1
|
Ali RH, Sghaier Z, Ageorges H, Ben Salem E, Hidouri M. Magnesium-substituted zinc-calcium hydroxyfluorapatite bioceramics for bone tissue engineering. J Mech Behav Biomed Mater 2025; 166:106933. [PMID: 39987644 DOI: 10.1016/j.jmbbm.2025.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Hydroxyfluorapatite (HFAp) materials possess a structural and compositional similarity to bone tissue and dentin. These bioceramics facilitate various physiological functions, including ion exchange within surface layers. Additionally, magnesium (Mg) serves as a primary substitute for calcium in the biological apatite found in the calcified tissues of mammals, while zinc (Zn) contributes to overall bone quality and exhibits antibacterial properties. Although multiple studies have examined the individual substitution of ions within the hydroxyapatite (HAp) structure, no research to date has investigated the simultaneous substitution of zinc, fluoride, and varying amounts of magnesium in calcium HAp. This study explores the incorporation of magnesium into the structure of zinc-calcium hydroxylfluorapatite. A series of ion-substituted apatites, represented as Ca9.9-xZn0.1Mgx (PO4)6(OH)F with 0 ≤ x ≤ 1, were synthesized. Characterization of the produced samples confirmed that they were monophase apatite, crystallizing in the hexagonal P63/m space group, with only a slight impact on crystallinity due to magnesium doping. Pressure-less sintering of the samples demonstrated that maximum densification, approximately 94%, was achieved at 1200 °C with a sintering dwell of 1 h for the sample with x = 0.1. Furthermore, the Young's and Vickers hardness of this sample reached peak values of 105 and 5.02 GPa, respectively. When immersed in simulated body fluid, the formation of an amorphous CaP which can subsequently be crystallized into crystalline phase on the surface of dense specimens was observed, indicating the ability to bond with bone in a living organism and their potential use as substitutes for failed bone and dentin filling and coating.
Collapse
Affiliation(s)
- Rania Hadj Ali
- Preparatory Institute of Engineering Studies of Monastir, Unit of Materials and Organic Synthesis Monastir 5019, UR17ES31, Tunisia
| | - Zohra Sghaier
- Research laboratory: Energy, Water, Environment and processes, LREWEP (LR18ES35), National School of Engineers, University of Gabes, 6072 Gabes, Tunisia
| | - Hélène Ageorges
- University of Limoges, Institute of Research for Ceramics (IRCER), CNRS-UMR7315 European Ceramics Centre, 12 rue Atlantis, 87068, Limoges, France
| | - Ezzedine Ben Salem
- Preparatory Institute of Engineering Studies of Monastir, Unit of Materials and Organic Synthesis Monastir 5019, UR17ES31, Tunisia
| | - Mustapha Hidouri
- Research laboratory: Energy, Water, Environment and processes, LREWEP (LR18ES35), National School of Engineers, University of Gabes, 6072 Gabes, Tunisia.
| |
Collapse
|
2
|
Lim HK, Song IS, Choi WC, Choi YJ, Kim EY, Phan THT, Lee UL. Biocompatibility and dimensional stability through the use of 3D-printed scaffolds made by polycaprolactone and bioglass-7: An in vitro and in vivo study. Clin Implant Dent Relat Res 2024; 26:1245-1259. [PMID: 39257249 DOI: 10.1111/cid.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This experiment aimed to observe the differences in biological properties by producing BGS-7 + PCL scaffolds with different weight fractions of BGS-7 through 3D printing and to confirm whether using the scaffold for vertical bone augmentation is effective. MATERIALS AND METHODS Cube-shaped bioglass (BGS-7) and polycaprolactone (PCL) scaffolds with different weight fractions (PCL alone, PCL with 15% and 30% BGS-7) are produced using 3D printing. The surface hydroxyapatite (HA) apposition, the pH change, proliferation and attachment assays, and various gene expression levels are assessed. After a 7-mm implant was inserted 3 mm into the rabbit calvaria, vertical bone augmentation is performed around the implant and inside the scaffold in four ways: scaffold only, scaffold+bone graft, bone graft only, and no graft. Sacrifice is performed at 6, 12, and 24 weeks, and the various parameters are compared radiographically and histologically. RESULTS HA apposition, cell proliferation, cell attachment, and expression of osteogenic genes increase as the proportion of BGS-7 increase. In the in vivo test, a higher bone-implant contact ratio, bone volume ratio, bone mineral density, and new bone area are observed when the scaffold and bone grafts were used together. CONCLUSION The 3D-printed scaffold, a mixture of BGS-7 and PCL, exhibit higher biological compatibility as the proportion of BGS-7 increase. Additionally, the use of scaffold is effective for vertical bone augmentation.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral & Maxillofacial Surgery, Korea University Guro Hospital, Seoul, Korea
| | - In-Seok Song
- Department of Oral & Maxillofacial Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Won-Cheul Choi
- Department of Orthodontics, Dental Center, Chung-Ang University Hospital, Seoul, Korea
| | - Young-Jun Choi
