1
|
Yue M, He X, Min X, Yang H, Xu H, Wu W, Zhong J, Mei A, Chen J. The role of islet autoantigen-specific T cells in the onset and treatment of type 1 diabetes mellitus. Front Immunol 2024; 15:1462384. [PMID: 39380988 PMCID: PMC11458421 DOI: 10.3389/fimmu.2024.1462384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM), a complex chronic disease with an intricate etiology and pathogenesis, involves the recognition of self-antigens by pancreatic islet autoantigen-specific T cells and plays crucial roles in both early- and late-stage destruction of beta cells, thus impacting disease progression. Antigen-specific T cells regulate and execute immune responses by recognizing particular antigens, playing broad roles in the treatment of various diseases. Immunotherapy targeting antigen-specific T cells holds promising potential as a targeted treatment approach. This review outlines the pathogenesis of diabetes, emphasizing the pivotal role of pancreatic islet autoantigen-specific T cells in the progression and treatment of T1DM. Exploring this avenue in research holds promise for identifying novel therapeutic targets for effectively managing diabetes.
Collapse
Affiliation(s)
- Mengmeng Yue
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Children’s Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Sona C, Yeh YT, Patsalos A, Halasz L, Yan X, Kononenko NL, Nagy L, Poy MN. Evidence of islet CADM1-mediated immune cell interactions during human type 1 diabetes. JCI Insight 2022; 7:153136. [PMID: 35133983 PMCID: PMC8986082 DOI: 10.1172/jci.insight.153136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pathophysiology of type 1 diabetes (T1D) is illustrated by pancreatic islet infiltration of inflammatory lymphocytes, including CD8+ T cells; however, the molecular factors mediating their recruitment remain unknown. We hypothesized that single-cell RNA-sequencing (scRNA-Seq) analysis of immune cell populations isolated from islets of NOD mice captured gene expression dynamics providing critical insight into autoimmune diabetes pathogenesis. METHODS Pancreatic sections from human donors were investigated, including individuals with T1D, autoantibody-positive (aAb+) individuals, and individuals without diabetes who served as controls. IHC was performed to assess islet hormones and both novel and canonical immune cell markers that were identified from unbiased, state-of-the-art workflows after reanalyzing murine scRNA-Seq data sets. RESULTS Computational workflows identified cell adhesion molecule 1–mediated (Cadm1-mediated) homotypic binding among the most important intercellular interactions among all cell clusters, as well as Cadm1 enrichment in macrophages and DCs from pancreata of NOD mice. Immunostaining of human pancreata revealed an increased number of CADM1+glucagon+ cells adjacent to CD8+ T cells in sections from T1D and aAb+ donors compared with individuals without diabetes. Numbers of CADM1+CD68+ peri-islet myeloid cells adjacent to CD8+ T cells were also increased in pancreatic sections from both T1D and aAb+ donors compared with individuals without diabetes. CONCLUSION Increased detection of CADM1+ cells adjacent to CD8+ T cells in pancreatic sections of individuals with T1D and those who were aAb+ validated workflows and indicated CADM1-mediated intercellular contact may facilitate islet infiltration of cytotoxic T lymphocytes and serve as a potential therapeutic target for preventing T1D pathogenesis. FUNDING The Johns Hopkins All Children’s Foundation Institutional Research Grant Program, the National Natural Science Foundation of China (grant 82071326), and the Deutsche Forschungsgemeinschaft (grants 431549029–SFB1451, EXC2030–390661388, and 411422114-GRK2550).
Collapse
Affiliation(s)
- Chandan Sona
- Department of Medicine, John Hopkins University, St. Petersburg, United States of America
| | - Yu-Te Yeh
- Department of Medicine, John Hopkins University, St. Petersburg, United States of America
| | - Andreas Patsalos
- Institute for Fundamental Biomedical Research, John Hopkins University, St. Petersburg, United States of America
| | - Laszlo Halasz
- Institute for Fundamental Biomedical Research, John Hopkins University, St. Petersburg, United States of America
| | - Xin Yan
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Natalia L Kononenko
- CECAD Excellence Center & Center for Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | - Laszlo Nagy
- Institute for Fundamental Biomedical Research, John Hopkins University, St. Petersburg, United States of America
| | - Matthew N Poy
- Department of Medicine, John Hopkins University, St. Petersburg, United States of America
| |
Collapse
|
3
|
Dik A, Widman G, Schulte-Mecklenbeck A, Witt JA, Pitsch J, Golombeck KS, Wagner J, Gallus M, Strippel C, Hansen N, Mönig C, Räuber S, Wiendl H, Elger CE, Surges R, Meuth SG, Helmstaedter C, Gross CC, Becker AJ, Melzer N. Impact of T cells on neurodegeneration in anti-GAD65 limbic encephalitis. Ann Clin Transl Neurol 2021; 8:2289-2301. [PMID: 34841709 PMCID: PMC8670322 DOI: 10.1002/acn3.51486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Direct pathogenic effects of autoantibodies to the 65 kDa isoform of glutamic acid decarboxylase (GAD65) in autoimmune limbic encephalitis (LE) have been questioned due to its intracellular localization. We therefore hypothesized a pathogenic role for T cells. Methods We assessed magnet resonance imaging, neuropsychological and peripheral blood, and CSF flow cytometry data of 10 patients with long‐standing GAD65‐LE compared to controls in a cross‐sectional manner. These data were related to each other within the GAD65‐LE group and linked to neuropathological findings in selective hippocampectomy specimen from another two patients. In addition, full‐resolution human leukocyte antigen (HLA) genotyping of all patients was performed. Results Compared to controls, no alteration in hippocampal volume but impaired memory function and elevated fractions of activated HLADR+ CD4+ and CD8+ T cells in peripheral blood and cerebrospinal fluid were found. Intrathecal fractions of CD8+ T cells negatively correlated with hippocampal volume and memory function, whereas the opposite was true for CD4+ T cells. Consistently, antigen‐experienced CD8+ T cells expressed increased levels of the cytotoxic effector molecule perforin in peripheral blood, and perforin‐expressing CD8+ T cells were found attached mainly to small interneurons but also to large principal neurons together with wide‐spread hippocampal neurodegeneration. 6/10 LE patients harbored the HLA‐A*02:01 allele known to present the immunodominant GAD65114–123 peptide in humans. Interpretation Our data suggest a pathogenic effect of CD8+ T cells and a regulatory effect of CD4+ T cells in patients with long‐standing GAD65‐LE.
Collapse
Affiliation(s)
- Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Guido Widman
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Juri-Alexander Witt
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Institute of Neuropathology, Medical Faculty, University of Bonn, Section for Translational Epilepsy Research, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Jan Wagner
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Niels Hansen
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Constanze Mönig
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Albert J Becker
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Institute of Neuropathology, Medical Faculty, University of Bonn, Section for Translational Epilepsy Research, Bonn, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Pang H, Luo S, Xiao Y, Xia Y, Li X, Huang G, Xie Z, Zhou Z. Emerging Roles of Exosomes in T1DM. Front Immunol 2020; 11:593348. [PMID: 33324409 PMCID: PMC7725901 DOI: 10.3389/fimmu.2020.593348] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex autoimmune disorder that mainly affects children and adolescents. The elevated blood glucose level of patients with T1DM results from absolute insulin deficiency and leads to hyperglycemia and the development of life-threatening diabetic complications. Although great efforts have been made to elucidate the pathogenesis of this disease, the precise underlying mechanisms are still obscure. Emerging evidence indicates that small extracellular vesicles, namely, exosomes, take part in intercellular communication and regulate interorgan crosstalk. More importantly, many findings suggest that exosomes and their cargo are associated with the development of T1DM. Therefore, a deeper understanding of exosomes is beneficial for further elucidating the pathogenic process of T1DM. Exosomes are promising biomarkers for evaluating the risk of developingty T1DM, monitoring the disease state and predicting related complications because their number and composition can reflect the status of their parent cells. Additionally, since exosomes are natural carriers of functional proteins, RNA and DNA, they can be used as therapeutic tools to deliver these molecules and drugs. In this review, we briefly introduce the current understanding of exosomes. Next, we focus on the relationship between exosomes and T1DM from three perspectives, i.e., the pathogenic role of exosomes in T1DM, exosomes as novel biomarkers of T1DM and exosomes as therapeutic tools for T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Theories about the pathogenesis of type 1 diabetes (T1D) refer to the potential of primary islet inflammatory signaling as a trigger for the loss of self-tolerance leading to disease onset. Emerging evidence suggests that extracellular vesicles (EV) may represent the missing link between inflammation and autoimmunity. Here, we review the evidence for a role of EV in the pathogenesis of T1D, as well as discuss their potential value in the clinical sphere, as biomarkers and therapeutic agents. RECENT FINDINGS EV derived from β cells are enriched in diabetogenic autoantigens and miRNAs that are selectively sorted and packaged. These EV play a pivotal role in antigen presentation and cell to cell communication leading to activation of autoimmune responses. Furthermore, recent evidence suggests the potential of EV as novel tools in clinical diagnostics and therapeutic interventions. In-depth analysis of EV cargo using modern multi-parametric technologies may be useful in enhancing our understanding of EV-mediated immune mechanisms and in identifying robust biomarkers and therapeutic strategies for T1D.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
7
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
8
|
Segovia-Gamboa NC, Rodríguez-Arellano ME, Muñoz-Solís A, Retana-Jiménez JE, Vargas-Ayala G, Granados J, Jiménez-Sánchez M, Sanchez-Torres C. High prevalence of humoral autoimmunity in first-degree relatives of Mexican type 1 diabetes patients. Acta Diabetol 2018; 55:1275-1282. [PMID: 30306407 DOI: 10.1007/s00592-018-1241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
AIMS To assess the prevalence of autoantibodies (Aab) to insulin (IAA), glutamic acid decarboxylase 65 (GADA) and insulinoma antigen 2 (IA-2A), as well as human leukocyte antigen (HLA) class II alleles, in first degree relatives (FDR) of Mexican patients with type 1 diabetes (T1D), and to explore whether these parameters mirror the low incidence of T1D in the Mexican population. METHODS Aab titers were determined by ELISA in 425 FDR, 234 siblings, 40 offspring and 151 parents of 197 patients with T1D. Typing of HLA-DR and -DQ alleles was performed in 41 Aab-positive FDR using polymerase chain reaction with allele-specific oligotyping. RESULTS Seventy FDR (16.47%) tested positive for Aab. The siblings (19.2%) and the offspring (25%) had significantly higher prevalence of Aab than the parents (9.9%). GADA was the most frequent Aab. Almost half of the Aab-positive FDR had two different Aab (45.7%), and none tested positive for three Aab. The highest prevalence of Aab was found among women in the 15-29 years age group. Moreover, the positivity for two Aab was significantly more frequent among females. A considerable number of FDR (48.8%) carried the susceptible HLA-DR3, -DR4, -DQB1*0201 or -DQB1*0302 alleles, but almost none had the high risk genotype HLA-DR3/DR4. CONCLUSIONS FDR of Mexican T1D patients have high prevalence of islet Aab, comparable to countries with the highest incidence of T1D. However, Aab positivity does not seem to be associated with HLA risk genotypes, which may have an impact on the low incidence of T1D in Mexico.
