1
|
Saito R, Nonaka S, Fujinami Y, Matsuoka S, Nakajima S, Nishiyama H, Okamura N. The frequency of BRO β-lactamase and its relationship to antimicrobial susceptibility and serum resistance in Moraxella catarrhalis. J Infect Chemother 2014; 20:6-8. [DOI: 10.1016/j.jiac.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
|
2
|
Moraxella catarrhalis – Pathogen or Commensal? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 697:107-16. [DOI: 10.1007/978-1-4419-7185-2_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Hays JP, Gorkink R, Simons G, Peeters JK, Eadie K, Verduin CM, Verbrugh H, van Belkum A. High-throughput amplification fragment length polymorphism (htAFLP) analysis identifies genetic lineage markers but not complement phenotype-specific markers in Moraxella catarrhalis. Clin Microbiol Infect 2007; 13:55-62. [PMID: 17184288 DOI: 10.1111/j.1469-0691.2006.01582.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparative high-throughput amplified fragment length polymorphism (htAFLP) analysis was performed on a set of 25 complement-resistant and 23 complement-sensitive isolates of Moraxella catarrhalis in order to determine whether there were complement phenotype-specific markers within this species. The htAFLP analysis used 21 primer-pair combinations, generating 41 364 individual fragments and 2273 fragment length polymorphisms, with an average of 862 polymorphisms per isolate. Analysis of polymorphism data clearly indicated the presence of two phylogenetic lineages and 40 (2%) lineage-specific polymorphisms. However, despite the presence of 361 (16%) statistically significant complement phenotype-associated polymorphisms, no single marker was 100% complement phenotype-specific. Furthermore, no complement phenotype-specific marker was found within different phylogenetic lineages. These findings agree with previous results indicating that the complement resistance phenotype within M. catarrhalis is probably defined by multiple genes, although not all of these genes may be present within all M. catarrhalis isolates.
Collapse
Affiliation(s)
- J P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang W, Pearson MM, Attia AS, Blick RJ, Hansen EJ. A UspA2H-negative variant of Moraxella catarrhalis strain O46E has a deletion in a homopolymeric nucleotide repeat common to uspA2H genes. Infect Immun 2007; 75:2035-45. [PMID: 17220316 PMCID: PMC1865690 DOI: 10.1128/iai.00609-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis strains can express either a UspA2 protein or a UspA2H protein. The latter protein is encoded by a gene that possesses a homopolymeric nucleotide tract containing eight adenine (A) residues [i.e., a poly(A) tract] which is located near the 5' end. A spontaneous UspA2H-negative variant of M. catarrhalis strain O46E, designated O46E.U2V, was found to have a uspA2H poly(A) tract that contained seven A residues. Northern blot analysis of total RNA from the O46E parent strain revealed a readily detectable uspA2H mRNA transcript, whereas little or no uspA2H transcript was detectable in total RNA from the UspA2H-negative variant O46E.U2V. The 5' end of the uspA2H genes from both the O46E parent strain and the O46E.U2V variant were ligated to a promoterless lacZ gene to prepare translational fusions for use as reporter constructs. The level of beta-galactosidase activity expressed by the fusion construct containing eight A residues in its poly(A) tract was 200-fold greater than that obtained with the construct that had seven A residues. Site-directed mutagenesis of the 5' end of the uspA2H gene confirmed that translation was initiated at a GTG codon located 21 nucleotides (nt) upstream of the poly(A) tract. Primer extension analysis determined that the transcriptional start site of the uspA2H gene was located 291 nt upstream from the GTG translational start codon. This poly(A) tract was also found to be present in the uspA2H genes of other M. catarrhalis strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Base Sequence
- Blotting, Northern
- Codon, Initiator
- Gene Expression
- Genes, Reporter
- Molecular Sequence Data
- Moraxella catarrhalis/genetics
- Mutagenesis, Site-Directed
- Open Reading Frames
- Poly A/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Deletion
- Transcription Initiation Site
- Transcription, Genetic
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
5
|