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Thi Hong Tham Phan
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ui-Lyong Lee
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Shi W, Hatori S, Noda D, Yamada I, Tagaya M. Direct Immobilization of Folic Acid Molecules on Hydroxyapatite Nanoparticles with Substitution and Coordination Phenomena. ACS Biomater Sci Eng 2024; 10:6615-6624. [PMID: 39230397 DOI: 10.1021/acsbiomaterials.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We successfully synthesized folic acid (FA) immobilized hydroxyapatite (HA) nanoparticles without using a mediative reagent (e.g., silane coupling agent), and the immobilization states were evaluated and discussed. The HA nanoparticles with higher biocompatibility have two different planes, namely, c- and m-planes. These plane surfaces are rich in phosphate groups (P-site) and Ca2+ ions (C-site), respectively. We suggested that during the synthesis of the HA nanoparticles, the P-site substitution and C-site coordination with the addition of organic molecules containing -COO- ions can occur. Thus, it is possible to simultaneously immobilize two molecules to one HA nanoparticle. In this study, we successfully synthesized FA-immobilized HA nanoparticles by P-site substitution and C-site coordination reactions, which were named as substitution type and coordination type. In the substitution type, when FA was reacted with HA during the nucleation stage, the PO43- ions of HA decreased as the FA ratio of coverage surface area increased, and the crystalline phase was changed significantly from the Ca deficient HA to the carbonated HA phase. Accordingly, it was indicated that FA was immobilized on HA by the P-site substitution. In the coordination type, since FA was reacted with HA after the completion of crystal growth, the crystalline phase was changed slightly as the FA ratio of coverage surface area increased, indicating that FA was immobilized on HA by the C-site coordination. From the above, we controlled the FA immobilization states on the HA nanoparticles by the P-site substitution and the C-site coordination through the FA addition timing in the synthesis. Since the -COO- ions in FA could be selectively substituted with the P-site in HA, it is possible to directly coordinate the foreign organic molecules to the Ca2+ ions in HA. Therefore, the immobilization technique of this study is expected to achieve two different drug molecules with diagnosis and therapy functions (i.e., theranostics) on one nanoparticle.
Collapse
Affiliation(s)
- Wanyu Shi
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Koji-machi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shoma Hatori
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Daichi Noda
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Koji-machi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Iori Yamada
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
4
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Bača Ľ, Sivčáková T, Varchulová Nováková Z, Matejdes M, Horváth Orlovská M, Thurzo A, Danišovič Ľ, Janek M. Synthesis, sintering, radiopacity and cytotoxicity of Ca, Sr and Ba - phosphate bioceramics. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 2024; 44:5298-5307. [DOI: 10.1016/j.jeurceramsoc.2023.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Yan L, Wang Y, Wang W, Luo J, Cheng B, Yang J, Li B, Wang X. A poly (lactic-co-glycolic acid) self-pumping Janus dressing with bidirectional biofluid transport for diabetic wound healing via anti-bacteria and pro-angiogenesis. Int J Biol Macromol 2024; 275:133361. [PMID: 38960245 DOI: 10.1016/j.ijbiomac.2024.133361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Diabetic wound healing poses a substantial challenge owing to bacterial infections, insufficient angiogenesis, and excessive exudates. Currently, most of the clinical dressings used for diabetic wounds are still conventional dressings such as gauze. In this study, a three-layer Janus dressing was developed via continuous electrostatic spinning. The top-layer was composed of polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate. The hydrophobic top-layer prevented the adhesion of foreign bacteria. The mid-layer was composed of polyethylene glycol, polylactic acid-glycolic acid and hydroxyapatite doped with silver ions and silicate facilitated exudate absorption and bioactive ion release. The modified sub-layer containing polylactic acid-glycolic acid, hydroxyapatite doped with silver ions and silicate and sodium alginate microspheres enabled both the transport of wound exudate from the wound bed to dressing and the backflow of bioactive silver ions and silicate to the wound bed, thereby reducing infection and stimulating angiogenesis. Through in vivo and in vivo experiments, the Janus dressing showed to have antimicrobial, angiogenic, and exudate-control properties that accelerate healing in diabetic wounds. As a novel dressing, the multifunctional, self-pumping Janus wound dressing with bi-directional biofluidic transport offers a new approach to diabetic wound healing.
