depending on two factors: (a) clustering of antigen used in vaccine; (b) choice of appropriate carrier protein or lipid; (iii) high T cell response depending on choice of appropriate carrier protein or lipid; (iv) expression of the same antigen in normal epithelial tissues (e.g., renal, intestinal, colorectal) may not pose a major obstacle, i.e., these tissues are not damaged during immune response. Idiotypic anti-carbohydrate antibodies that mimic the surface profile of carbohydrate antigens, when administered to patients, elicit anti-carbohydrate antibody response, thus providing an effect similar to that of TACAs for suppression of tumor progression. An extension of this idea is the use of peptide mimetics of TACAs, based on phage display random peptide library. Although examples are so far highly limited, use of such "mimotopes" as immunogens may overcome the weak immunogenicity of TACAs in general.
Collapse
Affiliation(s)
- S Hakomori
- Pacific Northwest Research Institute, University of Washington, 720 Broadway, Seattle, WA 98122, USA
| |
Collapse
|
48
|
Jojovic M, Schumacher U. Quantitative assessment of spontaneous lung metastases of human HT29 colon cancer cells transplanted into SCID mice. Cancer Lett 2000; 152:151-6. [PMID: 10773406 DOI: 10.1016/s0304-3835(99)00443-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The number of spontaneous lung metastases of the human colon cancer cell line HT29 transplanted into SCID mice was quantified. The lungs were sliced, randomly distributed in agar blocks and the number of lung metastases was counted for each of 39 animals. A nearly exponential increase of metastases with weight of the tumor at the implantation site was observed. This suggests that a critical tumor weight for the initiation of metastatic spread exists. Calculating the data, a simplified quantitative assessment of the metastatic load by counting ten histological sections only for the estimation of the total number of lung metastases is proposed.
Collapse
Affiliation(s)
- M Jojovic
- Institute for Anatomy, University Hospital Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | | |
Collapse
|
49
|
Abstract
Glycoproteins with O-glycosidically linked carbohydrate chains of complex structures and functions are found in secretions and on the cell surfaces of cancer cells. The structures of O-glycans are often unusual or abnormal in cancer, and greatly contribute to the phenotype and biology of cancer cells. Some of the mechanisms of changes in O-glycosylation pathways have been determined in cancer model systems. However, O-glycan biosynthesis is a complex process that is still poorly understood. The glycosyltransferases and sulfotransferases that synthesize O-glycans appear to exist as families of related enzymes of which individual members are expressed in a tissue- and growth-specific fashion. Studies of their regulation in cancer may reveal the connection between cancerous transformation and glycosylation which may help to understand and control the abnormal biology of tumor cells. Cancer diagnosis may be based on the appearance of certain glycosylated epitopes, and therapeutic avenues have been designed to attack cancer cells via their glycans.
Collapse
Affiliation(s)
- I Brockhausen
- Department of Biochemistry, University of Toronto, Oncology Research, Toronto Hospital, 67 College Street, Toronto, Ont., Canada.
| |
Collapse
|
50
|
Prediction of Lymph Node Metastases in Breast Cancer by Clinicopathological and Biological Features of the Primary Tumor. Breast Cancer 1999; 6:155-158. [PMID: 11091696 DOI: 10.1007/bf02966924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|