Attia AS, Ram S, Rice PA, Hansen EJ. Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun 2006; 74:1597-611. [PMID: 16495531 PMCID: PMC1418666 DOI: 10.1128/iai.74.3.1597-1611.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Moraxella catarrhalis strains are resistant to the bactericidal activity of normal human serum (NHS). The UspA2 protein of the serum-resistant strain O35E has previously been shown to be directly involved in conferring serum resistance on this strain. Testing of 11 additional serum-resistant M. catarrhalis wild-type isolates and their uspA1 and uspA2 mutants showed that the uspA1 mutants of all 11 strains were consistently serum resistant and that the uspA2 mutants of these same 11 strains were always serum sensitive. Analysis of complement deposition on four different serum-resistant M. catarrhalis strains and their serum-sensitive uspA2 mutants showed that, for three of these four strain sets, the wild-type and mutant strains bound similar amounts of early complement components. In contrast, there was a significant reduction in the amount of the polymerized C9 on the wild-type strains relative to that on the uspA2 mutants. These same three wild-type strains bound more vitronectin than did their uspA2 mutants. UspA2 proteins from these three strains, when expressed in Haemophilus influenzae, bound vitronectin and conferred serum resistance on this organism. Furthermore, vitronectin-depleted NHS exhibited bactericidal activity against these same three serum-resistant wild-type strains; addition of purified vitronectin to this serum restored serum resistance. In contrast, binding of the complement regulator C4b-binding protein by the M. catarrhalis strains used in this study was found to be highly variable and did not appear to correlate with the serum-resistant phenotype. These results indicate that binding of vitronectin by UspA2 is involved in the serum resistance of M. catarrhalis; this represents the first example of vitronectin-mediated serum resistance on a microbe.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | |
Collapse
|
6
|
Attia AS, Lafontaine ER, Latimer JL, Aebi C, Syrogiannopoulos GA, Hansen EJ. The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance. Infect Immun 2005; 73:2400-10. [PMID: 15784586 PMCID: PMC1087425 DOI: 10.1128/iai.73.4.2400-2410.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many strains of Moraxella catarrhalis are resistant to the bactericidal activity of normal human serum. Previous studies have shown that mutations involving the insertion of an antibiotic resistance cartridge into the M. catarrhalis uspA2 gene resulted in the conversion of a serum-resistant strain to a serum-sensitive phenotype. In the present study, the deletion of the entire uspA2 gene from the serum-resistant M. catarrhalis strain O35E resulted in a serum-sensitive phenotype and did not affect either the rate of growth or the lipooligosaccharide expression profile of this mutant. Inactivation of the classical complement pathway in normal human serum with Mg2+ and EGTA resulted in the survival of this uspA2 mutant. In contrast, blocking of the alternative complement pathway did not protect this uspA2 mutant from complement-mediated killing. To determine whether the UspA2 protein is directly involved in serum resistance, transformation and allelic exchange were used to replace the uspA2 gene in the serum-resistant strain O35E with the uspA2 gene from the serum-sensitive M. catarrhalis strain MC317. The resultant O35E transformant exhibited a serum-sensitive phenotype. Similarly, when the uspA2 gene from the serum-resistant strain O35E was used to replace the uspA2 gene in the serum-sensitive strain MC317, the MC317 transformant acquired serum resistance. The use of hybrid O35E-MC317 uspA2 genes showed that the N-terminal half of the O35E protein contained a 102-amino-acid region that was involved in the expression of serum resistance. In addition, when the uspA2 genes from strains O35E and MC317 were cloned and expressed in Haemophilus influenzae DB117, only the O35E UspA2 protein caused a significant increase in the serum resistance of the H. influenzae recombinant strain. These results prove that the UspA2 protein is directly involved in the expression of serum resistance by certain M. catarrhalis strains.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | | | | | |
Collapse
|
7
|