Collapse
Affiliation(s)
- Lisi Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wenyuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, PR China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
7
|
Duan G, Lu YF, Chen HL, Zhu ZQ, Yang S, Wang YQ, Wang JQ, Jia XH. Smurf1-targeting microRNA-136-5p-modified bone marrow mesenchymal stem cells combined with 3D-printed β-tricalcium phosphate scaffolds strengthen osteogenic activity and alleviate bone defects. Kaohsiung J Med Sci 2024; 40:621-630. [PMID: 38820598 DOI: 10.1002/kjm2.12847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
Suitable biomaterials with seed cells have promising potential to repair bone defects. However, bone marrow mesenchymal stem cells (BMSCs), one of the most common seed cells used in tissue engineering, cannot differentiate efficiently and accurately into functional osteoblasts. In view of this, a new tissue engineering technique combined with BMSCs and scaffolds is a major task for bone defect repair. Lentiviruses interfering with miR-136-5p or Smurf1 expression were transfected into BMSCs. The effects of miR-136-5p or Smurf1 on the osteogenic differentiation (OD) of BMSCs were evaluated by measuring alkaline phosphatase activity and calcium deposition. Then, the targeting relationship between miR-136-5p and Smurf1 was verified by bioinformatics website analysis and dual luciferase reporter assay. Then, a rabbit femoral condyle bone defect model was established. miR-136-5p/BMSCs/β-TCP scaffold was implanted into the defect, and the repair of the bone defect was detected by Micro-CT and HE staining. Elevating miR-136-5p-3p or suppressing Smurf1 could stimulate OD of BMSCs. miR-136-5p negatively regulated Smurf1 expression. Overexpressing Smurf1 reduced the promoting effect of miR-136-5p on the OD of BMSCs. miR-136-5p/BMSCs/β-TCP could strengthen bone density in the defected area and accelerate bone repair. SmurF1-targeting miR-136-5p-modified BMSCs combined with 3D-printed β-TCP scaffolds can strengthen osteogenic activity and alleviate bone defects.
Collapse
Affiliation(s)
- Gang Duan
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ya-Fei Lu
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Liang Chen
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Qiang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuo Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Qing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jian-Qiang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing-Hai Jia
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Dhavalikar P, Jenkins D, Rosen N, Kannapiran A, Salhadar K, Shachaf O, Silverstein M, Cosgriff-Hernández E. Hydroxyapatite nanoparticle-modified porous bone grafts with improved cell attachment. J Mater Chem B 2023; 11:10651-10664. [PMID: 37878081 PMCID: PMC10650276 DOI: 10.1039/d3tb01839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Emulsion-templated foams have displayed promise as injectable bone grafts; however, the use of a surfactant as an emulsifier resulted in relatively small pores and impedes cell attachment. Hydroxyapatite nanoparticles were explored as an alternative stabilizer to address these limitations. To this end, hydroxyapatite nanoparticles were first modified with myristic acid to generate the appropriate balance of hydrophobicity to stabilize a water-in-oil emulsion of neopentyl glycol diacrylate and 1,4-butanedithiol. In situ surface modification of the resulting foam with hydroxyapatite was confirmed with elemental mapping and transmission electron microscopy. Nanoparticle-stabilized foams displayed improved human mesenchymal stem cell viability (91 ± 5%) over surfactant-stabilized foams (23 ± 11%). Although the pore size was appropriate for bone grafting applications (115 ± 71 μm), the foams lacked the interconnected architecture necessary for cell infiltration. We hypothesized that a co-stabilization approach with both surfactant and nanoparticles could be used to achieve interconnected pores while maintaining improved cell attachment and larger pore sizes. A range of hydroxyapatite nanoparticle and surfactant concentrations were investigated to determine the effects on microarchitecture and cell behavior. By balancing these interactions, a co-stabilized foam was identified that possessed large, interconnected pores (108 ± 67 μm) and improved cell viability and attachment. The co-stabilized foam was then evaluated as an injectable bone graft including network formation, microscale integration with bone, push out strength, and compressive properties. Overall, this work demonstrated that in situ surface modification with nHA improved cell attachment while retaining desirable bone grafting features and injectability.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Natalie Rosen