Collapse
Affiliation(s)
- Norma C Segovia-Gamboa
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN), Av. I.P.N. 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Martha E Rodríguez-Arellano
- Research Department, Hospital Regional "Licenciado Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Florida, 01030, Mexico City, Mexico
| | - Andrés Muñoz-Solís
- Endocrinology Department, Hospital de Especialidades "Antonio Fraga Mouret", Centro Médico nacional "La Raza" (IMSS), Paseo de las Jacarandas S/N, Atzcapotzalco, 02990, Mexico City, Mexico
| | - Jorge E Retana-Jiménez
- Pediatrics Department, Hospital Regional "Licenciado Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Florida, 01030, Mexico City, Mexico
| | - Germán Vargas-Ayala
- Department of Internal Medicine, Ticoman General Hospital, Plan de San Luis S/N, La Purísima Ticoman, 07330, Mexico City, Mexico
| | - Julio Granados
- Division of Immunogenetics, Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Marisela Jiménez-Sánchez
- Endocrinology Department, Hospital de Especialidades "Antonio Fraga Mouret", Centro Médico nacional "La Raza" (IMSS), Paseo de las Jacarandas S/N, Atzcapotzalco, 02990, Mexico City, Mexico
| | - Carmen Sanchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN), Av. I.P.N. 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
9
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
10
|
Stechova K, Sklenarova-Labikova J, Kratzerova T, Pithova P, Filipp D. Not Only Glycaemic But Also Other Metabolic Factors Affect T Regulatory Cell Counts and Proinflammatory Cytokine Levels in Women with Type 1 Diabetes. J Diabetes Res 2017; 2017:5463273. [PMID: 28553653 PMCID: PMC5434466 DOI: 10.1155/2017/5463273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetic (T1D) patients suffer from insulinopenia and hyperglycaemia. Studies have shown that if a patient's hyperglycaemic environment is not compensated, it leads to complex immune dysfunctions. Similarly, T1D mothers with poor glycaemic control exert a negative impact on the immune responses of their newborns. However, questions concerning the impact of other metabolic disturbances on the immune system of T1D mothers (and their newborns) have been raised. To address these questions, we examined 28 T1D women in reproductive age for the relationship between various metabolic, clinical, and immune parameters. Our study revealed several unexpected correlations which are indicative of a much more complex relationship between glucose and lipid factors (namely, glycosylated haemoglobin Hb1Ac, the presence of one but not multiple chronic diabetic complications, and atherogenic indexes) and proinflammatory cytokines (IL-1alpha and TNF-alpha). Regulatory T cell counts correlated with HbA1c, diabetic neuropathy, lipid spectra parameters, and IL-6 levels. Total T-helper cell count was interconnected with BMI and glycaemia variability correlated with lipid spectra parameters, insulin dose, and vitamin D levels. These and other correlations revealed in this study provide broader insight into the association of various metabolic abnormalities with immune parameters that may impact T1D mothers or their developing child.
Collapse
Affiliation(s)
- Katerina Stechova
- Department of Internal Medicine, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague, Czech Republic
- *Katerina Stechova:
| | - Jana Sklenarova-Labikova
- Department of Paediatrics, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tereza Kratzerova
- Department of Physiology, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavlina Pithova
- Department of Internal Medicine, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| |
Collapse
|
11
|
Davis IC, Randell J, Davis SN. Immunotherapies currently in development for the treatment of type 1 diabetes. Expert Opin Investig Drugs 2016; 24:1331-41. [PMID: 26364507 DOI: 10.1517/13543784.2015.1075973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Type I diabetes (T1DM) is an autoimmune disorder that affects the pancreas' ability to produce insulin. While T1DM can be managed using insulin therapy, patients face financial burden, serious complications and premature mortality, from the disease. Efforts have sought to define and ultimately suppress the underlying autoimmune attack that results in T1DM. AREAS COVERED The authors lay out promising immunosuppressive and immunomodulating drugs currently in development for T1DM and outline options for future immune treatment for the disorder. There have been several pharmacological strategies to combat the immune attack which will serve as the organization for this review: antigen-specific therapies; monoclonal antibodies; fusion proteins; alternate Treg affectors. EXPERT OPINION Immunosuppression and immunomodulation studies in T1DM demonstrated differing levels of slowing the progression of the immune attack; however, no single therapeutic approach provides a lasting halt of the immune attack and remission of the disease. The immunosuppressants (teplizumab, rituximab and abatacept) show promise in slowing the T1DM progressions for a specific subpopulation of T1DM patients, but this approach appears temporary and has the potential for unwanted side affects. Combination therapies may have the greatest chance of achieving durable cessation of the T1DM autoimmune attack.
Collapse
Affiliation(s)
- Ian C Davis
- a 1 University of Maryland School of Medicine , 3805 Greenway, Baltimore, MD 21218, USA
| | | | - Stephen N Davis
- c 3 University of Maryland School of Medicine , 22 South Greene St. N3W42, Baltimore, MD 21201, USA +1 41 0328 2488 ; +1 41 0328 8688 ;
| |
Collapse
|
12
|
Stechova K, Kolar M, Blatny R, Halbhuber Z, Vcelakova J, Hubackova M, Petruzelkova L, Sumnik Z, Obermannova B, Pithova P, Stavikova V, Krivjanska M, Neuwirth A, Kolouskova S, Filipp D. Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scand J Immunol 2015; 75:210-9. [PMID: 21923738 DOI: 10.1111/j.1365-3083.2011.02637.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression features of genetic landscape which predispose an individual to the type 1 diabetes are poorly understood. We addressed this question by comparing gene expression profile of freshly isolated peripheral blood mononuclear cells isolated from either patients with type 1 diabetes (T1D), or their first-degree relatives or healthy controls. Our aim was to establish whether a distinct type of 'prodiabetogenic' gene expression pattern in the group of relatives of patients with T1D could be identified. Whole-genome expression profile of nine patients with T1D, their ten first-degree relatives and ten healthy controls was analysed using the human high-density expression microarray chip. Functional aspects of candidate genes were assessed using the MetaCore software. The highest number of differentially expressed genes (547) was found between the autoantibody-negative healthy relatives and the healthy controls. Some of them represent genes critically involved in the regulation of innate immune responses such as TLR signalling and CCR3 signalling in eosinophiles, humoral immune reactions such as BCR pathway, costimulation and cytokine responses mediated by CD137, CD40 and CD28 signalling and IL-1 proinflammatory pathway. Our data demonstrate that expression profile of healthy relatives of patients with T1D is clearly distinct from the pattern found in the healthy controls. That especially concerns differential activation status of genes and signalling pathways involved in proinflammatory processes and those of innate immunity and humoral reactivity. Thus, we posit that the study of the healthy relative's gene expression pattern is instrumental for the identification of novel markers associated with the development of diabetes.