Luke NR, Allen S, Gibson BW, Campagnari AA. Identification of a 3-deoxy-D-manno-octulosonic acid biosynthetic operon in Moraxella catarrhalis and analysis of a KdsA-deficient isogenic mutant. Infect Immun 2003; 71:6426-34. [PMID: 14573664 PMCID: PMC219605 DOI: 10.1128/iai.71.11.6426-6434.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipooligosaccharide (LOS), a predominant surface-exposed component of the outer membrane, has been implicated as a virulence factor in the pathogenesis of Moraxella catarrhalis infections. However, the critical steps involved in the biosynthesis and assembly of M. catarrhalis LOS currently remain undefined. In this study, we used random transposon mutagenesis to identify a 3-deoxy-D-manno-octulosonic acid (KDO) biosynthetic operon in M. catarrhalis with the gene order pyrG-kdsA-eno. The lipid A-KDO molecule serves as the acceptor onto which a variety of glycosyl transferases sequentially add the core and branch oligosaccharide extensions for the LOS molecule. KdsA, the KDO-8-phosphate synthase, catalyzes the first step of KDO biosynthesis and is an essential enzyme in gram-negative enteric bacteria for maintenance of bacterial viability. We report the construction of an isogenic M. catarrhalis kdsA mutant in strain 7169 by allelic exchange. Our data indicate that an LOS molecule consisting only of lipid A and lacking KDO glycosylation is sufficient to sustain M. catarrhalis survival in vitro. In addition, comparative growth and susceptibility assays were performed to assess the sensitivity of 7169kdsA11 compared to that of the parental strain. The results of these studies demonstrate that the native LOS molecule is an important factor in maintaining the integrity of the outer membrane and suggest that LOS is a critical component involved in the ability of M. catarrhalis to resist the bactericidal activity of human sera.
Collapse
Affiliation(s)
- Nicole R Luke
- Department of MicrobiologyImmunology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
8
|
Schmitz FJ, Beeck A, Perdikouli M, Boos M, Mayer S, Scheuring S, Köhrer K, Verhoef J, Fluit AC. Production of BRO beta-lactamases and resistance to complement in European Moraxella catarrhalis isolates. J Clin Microbiol 2002; 40:1546-8. [PMID: 11923393 PMCID: PMC140350 DOI: 10.1128/jcm.40.4.1546-1548.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the 419 Moraxella catarrhalis isolates collected during the 1997-1999 European SENTRY surveillance study, 385 (92%) were beta-lactamase positive. Twenty-two (5.7%) produced BRO-2 beta-lactamase. Twenty-one new mutations were found in the putative promoter region of the bro genes. Nineteen percent of all isolates tested were complement sensitive. Resistance to beta-lactams is not linked to the phylogenetic lineages associated with susceptibility to complement.
Collapse
Affiliation(s)
- Franz-Josef Schmitz
- Institute for Medical Microbiology and Virology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zaleski A, Scheffler NK, Densen P, Lee FK, Campagnari AA, Gibson BW, Apicella MA. Lipooligosaccharide P(k) (Galalpha1-4Galbeta1-4Glc) epitope of moraxella catarrhalis is a factor in resistance to bactericidal activity mediated by normal human serum. Infect Immun 2000; 68:5261-8. [PMID: 10948153 PMCID: PMC101787 DOI: 10.1128/iai.68.9.5261-5268.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a respiratory pathogen responsible for acute bacterial otitis media in children and exacerbation of chronic bronchitis in adults. M. catarrhalis strains are frequently resistant to the bactericidal activity of normal human serum. In order to determine if the lipooligosaccharide (LOS) of M. catarrhalis has a role in serum resistance, the UDP-glucose-4-epimerase (galE) gene was identified, cloned, and sequenced and a deletion/insertion mutation was introduced into M. catarrhalis strain 2951. GalE enzymatic activity, measured in whole-cell lysates, was ablated in M. catarrhalis 2951 galE. Mass spectrometric analysis of LOS isolated with hot phenol-water confirmed that strain 2951 produced a type A LOS. These studies showed that the LOS from 2951 galE had lost two hexose residues due to the galE mutation and that the resultant LOS structure lacked the (Galalpha1-4Galbeta1-4Glc) P(k) epitope found on M. catarrhalis 2951. Wild-type M. catarrhalis 2951 is resistant to complement-mediated serum bactericidal activity. In contrast, a greater than 2-log(10)-unit reduction in CFU occurred after incubation of 2951 galE in either 50 or 25% pooled human serum (PNHS), and CFU in 10% PNHS decreased by about 1 log(10) unit. These studies suggest that the P(k) epitope of the LOS may be an important factor in the resistance of M. catarrhalis to the complement-mediated bactericidal effect of normal human serum.