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Orren Shachaf
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Michael Silverstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Elizabeth Cosgriff-Hernández
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| |
Collapse
|
9
|
Verma R, Mishra SR, Gadore V, Ahmaruzzaman M. Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications. Adv Colloid Interface Sci 2023; 315:102890. [PMID: 37054653 DOI: 10.1016/j.cis.2023.102890] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Given their unique characteristics and properties, Hydroxyapatite (HAp) nanomaterials and nanocomposites have been used in diverse advanced catalytic technologies and in the field of biomedicine, such as drug and protein carriers. This paper examines the structure and properties of the manufactured HAp as well as a variety of synthesis methods, including hydrothermal, microwave-assisted, co-precipitation, sol-gel, and solid-state approaches. Additionally, the benefits and drawbacks of various synthesis techniques and ways to get around them to spur more research are also covered. This literature discusses the various applications, including photocatalytic degradation, adsorptions, and protein and drug carriers. The photocatalytic activity is mainly focused on single-phase, doped-phase, and multi-phase HAp, while the adsorption of dyes, heavy metals, and emerging pollutants by HAp are discussed in the manuscript. Furthermore, the use of HAp in treating bone disorders, drug carriers, and protein carriers is also conferred. In light of this, the development of HAp-based nanocomposites will inspire the next generation of chemists to improve upon and create stable nanoparticles and nanocomposites capable of successfully addressing major environmental concerns. This overview's conclusion offers potential directions for future study into HAp synthesis and its numerous applications.
Collapse
|
10
|
Zhuang Z, Ye K, Wang D. Modified ophthalmectomy: Optic-nerv sparing with hydroxyapatite prosthesis implant. Asian J Surg 2023:S1015-9584(23)00338-X. [PMID: 36967351 DOI: 10.1016/j.asjsur.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023] Open
Affiliation(s)
- Zihao Zhuang
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, China
| | - Keqing Ye
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, China
| | - Di Wang
- Department of Ophthalmology, Longyan Second Hospital, Longyan, Fujian, China.
| |
Collapse
|
11
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Khamkongkaeo A, Jiamprasertboon A, Jinakul N, Srabua P, Tantavisut S, Wongrakpanich A. Antibiotic-loaded hydroxyapatite scaffolds fabricated from Nile tilapia bones for orthopaedics. Int J Pharm X 2023; 5:100169. [PMID: 36861068 PMCID: PMC9969256 DOI: 10.1016/j.ijpx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
This work aimed to develop new antibiotic-coated/ antibiotic-loaded hydroxyapatite (HAp) scaffolds for orthopaedic trauma, specifically to treat the infection after fixation of skeletal fracture. The HAp scaffolds were fabricated from the Nile tilapia (Oreochromis niloticus) bones and fully characterized. The HAp scaffolds were coated with 12 formulations of poly (lactic-co-glycolic acid) (PLGA) or poly (lactic acid) (PLA), blended with vancomycin. The vancomycin release, surface morphology, antibacterial properties, and the cytocompatibility of the scaffolds were conducted. The HAp powder contains elements identical to those found in human bones. This HAp powder is suitable as a starting material to build scaffolds. After the scaffold fabrication, The ratio of HAp to β-TCP changed, and the phase transformation of β-TCP to α-TCP was observed. All antibiotic-coated/ antibiotic-loaded HAp scaffolds can release vancomycin into the phosphate-buffered saline (PBS) solution. PLGA-coated scaffolds obtained faster drug release profiles than PLA-coated scaffolds. The low polymer concentration in the coating solutions (20%w/v) gave a faster drug release profile than the high polymer concentration (40%w/v). All groups showed a trace of surface erosion after being submerged in PBS for 14 days. Most of the extracts can inhibit Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA). The extracts not only caused no cytotoxicity to Saos-2 bone cells but also can increase cell growth. This study demonstrates that it is possible to use these antibiotic-coated/ antibiotic-loaded scaffolds in the clinic as an antibiotic bead replacement.