Collapse
Affiliation(s)
- K Stechova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - M Kolar
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - R Blatny
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - Z Halbhuber
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - J Vcelakova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - M Hubackova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - L Petruzelkova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - Z Sumnik
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - B Obermannova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - P Pithova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - V Stavikova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - M Krivjanska
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - A Neuwirth
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - S Kolouskova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - D Filipp
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
13
|
Boettler T, Pagni PP, Jaffe R, Cheng Y, Zerhouni P, von Herrath M. The clinical and immunological significance of GAD-specific autoantibody and T-cell responses in type 1 diabetes. J Autoimmun 2013; 44:40-8. [PMID: 23770292 DOI: 10.1016/j.jaut.2013.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/12/2023]
Abstract
Antigen-specific interventions are desirable approaches in Type 1 Diabetes (T1D) as they can alter islet-specific autoimmunity without systemic side effects. Glutamic acid decarboxylase of 65 kDa (GAD65) is a major autoantigen in type 1 diabetes (T1D) and GAD-specific autoimmunity is a common feature of T1D in humans but also in mouse models of the disease. In humans, administration of the GAD65 protein in an alum formulation has been shown to reduce C-peptide decline in recently diagnosed patients, however, these observations were not confirmed in subsequent phase II/III clinical trials. As GAD-based immune interventions in different formulations have successfully been employed to prevent the establishment of T1D in mouse models of T1D, we sought to analyze the efficacy of GAD-alum treatment and the effects on the GAD-specific immune response in two different mouse models of T1D. Consistent with the latest clinical trials, mice treated with GAD-alum were not protected from diabetes, although GAD-alum induced a GAD-specific Th2-deviated immune response in transgenic rat insulin promoter-glycoprotein (RIP-GP) mice. These observations underline the importance of a thorough, preclinical evaluation of potential drugs before the initiation of clinical trials.
Collapse
Affiliation(s)
- Tobias Boettler
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pihl M, Akerman L, Axelsson S, Chéramy M, Hjorth M, Mallone R, Ludvigsson J, Casas R. Regulatory T cell phenotype and function 4 years after GAD-alum treatment in children with type 1 diabetes. Clin Exp Immunol 2013; 172:394-402. [PMID: 23600827 PMCID: PMC3646438 DOI: 10.1111/cei.12078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 01/13/2023] Open
Abstract
Glutamic acid decarboxylase (GAD)(65) formulated with aluminium hydroxide (GAD-alum) was effective in preserving insulin secretion in a Phase II clinical trial in children and adolescents with recent-onset type 1 diabetes. In addition, GAD-alum treated patients increased CD4(+) CD25(hi) forkhead box protein 3(+) (FoxP3(+)) cell numbers in response to in-vitro GAD(65) stimulation. We have carried out a 4-year follow-up study of 59 of the original 70 patients to investigate long-term effects on the frequency and function of regulatory T cells after GAD-alum treatment. Peripheral blood mononuclear cells were stimulated in vitro with GAD65 for 7 days and expression of regulatory T cell markers was measured by flow cytometry. Regulatory T cells (CD4(+) CD25(hi) CD127(lo)) and effector T cells (CD4(+) CD25(-) CD127(+)) were further sorted, expanded and used in suppression assays to assess regulatory T cell function after GAD-alum treatment. GAD-alum-treated patients displayed higher frequencies of in-vitro GAD(65) -induced CD4(+) CD25(+) CD127(+) as well as CD4(+) CD25(hi) CD127(lo) and CD4(+) FoxP3(+) cells compared to placebo. Moreover, GAD(65) stimulation induced a population of CD4(hi) cells consisting mainly of CD25(+) CD127(+) , which was specific of GAD-alum-treated patients (16 of 25 versus one of 25 in placebo). Assessment of suppressive function in expanded regulatory T cells revealed no difference between GAD-alum- and placebo-treated individuals. Regulatory T cell frequency did not correlate with C-peptide secretion throughout the study. In conclusion, GAD-alum treatment induced both GAD(65) -reactive CD25(+) CD127(+) and CD25(hi) CD127(lo) cells, but no difference in regulatory T cell function 4 years after GAD-alum treatment.
Collapse
Affiliation(s)
- M Pihl
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2013; 2:a007781. [PMID: 22474615 DOI: 10.1101/cshperspect.a007781] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes is characterized by recognition of one or more β-cell proteins by the immune system. The list of target antigens in this disease is ever increasing and it is conceivable that additional islet autoantigens, possibly including pivotal β-cell targets, remain to be discovered. Many knowledge gaps remain with respect to the disorder's pathogenesis, including the cause of loss of tolerance to islet autoantigens and an explanation as to why targeting of proteins with a distribution of expression beyond β cells may result in selective β-cell destruction and type 1 diabetes. Yet, our knowledge of β-cell autoantigens has already led to translation into tissue-specific immune intervention strategies that are currently being assessed in clinical trials for their efficacy to halt or delay disease progression to type 1 diabetes, as well as to reverse type 1 diabetes. Here we will discuss recently gained insights into the identity, biology, structure, and presentation of islet antigens in relation to disease heterogeneity and β-cell destruction.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | | |
Collapse
|
16
|
Vcelakova J, Blatny R, Halbhuber Z, Kolar M, Neuwirth A, Petruzelkova L, Ulmannova T, Kolouskova S, Sumnik Z, Pithova P, Krivjanska M, Filipp D, Stechova K. The effect of diabetes-associated autoantigens on cell processes in human PBMCs and their relevance to autoimmune diabetes development. J Diabetes Res 2013; 2013:589451. [PMID: 23841104 PMCID: PMC3694381 DOI: 10.1155/2013/589451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/20/2013] [Indexed: 12/18/2022] Open
Abstract
Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease; however, T1D pathogenesis likely involves many factors, and sufficient tools for autoreactive T cell detection for the study of this disease are currently lacking. In this study, using gene expression microarrays, we analysed the effect of diabetes-associated autoantigens on peripheral blood mononuclear cells (PBMCs) with the purpose of identifying (pre)diabetes-associated cell processes. Twelve patients with recent onset T1D, 18 first-degree relatives of the TD1 patients (DRL; 9/18 autoantibody positive), and 13 healthy controls (DV) were tested. PBMCs from these individuals were stimulated with a cocktail of diabetes-associated autoantigens (proinsulin, IA-2, and GAD65-derived peptides). After 72 hours, gene expression was evaluated by high-density gene microarray. The greatest number of functional differences was observed between relatives and controls (69 pathways), from which 15% of the pathways belonged to "immune response-related" processes. In the T1D versus controls comparison, more pathways (24%) were classified as "immune response-related." Important pathways that were identified using data from the T1D versus controls comparison were pathways involving antigen presentation by MHCII, the activation of Th17 and Th22 responses, and cytoskeleton rearrangement-related processes. Genes involved in Th17 and TGF-beta cascades may represent novel, promising (pre)diabetes biomarkers.
Collapse
Affiliation(s)
- Jana Vcelakova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, 15006 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Pietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012; 2:a012831. [PMID: 23028135 PMCID: PMC3475400 DOI: 10.1101/cshperspect.a012831] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease encompassing the T-cell-mediated destruction of pancreatic β cells and the production of autoantibodies against islet proteins. In humoral autoimmunity in T1D, the detection of islet autoantibodies and the examination of their associations with genetic factors and cellular autoimmunity constitute major areas in both basic research and clinical practice. Although insulin is a key autoantigen and may be primus inter pares in importance among T1D autoantigens, an abundant body of research has also revealed other autoantigens associated with the disease process. Solid evidence indicates that autoantibodies against islet targets serve as key markers to enroll newly diagnosed T1D patients and their family members in intervention trials aimed at preventing or halting the disease process. The next challenge is perfecting mechanistic bioassays to be used as end points for disease amelioration following immunomodulatory therapies aimed at blocking immune-mediated β-cell injury and, in turn, preserving β-cell function in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Massimo Pietropaolo
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
19
|
Shehata AM, Quintanilla-Fend L, Bettio S, Singh CB, Ammon HPT. Prevention of multiple low-dose streptozotocin (MLD-STZ) diabetes in mice by an extract from gum resin of Boswellia serrata (BE). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:1037-1044. [PMID: 21831620 DOI: 10.1016/j.phymed.2011.06.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Type 1-diabetes is an autoimmune disease, where a chronic inflammatory process finally causes β-cell death and insulin deficiency. Extracts from gum resin of Boswellia serrata (BE) have been shown to posses anti-inflammatory properties especially by targeting factors/mediators related to autoimmune diseases. Multiple low dose-streptozotocin (MLD-STZ) treatment is a method to induce diabetes in animals similar to Type 1 diabetes in humans. It was aimed to study whether or not a BE could prevent hyperglycemia, inflammation of pancreatic islets and increase of proinflammatory cytokines in the blood in MLD-STZ treated mice. In BK+/+ wild type mice, 5 days of daily treatment with 40 mg/kg STZ i.p. produced permanent increase of blood glucose, infiltration of lymphocytes into pancreatic islets (CD3-stain), apoptosis of periinsular cells (staining for activated caspase 3) after 10 days as well as shrinking of islet tissue after 35 days (H&E staining). This was associated with an increase of granulocyte colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor (GM-CSF) and proinflammatory cytokines (IL-1A, IL-1B, IL-2, IL-6, IFN-γ, TNF-α) in the blood. Whereas BE alone did not affect blood glucose in non diabetic mice, in STZ treated mice simultaneous i.p. injection of 150 mg/kg of BE over 10 days prevented animals from increase of blood glucose levels. Histochemical studies showed, that i.p. injection of 150 mg/kg BE for 10 days starting with STZ treatment, avoided lymphocyte infiltration into islets, apoptosis of periinsular cells and shrinking of islet size 35 days after STZ. As far as the cytokines tested are concerned, there was a significant inhibition of the increase of G-CSF and GM-CSF. BE also significantly prevented the increase of IL-1A, IL-1B, IL-2, IL-6, IFN-γ and TNF-α. It is concluded that extracts from the gum resin of Boswellia serrata prevent islet destruction and consequent hyperglycemia in an animal model of type 1 diabetes probably by inhibition of the production/action of cytokines related to induction of islet inflammation in an autoimmune process.