Collapse
Affiliation(s)
- A Zaleski
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Verduin CM, Kools-Sijmons M, van der Plas J, Vlooswijk J, Tromp M, van Dijk H, Banks J, Verbrugh H, van Belkum A. Complement-resistant Moraxella catarrhalis forms a genetically distinct lineage within the species. FEMS Microbiol Lett 2000; 184:1-8. [PMID: 10689157 DOI: 10.1111/j.1574-6968.2000.tb08981.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Moraxella catarrhalis is a bacterial species that has been implicated in 15-20% of all cases of otitis media in the USA and the complement-resistant variant of M. catarrhalis has been considered particularly pathogenic. A collection of geographically diverse, complement-sensitive (n=28) and -resistant strains (n=47) of M. catarrhalis was assembled in order to analyse the bacterial population structure. All strains were identified as M. catarrhalis by conventional microbiological and biochemical methods. Amplification of the small subunit (ssu) ribosomal RNA gene followed by restriction fragment length polymorphism (RFLP) analysis did not reveal consistent differences between serum-susceptible and -resistant M. catarrhalis isolates. Interestingly, upon automated ribotyping using the Qualicon RiboPrinter(R) microbial characterisation system, the complement-sensitive and -resistant strains segregated into two groups. This suggested the existence of two clearly distinguishable lineages within the species M. catarrhalis. This observation was corroborated by pulsed field gel electrophoresis (PFGE) of DNA macro-restriction fragments, a non-ribosomal PCR RFLP procedure and random amplification of polymorphic DNA (RAPD) analysis. All procedures grouped the two variants similarly. Redefinition of the taxonomic status of complement-resistant M. catarrhalis or even the definition of a new species may be opportune.
Collapse
Affiliation(s)
- C M Verduin
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam (EMCR), Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McMichael JC, Fiske MJ, Fredenburg RA, Chakravarti DN, VanDerMeid KR, Barniak V, Caplan J, Bortell E, Baker S, Arumugham R, Chen D. Isolation and characterization of two proteins from Moraxella catarrhalis that bear a common epitope. Infect Immun 1998; 66:4374-81. [PMID: 9712790 PMCID: PMC108528 DOI: 10.1128/iai.66.9.4374-4381.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UspA1 and UspA2 proteins of Moraxella catarrhalis are potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350, 000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100 degreesC. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.
Collapse
Affiliation(s)
- J C McMichael
- Wyeth-Lederle Vaccines and Pediatrics, West Henrietta, New York 14586-9728, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aebi C, Lafontaine ER, Cope LD, Latimer JL, Lumbley SL, McCracken GH, Hansen EJ. Phenotypic effect of isogenic uspA1 and uspA2 mutations on Moraxella catarrhalis 035E. Infect Immun 1998; 66:3113-9. [PMID: 9632574 PMCID: PMC108321 DOI: 10.1128/iai.66.7.3113-3119.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The UspA surface antigen of Moraxella catarrhalis was recently shown to be comprised of two different proteins (UspA1 and UspA2) which share an internal region containing 140 amino acids with 93% identity (C. Aebi, I. Maciver, J. L. Latimer, L. D. Cope, M. K. Stevens, S. E. Thomas, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 65:4367-4377, 1997). Isogenic uspA1, uspA2, and uspA1 uspA2 mutants were tested in a number of in vitro systems to determine what effect these mutations, either individually or together, might exert on the phenotype of M. catarrhalis 035E. Monoclonal antibodies specific for UspA1 or UspA2 were used in an indirect antibody accessibility assay to prove that both of these proteins were expressed on the surface of M. catarrhalis. All three mutants grew in vitro at the same rate and did not exhibit autoagglutination or hemagglutination properties that were detectably different from those of the wild-type parent strain. When tested for the ability to adhere to human epithelial cells, the wild-type parent strain and the uspA2 mutant readily attached to Chang conjunctival cells. In contrast, the uspA1 mutant and the uspA1 uspA2 double mutant both attached to these epithelial cells at a level nearly 2 orders of magnitude lower than that obtained with the wild-type parent strain, a result which suggested that expression of UspA1 by M. catarrhalis is essential for attachment to these epithelial cells. Both the wild-type parent strain and the uspA1 mutant were resistant to the bactericidal activity of normal human serum, whereas the uspA2 mutant and the uspA1 uspA2 double mutant were readily killed by this serum. This latter result indicated that the presence of UspA2 is essential for expression of serum resistance by M. catarrhalis.