Collapse
Key Words
- Antibiotic
- Antibiotic-coated
- Antibiotic-loaded
- CLSI, The Clinical and Laboratory Standards Institute
- DI, Deionized water
- DMSO, Dimethyl sulfoxide
- F10[PLGA40-Hvanc], Formulation 10, HAp saffolds containing high concentration of vancomycin, coated with PLGA 40%w/v
- F11[PLA20-Hvanc], Formulation 11, HAp saffolds containing high concentration of vancomycin, coated with PLA 20%w/v
- F12[PLA40-Hvanc], Formulation 12, HAp saffolds containing high concentration of vancomycin, coated with PLA 40%w/v
- F1[V-PLGA20-Lvanc], Formulation 1, HAp saffolds containing low concentration of vancomycin, coated with PLGA 20%w/v blended with vancomycin
- F2[V-PLGA40-Lvanc], Formulation 2, HAp saffolds containing low concentration of vancomycin, coated with PLGA 40%w/v blended with vancomycin
- F3[V-PLA20-Lvanc], Formulation 3, HAp saffolds containing low concentration of vancomycin, coated with PLA 20%w/v blended with vancomycin
- F4[V-PLA40-Lvanc], Formulation 4, HAp saffolds containing low concentration of vancomycin, coated with PLA 40%w/v blended with vancomycin
- F5[PLGA20-Lvanc], Formulation 5, HAp saffolds containing low concentration of vancomycin, coated with PLGA 20%w/v
- F6[PLGA40-Lvanc], Formulation 6, HAp saffolds containing low concentration of vancomycin, coated with PLGA 40%w/v
- F7[PLA20-Lvanc], Formulation 7, HAp saffolds containing low concentration of vancomycin, coated with PLA 20%w/v
- F8[PLA40-Lvanc], Formulation 8, HAp saffolds containing low concentration of vancomycin, coated with PLA 40%w/v
- F9[PLGA20-Hvanc], Formulation 9, HAp saffolds containing high concentration of vancomycin, coated with PLGA 20%w/v
- FDA, Food and Drug Administration
- FTIR, Fourier transforms infrared spectroscopy
- HAp, Hydroxyapatite
- Hydroxyapatite
- IFSF, The infection after fixation of skeletal fracture
- Nile tilapia
- P.U., Polyurethane
- PBS, Phosphate-buffered saline
- PLA, Poly(lactic acid)
- PLGA, Poly(lactic-co-glycolic acid)
- PVA, Polyvinyl alcohol
- SEM, Scanning electron microscopy
- Scaffold
- Vancomycin
- XRD, X-ray diffraction
- XRF, X-ray fluorescence spectroscopy
- α-TCP, α-tricalcium phosphate
- β-TCP, β-tricalcium phosphate
Collapse
Affiliation(s)
- Atchara Khamkongkaeo
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Arreerat Jiamprasertboon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand,Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nanthawan Jinakul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Phatraya Srabua
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopaedics, Chulalongkorn University, Bangkok, Thailand,Hip Fracture Research Unit, Department of Orthopaedics, Chulalongkorn University, Bangkok, Thailand
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Corresponding author.
| |
Collapse
|
13
|
Mohammadi M, Coppola B, Montanaro L, Palmero P. Digital light processing of high-strength hydroxyapatite ceramics: role of particle size and printing parameters on microstructural defects and mechanical properties. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Montazerian M, Gonçalves GVS, Barreto MEV, Lima EPN, Cerqueira GRC, Sousa JA, Malek Khachatourian A, Souza MKS, Silva SML, Fook MVL, Baino F. Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7477. [PMID: 36363085 PMCID: PMC9656675 DOI: 10.3390/ma15217477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.