Collapse
Affiliation(s)
- Ahmed M Shehata
- Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
20
|
T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin Dev Immunol 2011; 2011:513210. [PMID: 21785617 PMCID: PMC3140193 DOI: 10.1155/2011/513210] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/18/2011] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease driven by the activation of lymphocytes against pancreatic β-cells. Among β-cell autoantigens, preproinsulin has been ascribed a key role in the T1D process. The successive steps that control the activation of autoreactive lymphocytes have been extensively studied in animal models of T1D, but remains ill defined in man. In man, T lymphocytes, especially CD8+ T cells, are predominant within insulitis. Developing T-cell assays in diabetes autoimmunity is, thus, a major challenge. It is expected to help defining autoantigens and epitopes that drive the disease process, to pinpoint key functional features of epitope-specific T lymphocytes along the natural history of diabetes and to pave the way towards therapeutic strategies to induce immune tolerance to β-cells. New T-cell technologies will allow defining autoreactive T-cell differentiation programs and characterizing autoimmune responses in comparison with physiologically appropriate immune responses. This may prove instrumental in the discovery of immune correlates of efficacy in clinical trials.
Collapse
|
21
|
Ludvigsson J. GAD-alum (Diamyd) – a new concept for preservation of residual insulin secretion. Expert Opin Biol Ther 2010; 10:787-99. [DOI: 10.1517/14712591003742920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+)CD25(+) regulatory T cells. PLoS One 2009; 4:e7034. [PMID: 19759824 PMCID: PMC2736381 DOI: 10.1371/journal.pone.0007034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/11/2009] [Indexed: 01/24/2023] Open
Abstract
Background CD4+CD25+ regulatory T cell (Treg)-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. Methodology/Principal Findings Splenic lymphocytes from nonobese diabetic (NOD) mice were stimulated with different glutamic acid decarboxylase (GAD)-derived epitopes for 7–10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524–538)-expanded CD4+CD25+ T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509–528)- or p530 (GAD530–543)-expanded CD4+CD25+ T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes) between the above-mentioned epitopes and MHC class II I-Ag7 were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-Ag7, while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-Ag7. Furthermore, p524 bound to I-Ag7 more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570–585, p570), which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4+CD25+ T cells suppressed the onset of diabetes in NOD mice. Conclusions/Significance These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of protective epitopes to expand functional Tregs.
Collapse
|
23
|
Stechova K, Spalova I, Durilova M, Bartaskova D, Cerny M, Cerna M, Pithova P, Chudoba D, Stavikova V, Ulmannova T, Faresjö M. Influence of maternal hyperglycaemia on cord blood mononuclear cells in response to diabetes-associated autoantigens. Scand J Immunol 2009; 70:149-58. [PMID: 19630921 DOI: 10.1111/j.1365-3083.2009.02282.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Perfect maternal diabetes compensation is crucial for the outcome of the baby. However, little is known how hyperglycaemia influences the specific immune response. Furthermore, babies of type 1 diabetes (T1D) mothers have less risk of development T1D than babies with a T1D father. This study aimed to analyze the effect of maternal hyperglycaemia on newborns with focus on the response to diabetes-associated autoantigens. POPULATIONS (1) Newborns of T1D mothers split into groups according to maternal diabetes compensation during the 3rd trimester: perfect (n = 15) or acceptable (n = 25) compensation. (2) newborns with T1D father (n = 12) (3) newborns with a mother treated for either gestational or type 2 diabetes (n = 10) (4) control newborns (n = 25). Spontaneous as well as diabetes-associated autoantigen-stimulated production of 23 cytokines and chemokines were tested using protein microarray. In addition, the influence of glucose on cytokine and chemokine responsiveness was analyzed in vitro. The study groups differed in their spontaneous as well as stimulated cytokine and chemokine spectra. A prominent Th1 response (high IFN-gamma) from autoantigen stimulation was observed especially in babies of T1D fathers (P = 0.001) and also in mothers with perfect diabetes compensation during the 3rd trimester (P = 0.016) in comparison with control newborns. By contrast, cord blood mononuclear cells cultivated in vitro in high glucose concentration decreased the diabetogenic stimulated Th1 cytokine response. Maternal 'sweet' as well as 'autoimmune environment' may both lead to lower occurrence of T1D within their offspring. Further studies will reveal the exact immunological mechanism of this observation.
Collapse
Affiliation(s)
- K Stechova
- Department of Paediatrics, 2nd Medical Faculty of Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The enzyme glutamic acid decarboxylase (GAD) is of great importance for the neurotransmission in the central nervous system, and therefore of interest for treatment of pain and neurological disease. However, it is also released in pancreas although its role is not quite clear. GAD is a major auto-antigen in the process leading to type 1 diabetes with both a clear cell-mediated immune response to GAD and auto-antibodies to GAD (GADA), which can be used as a predictor of diabetes. Administration of the isoform GAD65 can prevent autoimmune destruction of pancreatic beta cells in non-obese diabetic (NOD) mice and the subsequent need for exogenous insulin replacement. In Phase I and II studies an alum-formulated vaccine (Diamyd) has shown to be safe, and in a dose-finding study in Latent Autoimmune Diabetes in Adults (LADA) patients 20-microg was given subcutaneously one month apart indicating preservation of residual insulin secretion. A double-blind randomized Phase II trial in 70 patients (10-18 years old) with recent-onset type 1 diabetes showed significant preservation of residual insulin secretion and a GAD-specific immune response, both humoral and cell-mediated, but no treatment-related adverse events. With this promising background further studies are on their way, both intervention in newly diagnosed type 1 diabetic patients, and trials to prevent the disease.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Division of Pediatrics and Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
25
|
Transplantation of NIT-1 cells expressing pD-L1 for treatment of streptozotocin-induced diabetes. Transplantation 2009; 86:1596-602. [PMID: 19077895 DOI: 10.1097/tp.0b013e31818c6e64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Programmed death-1 ligand-1 (PD-L1, CD274, B7-H1) has been identified as the ligand for the immunoinhibitory receptor programmed death-1 and has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. In this study, we tested the effect of PD-L1-transfected pancreatic beta-cell line established from a transgenic NDD/Lt mouse (NIT) on the alloresponse and streptozotocin-induced diabetes. METHODS The diabetes model was established by a low dose of streptozotocin in Balb/C mice. PD-L1 transfected NIT cell line was established, namely NIT-PD-L1. NIT-1, empty vector-transfected NIT-1, or NIT-PD-L1 cells were transplanted into diabetic mice by intraperitoneal injection, respectively. Proliferation and apoptosis of splenic lymphocytes were detected by labeling with carboxy fluorescein succinimidyl ester or AnnexinV-Cy5 and proliferation index (PI). Cytokines were determined by enzyme-linked immunosorbent assay and flow cytometry analysis. RESULTS When compared with the controls, overexpression of PD-L1 on NIT-1 cells markedly prolonged allograft survival in diabetic mice. In mixed cells reaction, splenic lymphocytes from NIT-PD-L1-transplanted diabetic mice co-culture with mitomycin C-treated NIT-PD-L1 showed the lowest proliferative response but severe apoptosis. In addition, NIT-PD-L1 suppressed interferon-gamma but up-regulated interleukin-4 and -10 productions by those lymphocytes in vitro and in vivo. CONCLUSION Our data demonstrated that overexpression of PD-L1 on pancreatic beta cells significantly can prolong allograft survival, and it is associated with inhibition of lymphocytes activation and proliferation, induction of lymphocytes apoptosis.