Collapse
Affiliation(s)
- C Aebi
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Boel E, Bootsma H, de Kruif J, Jansze M, Klingman KL, van Dijk H, Logtenberg T. Phage antibodies obtained by competitive selection on complement-resistant Moraxella (Branhamella) catarrhalis recognize the high-molecular-weight outer membrane protein. Infect Immun 1998; 66:83-8. [PMID: 9423843 PMCID: PMC107862 DOI: 10.1128/iai.66.1.83-88.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We used competitive panning to select a panel of 10 different human antibodies from a large semisynthetic phage display library that distinguish between serum complement-resistant and complement-sensitive strains of the gram-negative diplococcus Moraxella (Branhamella) catarrhalis. Western blotting analyses and inhibition enzyme-linked immunosorbent assays showed that all phage antibodies were directed against the same or closely spaced epitopes on the target protein, which is the high-molecular-weight outer membrane protein (HMW-OMP) of M. catarrhalis. HMW-OMP was found in multiple isolates of complement-resistant but not complement-sensitive M. catarrhalis strains. Nucleotide sequence analysis demonstrated that the immunoglobulin heavy- and light-chain variable-region genes encoding the 10 phage antibodies were remarkably similar, with a strong preference for basic amino acid residues in the heavy-chain CDR3 regions. This is the first report showing that competitive panning is a successful procedure to obtain phage antibodies against differentially expressed structures on phenotypically dissimilar strains of prokaryotic cells.
Collapse
Affiliation(s)
- E Boel
- Eijkman-Winkler Institute for Microbiology, Infectious Diseases, and Inflammation, Utrecht University Hospital, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Over the past decade, Branhamella catarrhalis has emerged as an important human pathogen. The bacterium is a common cause of otitis media in children and of lower respiratory tract infections in adults with chronic obstructive pulmonary disease. B. catarrhalis is exclusively a human pathogen. It colonizes the respiratory tract of a small proportion of adults and a larger proportion of children. Studies involving restriction enzyme analysis of genomic DNA show that colonization is a dynamic process, with the human host eliminating and acquiring new strains frequently. The surface of B. catarrhalis contains outer membrane proteins, lipooligosaccharide, and pili. The genes which encode several outer membrane proteins have been cloned, and some of these proteins are being studied as potential vaccine antigens. Analysis of the immune response has been limited by the lack of an adequate animal model of B. catarrhalis infection. New information regarding outer membrane structure should guide studies of the human immune response to B. catarrhalis. Immunoassays which specifically detect antibodies to determinants exposed on the bacterial surface will elucidate the most relevant immune response. The recognition of B. catarrhalis as an important human pathogen has stimulated research on the epidemiology and surface structures of the bacterium. Future studies to understand the mechanisms of infection and to elucidate the human immune response to infection hold promise of developing new methods to treat and prevent infections caused by B. catarrhalis.
Collapse
Affiliation(s)
- T F Murphy
- Department of Medicine, State University of New York at Buffalo, USA.