Collapse
|
26
|
Affiliation(s)
- S Caillat-Zucman
- Institut National de la Santé et de la Recherche Médicale (INSERM), U561, Hôpital St-Vincent de Paul, Paris, France.
| |
Collapse
|
27
|
Wang R, Han G, Song L, Wang J, Chen G, Xu R, Yu M, Qian J, Shen B, Li Y. CD8+ regulatory T cells are responsible for GAD-IgG gene-transferred tolerance induction in NOD mice. Immunology 2008; 126:123-31. [PMID: 18624731 DOI: 10.1111/j.1365-2567.2008.02884.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Our previous studies demonstrated that lipopolysaccharide (LPS)-stimulated splenocytes, retrovirally transduced with a glutamate decarboxylate 65 (GAD) and immunoglobulin G (IgG) fusion construct, can protect non-obese diabetic (NOD) mice from diabetes by inducing GAD-specific tolerance, and also that there are increased numbers of CD4(+) regulatory T cells (Tregs) in GAD-IgG-treated NOD mice. However, little is known about the role of CD8(+) Tregs in GAD-IgG gene-transferred tolerance induction in NOD mice. Here, we found that GAD-IgG-transduced splenocytes induced an increase in the number of CD8(+) Foxp3(+) Tregs in vitro. Using a T-cell depletion assay, we found that, compared with undepleted groups, NOD recipients transfused with CD8(-) or CD8(-) CD25(-) GAD-IgG-transduced splenocytes showed a decrease in the percentage of CD8(+) Foxp3(+) T cells, a high incidence of diabetes, serious insulitis, GAD-specific hyperresponsiveness at both the cellular and humoral levels, and changes in cytokine expression. These results indicate that CD8(+) Tregs, which were induced in vitro by GAD-IgG-transduced splenocytes, were also responsible for GAD-IgG gene-transferred tolerance induction in NOD mice.
Collapse
Affiliation(s)
- Renxi Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Brusko T, Atkinson M. Treg in type 1 diabetes. Cell Biochem Biophys 2007; 48:165-75. [PMID: 17709886 DOI: 10.1007/s12013-007-0018-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/23/2022]
Abstract
At the time of this writing, a major void exists; the lack of a method to prevent and/or reverse type 1 diabetes in humans. We believe this void to a large extent is the result of our lack in understanding the mechanisms of autoimmunity that underlie beta cell destruction, a failure to understand the immunologic factors that contribute to type 1 diabetes, and the absence of immunologic tools which would allow for a better understanding of the mechanisms underlying disease development and monitoring of therapeutic interventions. Due to this, an intense degree of research interest has recently been generated to understand the mechanisms that regulate the immune response and form a state of immunological tolerance. While some progress has been made towards these goals, additional investigations are needed to address the aforementioned knowledge voids including the role for regulatory T cells (Treg), defined by their co-expression of CD4 and CD25 as well as the transcription factor FOXP3, in the pathogenesis and natural history of type 1 diabetes. We and others have recently reported findings related to the frequency and function of Treg cells in type 1 diabetes, yet the resulting literature represents a somewhat conflicting body of findings. Our studies did not support the notion that altered Treg frequencies are associated with type 1 diabetes, but rather did identify alterations in the functional (i.e., suppressive) activities of these cells in subjects with the disease. The need to bring resolution to the aforementioned published discrepancies in frequency and function of Treg in type 1 diabetes represents the impetus for this critical review. In addition, we hope to highlight the need for expanded studies that address specific knowledge gaps regarding the cellular and molecular mechanism(s) related to the frequency and function of Treg.
Collapse
Affiliation(s)
- Todd Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
30
|
Bohmova K, Hladikova Z, Cerny M, Flajsmanova K, Vrabelova Z, Skramlikova T, Spalova I, Cerna M, Chudoba D, Pithova P, Stadlerova G, Bartaskova D, Faresjo M, Stechova K. Cord Blood Cytokine Profile Detection in Neonates with T1D Parents – Monitoring of Cellular Auto-reactivity Using Protein Microarray. Scand J Immunol 2007; 66:563-71. [DOI: 10.1111/j.1365-3083.2007.01998.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Monti P, Scirpoli M, Rigamonti A, Mayr A, Jaeger A, Bonfanti R, Chiumello G, Ziegler AG, Bonifacio E. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:5785-92. [PMID: 17947651 DOI: 10.4049/jimmunol.179.9.5785] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identifying beta cell autoantigen-reactive T cells that are involved in the pathogenesis of type 1 diabetes has been troublesome for many laboratories. Disease-relevant autoreactive T cells should be in vivo Ag experienced. The aim of this study was to test this hypothesis and then use this principle as a strategy for identifying diabetes-relevant autoreactive T cells. In this study, a CSFE dilution assay was used to detect glutamic acid decarboxylase 65 (GAD65)- and insulin-responsive T cells and HLA-0201*-GAD65(114-122) pentamers were used to detect CD8(+) GAD-responsive T cells in memory CD45RO(+) and naive CD45RO(-) cell populations from patients with type 1 diabetes and healthy control subjects. T cell proliferative history was evaluated by flow cytometry telomere length measurement. CD4(+) and CD8(+) T cells specific for GAD65 and insulin were present in patients with type 1 diabetes and control subjects. Within the naive CD45RO(-) cells, CD4(+) and CD8(+) T cell responses were similar between patients and controls. Within the memory CD45RO(+) cells, CD4(+) T cell responses against whole GAD65 and insulin and HLA-0201*-GAD65(114-122) pentamer-positive CD8(+) T cells were found in patients with type 1 diabetes, but not in control subjects (p < 0.05 for all). Responding cells from the CD45RO(+) T cell population had substantially shorter telomere lengths than responding cells from the CD45RO(-) cell population. Diabetes-specific autoreactive T cells in the circulation have uniquely undergone sustained in vivo proliferation and differentiation into memory T cells. Prior selection of these cells is possible and is a way to identify diabetes-relevant target Ags and epitopes.
Collapse
Affiliation(s)
- Paolo Monti
- Telethon-Juvenile Diabetes Research Foundation Center for Beta Cell Replacement, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stechova K, Bohmova K, Vrabelova Z, Sepa A, Stadlerova G, Zacharovova K, Faresjö M. High T-helper-1 cytokines but low T-helper-3 cytokines, inflammatory cytokines and chemokines in children with high risk of developing type 1 diabetes. Diabetes Metab Res Rev 2007; 23:462-71. [PMID: 17315139 DOI: 10.1002/dmrr.718] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is suggested to be of T-helper (Th)1-like origin. However, recent reports indicate a diminished interferon (IFN)-gamma secretion at the onset of the disease. We hypothesize that there is a discrepancy in subsets of Th-cells between children with a high risk of developing T1D, children newly diagnosed with T1D and healthy children. METHODS Peripheral blood mononuclear cells (PBMC) were collected from children at high risk for T1D (islet cells antibodies [ICA] >/= 20 IJDF-U), those newly diagnosed and healthy children carrying the HLA-risk gene DQB1*0302 or DQB1*0201 and DQA1*0501. Th1- (IFN-gamma, tumour necrosis factor [TNF]-beta, interleukin [IL]-2), Th2- (IL-4,-5,-13), Th3- (transforming growth factor [TGF-beta], IL-10) and inflammatory associated cytokines (TNF-alpha, IL-1alpha,-6) and chemokines (monocyte chemoattractant protein [MCP]-1,-2,-3, Monokine unregulated by IFN-gamma [MIG], Regulated on Activation, Normal T-cell Expressed and Secreted [RANTES], IL-7,-8,-15) were detected in cell-culture supernatants of PBMC, stimulated with glutamic acid decarboxylase 65 (GAD(65)) and phytohaemagglutinin (PHA), by protein micro array and enzyme linked immunospot (ELISPOT) technique. RESULTS The Th1 cytokines IFN-gamma and TNF-beta, secreted both spontaneously and by GAD(65)- and mitogen stimulation, were seen to a higher extent in high-risk children than in children newly diagnosed with T1D. In contrast, TNF-alpha and IL-6, classified as inflammatory cytokines, the chemokines RANTES, MCP-1 and IL-7 as well as the Th3 cytokines TGF-beta and IL-10 were elevated in T1D children compared to high-risk children. CONCLUSION High Th-1 cytokines were observed in children with high risk of developing TID, whereas in children newly diagnosed with T1D Th3 cytokines, inflammatory cytokines and chemokines were increased. Thus, an inverse relation between Th1-like cells and markers of inflammation was shown between children with high risk and those newly diagnosed with T1D.
Collapse
Affiliation(s)
- Katerina Stechova
- Department of Paediatrics, 2nd Medical Faculty of Charles University, University Hospital Motol in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang Z, Zhou Z, Huang G, Ling H, Yan X, Peng J, Li X. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract 2007; 76:126-31. [PMID: 17005288 DOI: 10.1016/j.diabres.2006.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/01/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
The latent autoimmune diabetes in adults (LADA) is a subgroup of type 1 diabetes, which procession of autoimmune destruction of beta-cells was slower than classic type 1 diabetes. To investigate the pathogenesis of LADA, we examined the lymphocyte subsets including the CD4(+)CD25(+) T-cells in 60 LADA patients and 30 patients of type 2 diabetes and 30 healthy individuals by FACS. And we compared the expression of FOXP3 mRNA in CD4(+) T-cell between 10 patients of LADA and 10 matched healthy individuals by real time PCR. The percent of CD4(+)CD25(+) T-cells were higher (11.89+/-4.96% versus 8.16+/-3.65%, P<0.01), and the percent CD8(+) T-cells elevated (24.58+/-6.80% versus 19.39+/-7.12, P<0.01) in LADA patients than healthy individuals. While the expression of FOXP3 mRNA in CD4(+) T-cell was markedly decreased in LADA patients (0.52-fold, n=10, P=0.004) compared with normal subjects. In addition, the percent of CD8(+) T-cells related with GAD-Ab titers in LADA patients (r=0.292, P=0.03). Our results showed that there were cellular immune disorder and decreased CD4(+) regulatory T-cells in LADA patients. The adoptive transfer regulatory T-cells seem to be a potential therapeutics for LADA.
Collapse
Affiliation(s)
- Zhifang Yang
- Institute of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Nilsson L, Kivling A, Jalmelid M, Fälth Magnusson K, Faresjö M. Combinations of common chronic paediatric diseases deviate the immune response in diverging directions. Clin Exp Immunol 2007; 146:433-42. [PMID: 17100762 PMCID: PMC1810401 DOI: 10.1111/j.1365-2249.2006.03228.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytokine pattern of T lymphocytes has not been characterized in children with combinations of paediatric immunological disorders. We describe cytokine secretion in children with type 1 diabetes, coeliac disease and allergy and combinations of two of these diseases after stimulation with 'disease-specific' antigens. Peripheral blood mononuclear cells (PBMC) were collected from 68 children with type 1 diabetes, allergy or coeliac disease, two of these diseases in combination or none of these diseases. Using the enzyme-linked immunospot (ELISPOT) technique, interferon (IFN)-gamma and interleukin (IL)-4 were analysed from fresh PBMC spontaneously and after in vitro stimulation with antigens associated with one or more of these diseases (insulin, gluten, birch and cat extract, beta-lactoglobulin, ovalbumin and phytohaemagglutinin) in order to divide T helper (Th)1- from Th2-like lymphocytes. Stimulation with birch and cat extract caused increased IL-4 secretion in allergic children. A low IFN-gamma response to insulin was found in type 1 diabetic children, whereas allergic children responded to insulin by increased IL-4 secretion. Children suffering from both type 1 diabetes (Th1-prone) and allergy (Th2-prone) reacted distinctly to general mitogen stimulation. Children suffering from two Th1-dominated diseases (type 1 diabetes and coeliac disease) showed hardly any response to either food or inhalation allergens. Our results indicate an important interplay between common immunological diseases in children. The combination of two Th1-deviated diseases is associated with a suppressed immune response, whereas a combination of Th1- and Th2-dominated diseases appears to increase the general immune response.
Collapse
Affiliation(s)
- L Nilsson
- Division of Paediatrics, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
35
|
Tree TIM, Roep BO, Peakman M. A mini meta-analysis of studies on CD4+CD25+ T cells in human type 1 diabetes: report of the Immunology of Diabetes Society T Cell Workshop. Ann N Y Acad Sci 2007; 1079:9-18. [PMID: 17130526 DOI: 10.1196/annals.1375.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by a loss of self-tolerance to islet antigens. In health, immunological tolerance is maintained by multiple central and peripheral mechanisms including the action of a specialized set of regulatory T cells characterized by expression of CD4 and CD25 (CD4+CD25+ Treg). It has been suggested that a defect in this cell population, either numerically or functionally, could contribute to the development of autoimmune diseases, such as T1DM. To investigate this possibility, several research groups have studied the frequency and suppressive capacity of this cell population in individuals with T1DM and, to date, there are four such studies published. We therefore performed a mini meta-analysis to compare the results in the four published studies, account for differences in their findings, and draw a consensus view on the role of this important cell subset in human T1DM.
Collapse
Affiliation(s)
- Timothy I M Tree
- Department of Immunobiology, King's College London, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|
36
|
Sia C. Replenishing Peripheral CD4(+) Regulatory T Cells: A Possible Immune-Intervention Strategy in Type 1 Diabetes? Rev Diabet Stud 2006; 3:102-7. [PMID: 17487333 PMCID: PMC1783587 DOI: 10.1900/rds.2006.3.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Controlling the diabetogenic activity of peripheral islet antigen-specific T cells is essential to halt the progression of autoimmunity that leads to the development of type 1 diabetes mellitus (T1DM). Over the past years, evidence has been gathered to suggest that the dysfunction of CD4(+)CD25(+) regulatory T (Treg) cells, and the interleukin-10 (IL10) -secreting type 1 regulatory T (Tr1) cells are associated with disease onset in diabetic patients. Although CD4(+)CD25(+) Treg cells develop as a distinct lineage of T cells in the thymus, results from recent studies have shown that they can also arise independently from the peripheral pool of conventional CD4(+) lymphocytes. These observations have led to the development of various methods to convert peripheral CD4(+) T cells into CD4(+)CD25(+) Treg and Tr1 cells in vitro or to induce the development and expansion of Treg cell subsets in vivo. This article reviews the progress made in Treg cell recruitment in vivo that involves the potential for the prevention or even reversal of T1DM.
Collapse
Affiliation(s)
- Charles Sia
- Society for Biomedical Diabetes Research, Gneisenaustr. 86, 47057 Duisburg, Germany.
| |
Collapse
|
37
|
Yang J, Danke NA, Berger D, Reichstetter S, Reijonen H, Greenbaum C, Pihoker C, James EA, Kwok WW. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. THE JOURNAL OF IMMUNOLOGY 2006; 176:2781-9. [PMID: 16493034 DOI: 10.4049/jimmunol.176.5.2781] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) is recognized as a major autoantigen for autoimmune type 1 diabetes (T1D) in the NOD mouse model. This study was undertaken to examine CD4+ T cell responses toward IGRP in human subjects. The tetramer-guided epitope mapping approach was used to identify IGRP-specific CD4+ T cell epitopes. IGRP(23-35) and IGRP(247-259) were identified as DRA1*0101/DRB1*0401-restricted epitopes. IGRP(13-25) and IGRP(226-238) were identified as DRA1*0101/DRB1*0301-restricted epitopes. IGRP-specific tetramers were used to evaluate the prevalence of IGRP-reactive T cells in healthy and T1D subjects. More than 80% of subjects with either DRB1*0401 or DRB1*0301 haplotype have IGRP-specific CD4+ T cell responses for at least one IGRP epitope. IGRP-specific T cells from both healthy and T1D groups produce both gamma-IFN and IL-10. DRA1*0101/DRB1*0401 IGRP(247-259)-restricted T cells also show cross-reactivity to an epitope derived from liver/kidney glucose-6-phosphatase. The detection of IGRP-reactive T cells in both type 1 diabetic subjects and healthy subjects and recent reports of other autoreactive T cells detected in healthy subjects underscore the prevalence of potentially autoreactive T cells in the peripheral immune system of the general population.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Type 1 diabetes results from the destruction of insulin-producing pancreatic beta cells by a beta cell-specific autoimmune process. Beta cell autoantigens, macrophages, dendritic cells, B lymphocytes, and T lymphocytes have been shown to be involved in the pathogenesis of autoimmune diabetes. Beta cell autoantigens are thought to be released from beta cells by cellular turnover or damage and are processed and presented to T helper cells by antigen-presenting cells. Macrophages and dendritic cells are the first cell types to infiltrate the pancreatic islets. Naive CD4+ T cells that circulate in the blood and lymphoid organs, including the pancreatic lymph nodes, may recognize major histocompatibility complex and beta cell peptides presented by dendritic cells and macrophages in the islets. These CD4+ T cells can be activated by interleukin (IL)-12 released from macrophages and dendritic cells. While this process takes place, beta cell antigen-specific CD8+ T cells are activated by IL-2 produced by the activated TH1 CD4+ T cells, differentiate into cytotoxic T cells and are recruited into the pancreatic islets. These activated TH1 CD4+ T cells and CD8+ cytotoxic T cells are involved in the destruction of beta cells. In addition, beta cells can also be damaged by granzymes and perforin released from CD8+ cytotoxic T cells and by soluble mediators such as cytokines and reactive oxygen molecules released from activated macrophages in the islets. Thus, activated macrophages, TH1 CD4+ T cells, and beta cell-cytotoxic CD8+ T cells act synergistically to destroy beta cells, resulting in autoimmune type 1 diabetes.