| |
Collapse
|
15
|
Johnson J, Joseph A, Morris J. Capsular polysaccharide-protein conjugate vaccines against Vibrio cholerae O139 Bengal. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0020-2452(96)85763-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Hol C, Verduin CM, Van Dijke EE, Verhoef J, Fleer A, van Dijk H. Complement resistance is a virulence factor of Branhamella (Moraxella) catarrhalis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1995; 11:207-11. [PMID: 7581272 DOI: 10.1111/j.1574-695x.1995.tb00118.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate complement resistance in Branhamella (Moraxella) catarrhalis isolated from healthy schoolchildren or sputum-producing adult patients. Two techniques were used: a serum bactericidal assay as the gold standard and an easier 'culture and spot' test. Children (age 4-13; n = 303) and patients (n = 1047) showed high colonization/infection rates with B. catarrhalis (31% and 19%, respectively). Complement resistance or intermediate sensitivity occurred frequently in patient isolates (62% and 27%, respectively) and less often in children (33% and 8.5%, respectively; P << 0.0001). In young children (age 4-5 years), the proportion of complement-resistant strains was around 50%. Complement resistance in B. catarrhalis is associated with illness and may hence be considered a virulence factor.
Collapse
Affiliation(s)
- C Hol
- Eijkman-Winkler Institute for Medical and Clinical Microbiology, University Hospital, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Verduin CM, Hol C, Van Dijke E, Faber JA, Jansze M, Verhoef J, Van Dijk H. Assessment of complement-mediated killing of Moraxella (Branhamella) catarrhalis isolates by a simple method. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1995; 2:365-8. [PMID: 7664184 PMCID: PMC170161 DOI: 10.1128/cdli.2.3.365-368.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recently, we showed that complement resistance is an important virulence factor of Moraxella (Branhamella) catarrhalis. Our study used a serum bactericidal assay to determine complement resistance in M. catarrhalis. Although the serum bactericidal assay is considered the "gold standard" for determining complement resistance, it is laborious and time-consuming and therefore not well suited for large-scale studies. Using a large number (n = 324) of M. catarrhalis isolates obtained from the sputa of patients with lower respiratory tract infections (n = 200) and young carriers (n = 124), we assessed the value of a simple "culture-and-spot" test as an alternative to the serum bactericidal assay. For both groups of isolates, the degree of concordance between the two tests used was very significant (P < 0.0001). The agreement between the two assays was estimated to be "excellent beyond chance" (as determined by Cohen's kappa test). The culture-and-spot assay is a valuable alternative to the serum bactericidal assay, not only for screening purposes as shown here but also for studying the mechanism of complement resistance in M. catarrhalis at the molecular level.
Collapse
Affiliation(s)
- C M Verduin
- Eijkman-Winkler Institute for Medical and Clinical Microbiology, Faculty of Medicine, Utrecht University Hospital, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Verduin CM, Jansze M, Hol C, Mollnes TE, Verhoef J, van Dijk H. Differences in complement activation between complement-resistant and complement-sensitive Moraxella (Branhamella) catarrhalis strains occur at the level of membrane attack complex formation. Infect Immun 1994; 62:589-95. [PMID: 8300216 PMCID: PMC186145 DOI: 10.1128/iai.62.2.589-595.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanism of resistance to human complement-mediated killing in Moraxella catarrhalis was studied by comparing different complement-sensitive and complement-resistant M. catarrhalis strains in a functional bystander hemolysis assay and an enzyme-linked immunosorbent assay (ELISA) for soluble terminal complement complexes. Complement-resistant stains appeared to activate complement to the same extent as, or even slightly better than, complement-sensitive strains. This indicates that complement-resistant strains do not inhibit classical or alternative pathway activation but interfere with complement at the level of membrane attack complex formation. A clear difference in dose-response curves for resistant and sensitive strains was observed both in the bystander hemolysis assay and in the ELISA. Complement-resistant strains showed optimum curves, whereas complement-sensitive strains gave almost linear curves. We conclude that resistant strains bind and/or inactivate one of the terminal complement components or intermediates involved in membrane attack complex formation. Trypsin, known to abolish complement resistance, changed the optimum dose-response curve of a resistant strain to a linear one, which strongly suggests that complement resistance is mediated by an M. catarrhalis-associated protein. This protein acts directly or through the binding of a terminal complement inhibitor present in serum.
Collapse
Affiliation(s)
- C M Verduin
- Eijkman-Winkler Institute of Medical and Clinical Microbiology, Utrecht University Medical Faculty, University Hospital, The Netherlands
| | | | | | | | | | | |
Collapse
|