Collapse
Affiliation(s)
- Ji-Won Yoon
- Rosalind Franklin Comprehensive Diabetes Center, Department of Pathology, Chicago Medical School, North Chicago, IL 60064, USA.
| | | |
Collapse
|
39
|
Brumeanu TD, Goldstein R, Casares S. Down-regulation of autoreactive T-cells by HMG CoA reductase inhibitors. Clin Immunol 2006; 119:1-12. [PMID: 16386956 DOI: 10.1016/j.clim.2005.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 01/25/2023]
Abstract
The inhibitors of HMG CoA reductase (statins) are widely used as cholesterol-lowering drugs with excellent safety records in hypercholesterolemic patients. Statins exert pleiotropic effects on a variety of cells, and they were recently described as a new class of immune modulators. Depending on their structure, dose, and route of administration, statins regulate the function of both the antigen-presenting cells and T-cells by HMG CoA reductase-dependent and independent mechanisms. Herein, we describe these mechanisms leading to prevention, amelioration, and reversal of autoimmune diseases. We also present data from our laboratories showing for the first time that in a double transgenic mouse model for autoimmune diabetes, atorvastatin (lipitor) prevented the onset of disease when administered in the neonatal period, and stabilized the glucose levels when administered in mice developing a mild form of diabetes.
Collapse
Affiliation(s)
- Teodor-D Brumeanu
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, A3074, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
40
|
Raska M, Weigl E. Heat shock proteins in autoimmune diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149:243-9. [PMID: 16601763 DOI: 10.5507/bp.2005.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heat shock proteins (hsp's) are among the most conserved proteins in evolution. They have been identified as important pathogen-related antigens as well as autoantigens suitable for construction of novel vaccines. The high evolutionary homology of hsp's has raised the question about the safety of such vaccines. Experimental and clinical observations have confirmed that hsp proteins are involved in the regulation of some autoimmune disease such as autoimmune arthritis, type 1 diabetes mellitus, atherosclerosis, multiple sclerosis, and other autoimmune reactions. It has been shown in experimental animals that some hsp proteins (especially hsp60, hsp70, and hsp10) can either induce or prevent autoimmune reactions depending on the circumstances. This article discusses the involvement of hsp proteins in the etiology of autoimmune diseases and it presents promising experimental data on the effects of immunization with hsp proteins in the prevention and therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Milan Raska
- Department of Immunology, Palacky University in Olomouc, Czech Republic.
| | | |
Collapse
|
41
|
Oling V, Marttila J, Ilonen J, Kwok WW, Nepom G, Knip M, Simell O, Reijonen H. GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. J Autoimmun 2005; 25:235-43. [PMID: 16263242 DOI: 10.1016/j.jaut.2005.09.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 06/10/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
In type 1 diabetes the major loss of insulin producing beta-cells is caused by autoreactive T-cells specific for antigens expressed by the pancreatic islets. In this study we have analyzed the prevalence of glutamate decarboxylase 65 (GAD65)- and proinsulin-specific CD4(+) T-cells in type 1 diabetes patients, at-risk subjects and in HLA-matched control children. Peripheral blood mononuclear cells were cultured in the presence of two different GAD65 peptides (555-567, 557I and 274-286) or with a proinsulin (B24-C36) peptide for 10-11days. The autoreactive T-cells were detected using antigen specific-MHC class II tetramers by flow cytometry. Our results show that 11 of 18 (61%) type 1 diabetes patients and 7 of the 20 (35%) at-risk subjects were positive for one of the three GAD65 or proinsulin-containing tetramers, whereas only 2 of 21 (9.5%) controls had tetramer binding cells (p = 0.0007 type 1 diabetes vs. controls and p = 0.0488 at-risk subjects vs. controls, Chi-square test). Type 1 diabetes patients responded to all three peptides. At-risk subjects recognized also the GAD65 555-567 557I peptide, while none of the controls responded to it. In conclusion, type 1 diabetes patients and at-risk subjects have a significantly higher prevalence of GAD65- and proinsulin-specific CD4(+) T-cells than the control subjects.
Collapse
Affiliation(s)
- Viveka Oling
- Department of Virology, University of Turku, Medicity, Biocity 4 krs., Tykistökatu 6 A, 20520 Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Preda I, McEvoy RC, Lin M, Bona CA, Rapaport R, Brumeanu TD, Casares S. Soluble, dimeric HLA DR4-peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes. Eur J Immunol 2005; 35:2762-75. [PMID: 16106371 DOI: 10.1002/eji.200526158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Still there are no effective methods to predict or cure type 1 diabetes (T1D) in humans. Soluble, dimeric MHC class II-peptide (DEF) chimeras have potential for both early diagnosis and immunospecific therapy. DEF chimeras prevent and reverse diabetes in mice by stimulating antigen-specific type 1 T regulatory cell (Tr1)-like cells. We also showed that diabetes could be predicted by changes in the phenotype of autoreactive CD4 T cells in peripheral blood. Herein, we demonstrated that human DEF (HLA-DR*0401/Fcgamma1) chimeras expressing peptides of beta-cell antigens stimulate Tr1-like cells in blood of patients with T1D, non-diabetic relatives, and controls. Furthermore, the specific and stable binding of DEF chimeras to cognate TCR and CD4 coreceptor allowed quantification and phenotyping of autoreactive CD4 T cells in non-stimulated blood by FACS. Our results indicate that (1) autoreactive CD4 T cells to GAD65 autoantigen are commonly present in humans expressing diabetes-susceptible HLA-DR*0401 molecules; (2) these autoreactive T cells undergo avidity maturation upon encountering the self antigen early in life; (3) the disease is associated with an imbalance between autoreactive CD4+CD25+ and CD4+CD69+ T cells specific for GAD65. Based on this, we propose a model to explain the kinetics of autoreactive CD4 T cells in blood during the natural history of T1D.
Collapse
Affiliation(s)
- Ioana Preda
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Danke NA, Yang J, Greenbaum C, Kwok WW. Comparative study of GAD65-specific CD4+ T cells in healthy and type 1 diabetic subjects. J Autoimmun 2005; 25:303-11. [PMID: 16249070 DOI: 10.1016/j.jaut.2005.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/03/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Glutamic acid decarboxylase 65 (GAD65) is a putative autoantigen associated with the pathogenesis of type 1 diabetes (T1D). The prevalence of autoreactive CD4+ T cells towards the immunodominant GAD65(555-567) epitope in DR4 healthy and T1D subjects was investigated with class II tetramers. A slightly higher percentage of diabetic subjects had GAD65(555-567) tetramer-positive T cells upon GAD65(555-567) peptide stimulation on the total CD4+ T-cell populations compared to healthy subjects. In contrast, three quarters of subjects in both groups had tetramer-positive T cells resulting from stimulation of the CD4+CD25+ regulatory T-cell depleted CD4+ T cells. The frequencies and TCR Vbeta gene usages of GAD65(555-567) T cells were also similar in both groups. Experiments demonstrated that GAD65(555-567)-reactive T cells in healthy and diabetic subjects had different CD45RA phenotypes. For the healthy group, GAD65(555-567)-reactive T cells were generally found in the CD45RA+ naïve T-cell pool while GAD65(555-567)-reactive T cells from T1D subjects were present in both CD45RA+ naïve and CD45RA- memory T-cell pools. These findings suggested that there is no difference in thymic selection of DR4 restricted GAD-reactive T cells amongst healthy and T1D individuals but GAD65(555-567)-reactive T cells have been preferentially activated in diabetic patients.
Collapse
Affiliation(s)
- Nancy A Danke
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
44
|
van Kampen CA, van de Linde P, Duinkerken G, van Schip JJ, Roelen DL, Keymeulen B, Pipeleers DG, Claas FHJ, Roep BO. Alloreactivity Against Repeated HLA Mismatches of Sequential Islet Grafts Transplanted in Non-Uremic Type 1 Diabetes Patients. Transplantation 2005; 80:118-26. [PMID: 16003242 DOI: 10.1097/01.tp.0000164143.22287.e3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Islet transplantation can restore insulin production in type 1 diabetes patients. However, survival of the islet allografts will face rejection or recurrence of autoimmunity or a combination of both. In a study on islet-after-kidney transplants, we previously reported that islet cell recipients presented low T-cell alloresponses for HLA mismatches that were shared by the islet cell graft and the prior kidney graft, that is, repeated mismatch, while vigorous responses were measured against novel HLA mismatches. METHODS We now investigated T-cell alloreactivity to repeated HLA-mismatches in three non-uremic type 1 diabetic patients each receiving three sequential islet cell implants. RESULTS These islet-after-islet recipients patients exhibited low or absent responses to repeated mismatches to the first graft which was accompanied by sustained graft function, and reduced responsiveness towards subsequent grafts. In one patient, T-cell responses towards these mismatches were noticed following new mismatches in subsequent grafts, with loss of graft function. CONCLUSION These case reports further support the view that subsequent islet implantations can reduce alloreactivity for repeated HLA mismatches. They demonstrate the usefulness of monitoring T-cell reactivity against islet allografts to correlate immune function with graft survival and to identify conditions for preservation of beta-cell function.
Collapse
Affiliation(s)
- Corine A van Kampen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Atkinson MA. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: why can't we prevent or reverse this disease? Diabetes 2005; 54:1253-63. [PMID: 15855308 DOI: 10.2337/diabetes.54.5.1253] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thirty years ago, a convergence of investigational observations lead to the now widely accepted notion that type 1 diabetes results from an autoimmune destruction of insulin-producing beta-cells in subjects genetically predisposed to the disease. Improvements in understanding of the natural history of type 1 diabetes, the biochemical identification of autoantigens, the discovery of spontaneous animal models for the disease, the availability of immune-modulating agents, and other important facets, including disease prediction, drove an early sense of optimism that the prevention of type 1 diabetes was possible and, in some research circles, that ability was thought to be within a not-to-distant reach. Unfortunately, those early expectations proved overly optimistic, and despite the aforementioned knowledge gains, the generation of improved investigational tools, the identification of methods to prevent the disease in animal models, and the formation of very large disease prevention trials, a means to prevent type 1 diabetes in humans continues to remain elusive. Believing in the concept of "informative failures" (a.k.a., wise people learn from their mistakes), this lecture reviews the knowledge base collected over this time period and, when combined with an analysis of those research experiences, sets forth a proposal for future investigations that will, hopefully, turn discoveries into a means for the prevention or reversal of type 1 diabetes.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, College of Medicine, University of Florida, ARB-R3-128, 1600 SW Archer Rd., Gainesville, FL 32610-0275, USA.
| |
Collapse
|
46
|
You S, Chen C, Lee WH, Brusko T, Atkinson M, Liu CP. Presence of diabetes-inhibiting, glutamic acid decarboxylase-specific, IL-10-dependent, regulatory T cells in naive nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2005; 173:6777-85. [PMID: 15557171 DOI: 10.4049/jimmunol.173.11.6777] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization of NOD mice with autoantigens such as glutamic acid decarboxylase (GAD) 221-235 peptide (p221) can induce Ag-specific CD4(+) T regulatory (Tr) cells. However, it is unclear whether these Tr cells acquire their regulatory capacity due to immunization or whether they are constitutively harbored in unimmunized naive mice. To address this question, we used an I-Ag7 tetramer to isolate p221-specific T cells from naive NOD mice (N221(+) cells) after peptide-specific in vitro expansion. The N221(+) T cells produced IFN-gamma and IL-10, but very little IL-4, in response to p221 stimulation. These T cells could function as regulatory cells and inhibit in vitro proliferation of diabetogenic BDC2.5 cells. This suppressive activity was cell contact-independent and was abrogated by Abs to IL-10 or IL-10R. Interestingly, IL-2 produced by other T cells present in the cell culture induced unactivated N221(+) T cells to exhibit regulatory activities involving production of IL-10. In vivo, N221(+) cells inhibited diabetes development when cotransferred with NOD splenocytes into NOD/scid recipients. Together, these results demonstrate that p221-specific IL-10-dependent Tr cells, including Tr type 1 cells, are present in naive NOD mice. The use of spontaneously arising populations of GAD peptide-specific Tr cells may represent a promising immunotherapeutic approach for preventing type 1 diabetes.
Collapse
Affiliation(s)
- Sylvaine You
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TIM. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005; 54:92-9. [PMID: 15616015 DOI: 10.2337/diabetes.54.1.92] [Citation(s) in RCA: 649] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes is a T-cell-mediated disease that is associated with loss of immunological tolerance to self-antigens. The mechanisms involved in maintenance of peripheral tolerance include a specialized subset of regulatory T-cells (Treg) within the CD4(+)CD25(+) T-cell population, but the function and phenotype of these cells in type 1 diabetes have not been investigated. We hypothesized that a deficiency in the CD4(+)CD25(+) Treg population or its function could contribute to the lack of self-tolerance evident in patients with type 1 diabetes. We show that although levels of CD4(+)CD25(+) T-cells are normal in patients with recent-onset adult type 1 diabetes, the ability of the Tregs in this population to suppress T-cell proliferation during in vitro cocultures is markedly reduced compared with control subjects (P = 0.007). Moreover, in patients with type 1 diabetes, these cocultures display a more proinflammatory phenotype, with increased secretion of interferon-gamma (P = 0.005) and decreased interleukin-10 production (P = 0.03). These deficiencies may reflect a disturbance in the balance of the CD4(+)CD25(+) population, because in patients with type 1 diabetes, a higher proportion of these cells coexpress the early activation marker CD69 (P = 0.007) and intracellular CTLA-4 (P = 0.01). These data demonstrate deficiency in function of the CD4(+)CD25(+) Treg population that may influence the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Shelley Lindley
- Department of Immunobiology, Guy's, King's and St Thomas' School of Medicine, 2nd Floor, New Guy's House, Guy's Hospital London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Itoh A, Shimada A, Kodama K, Morimoto J, Suzuki R, Oikawa Y, Irie J, Nakagawa Y, Shigihara T, Kanazawa Y, Okubo Y, Motohashi Y, Maruyama T, Saruta T. GAD-Reactive T Cells Were Mainly Detected in Autoimmune-Related Type 1 Diabetic Patients with HLA DR9. Ann N Y Acad Sci 2004; 1037:33-40. [PMID: 15699491 DOI: 10.1196/annals.1337.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is considered to be a T cell-mediated disease, and many reports suggest that some HLA types, especially HLA DR4 and DR9, convey susceptibility to T1DM in Japanese. We investigated the association between T cell reactivity against GAD and HLA types in "islet-associated autoantibody-positive" T1DM in Japanese. Blood samples were obtained from 36 "autoantibody-positive" type 1 diabetic patients with HLA DR4 or DR9 and 23 type 2 diabetic patients with HLA DR4 or DR9 as controls. They were divided into three groups, DR4/9, DR4/X, and DR9/X groups. In each HLA type group, GAD-reactive IFN-gamma-producing CD4(+) cells were assessed by means of intracellular cytokine staining for flow cytometry. Type 1 diabetic patients with HLA DR9/X had significantly higher numbers of GAD-reactive IFN-gamma-producing CD4(+) cells as compared to type 1 diabetic patients with DR4/X or DR4/9 (P < 0.05) and all type 2 diabetic patients. There was no significant difference in the number of GAD-reactive IFN-gamma-producing CD4(+) cells between type 1 diabetic and type 2 diabetic patients belonging to the DR4/X and DR4/9 groups. There was an association between T cell reactivity against GAD and HLA DR9 in Japanese type 1 diabetes.
Collapse
Affiliation(s)
- Arata Itoh
- Department of Internal Medicine, Keio Univ. School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gebe JA, Masewicz SA, Kochik SA, Reijonen H, Nepom GT. Inhibition of altered peptide ligand-mediated antagonism of human GAD65-responsive CD4+ T?cells by non-antagonizable T?cells. Eur J Immunol 2004; 34:3337-45. [PMID: 15549775 DOI: 10.1002/eji.200425535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Altered peptide ligands derived from T cell-reactive self antigens have been shown to be protective therapeutic agents in animal models of autoimmunity. In this study we identified several altered peptide ligands derived from the type 1 diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hGAD65) epitope that were capable of antagonizing a subset of a panel of human CD4(+) GAD65 (555-567)-responsive T cell clones derived from a diabetic individual. While no altered peptide ligand was able to antagonize all six clones in the T cell panel, a single-substituted peptide of isoleucine to methionine at position 561, which resides at the TCR contact p5 position, was able to antagonize five out of the six hGAD65-responsive clones. In a mixed T cell culture system we observed that altered peptide ligand-mediated antagonism is inhibited in a dose-dependent manner by the presence of non-antagonizable hGAD65 (555-567)-responsive T cells. From an analysis of the cytokines present in the mixed T cell cultures, interleukin-2 was sufficient to inhibit altered peptide ligand-induced antagonism. The inhibition of altered peptide ligand-mediated antagonism of self-antigen-responsive T cells by non-antagonizable T cells has implications in altered peptide ligand therapy where T cell antagonism is the goal.
Collapse
Affiliation(s)
- John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, USA.
| | | | | | | | | |
Collapse
|
50
|
Reijonen H, Mallone R, Heninger AK, Laughlin EM, Kochik SA, Falk B, Kwok WW, Greenbaum C, Nepom GT. GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes 2004; 53:1987-94. [PMID: 15277377 DOI: 10.2337/diabetes.53.8.1987] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Negative selection of self-reactive T-cells during thymic development, along with activation-induced cell death in peripheral lymphocytes, is designed to limit the expansion and persistence of autoreactive T-cells. Autoreactive T-cells are nevertheless present, both in patients with type 1 diabetes and in at-risk subjects. By using MHC class II tetramers to probe the T-cell receptor (TcR) specificity and avidity of GAD65 reactive T-cell clones isolated from patients with type 1 diabetes, we identified high-avidity CD4+ T-cells in peripheral blood, coexisting with low-avidity cells directed to the same GAD65 epitope specificity. A variety of cytokine patterns was observed, even among T-cells with high MHC-peptide avidity, and the clones utilize a biased set of TcR genes that favor two combinations, Valpha12-beta5.1 and Valpha17-Vbeta4. Presence of these high-avidity TcRs indicates a failure to delete autoreactive T-cells that likely arise from oligoclonal expansion in response to autoantigen exposure during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Helena Reijonen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|