Collapse
Affiliation(s)
- Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Geovanna V. S. Gonçalves
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Eunice P. N. Lima
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Glauber R. C. Cerqueira
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Julyana A. Sousa
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adrine Malek Khachatourian
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11155-1639, Iran
| | - Mairly K. S. Souza
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Suédina M. L. Silva
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
15
|
Nik Md Noordin Kahar NNF, Ahmad N, Jaafar M, Yahaya BH, Sulaiman AR, Hamid ZAA. A review of bioceramics scaffolds for bone defects in different types of animal models: HA and β-TCP. Biomed Phys Eng Express 2022; 8:052002. [PMID: 35921834 DOI: 10.1088/2057-1976/ac867f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Increased life expectancy has led to an increase in the use of bone substitutes in numerous nations, with over two million bone-grafting surgeries performed worldwide each year. A bone defect can be caused by trauma, infections, and tissue resections which can self-heal due to the osteoconductive nature of the native extracellular matrix components. However, natural self-healing is time-consuming, and new bone regeneration is slow, especially for large bone defects. It also remains a clinical challenge for surgeons to have a suitable bone substitute. To date, there are numerous potential treatments for bone grafting, including gold-standard autografts, allograft implantation, xenografts, or bone graft substitutes. Tricalcium phosphate (TCP) and hydroxyapatite (HA) are the most extensively used and studied bone substitutes due to their similar chemical composition to bone. The scaffolds should be testedin vivoandin vitrousing suitable animal models to ensure that the biomaterials work effectively as implants. Hence, this article aims to familiarize readers with the most frequently used animal models for biomaterials testing and highlight the available literature forin vivostudies using small and large animal models. This review summarizes the bioceramic materials, particularly HA andβ-TCP scaffolds, for bone defects in small and large animal models. Besides, the design considerations for the pre-clinical animal model selection for bone defect implants are emphasized and presented.
Collapse
Affiliation(s)
- Nik Nur Farisha Nik Md Noordin Kahar
- Biomaterials Niche Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300 Penang, Malaysia
| | - Nurazreena Ahmad
- Biomaterials Niche Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300 Penang, Malaysia
| | - Mariatti Jaafar
- Biomaterials Niche Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300 Penang, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Abdul Razak Sulaiman
- Department of Orthopedics, School of Medical Science, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zuratul Ain Abdul Hamid
- Biomaterials Niche Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300 Penang, Malaysia
| |
Collapse
|
16
|
Kadkhodaie-Elyaderani A, de Lama-Odría MDC, Rivas M, Martínez-Rovira I, Yousef I, Puiggalí J, del Valle LJ. Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers. Int J Mol Sci 2022; 23:ijms23031282. [PMID: 35163204 PMCID: PMC8836174 DOI: 10.3390/ijms23031282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanoparticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaffolds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles’ crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concentrations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie-Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
| | - Maria del Carmen de Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
| | - Manuel Rivas
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
| | - Immaculada Martínez-Rovira
- MIRAS Beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, E-08290 Cerdanyola del Vallès, Barcelona, Spain; (I.M.-R.); (I.Y.)
- Ionizing Radiation Research Group, Physics Department, Universitat Autònoma de Barcelona (UAB), E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- MIRAS Beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, E-08290 Cerdanyola del Vallès, Barcelona, Spain; (I.M.-R.); (I.Y.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, E-08028 Barcelona, Spain
- Correspondence: (J.P.); (L.J.d.V.)
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
- Correspondence: (J.P.); (L.J.d.V.)
| |
Collapse
|
17
|
Lin C, Wang Y, Huang Z, Wu T, Xu W, Wu W, Xu Z. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. Int J Bioprint 2021; 7:426. [PMID: 34805599 PMCID: PMC8600304 DOI: 10.18063/ijb.v7i4.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.
Collapse
Affiliation(s)
- Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Yaocheng Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Zhengyu Huang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Wenming Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Zhibiao Xu
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
18
|
Alturki AM, Abulyazied DE, Taha MA, Abomostafa HM, Youness RA. A Study to Evaluate the Bioactivity Behavior and Electrical Properties of Hydroxyapatite/Ag2O-Borosilicate Glass Nanocomposites for Biomedical Applications. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02100-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Wang G, Zhu Y, Zan X, Li M. Endowing Orthopedic Implants' Antibacterial, Antioxidation, and Osteogenesis Properties Through a Composite Coating of Nano-Hydroxyapatite, Tannic Acid, and Lysozyme. Front Bioeng Biotechnol 2021; 9:718255. [PMID: 34350164 PMCID: PMC8327088 DOI: 10.3389/fbioe.2021.718255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
There is a substantial global market for orthopedic implants, but these implants still face the problem of a high failure rate in the short and long term after implantation due to the complex physiological conditions in the body. The use of multifunctional coatings on orthopedic implants has been proposed as an effective way to overcome a range of difficulties. Here, a multifunctional (TA@HA/Lys)n coating composed of tannic acid (TA), hydroxyapatite (HA), and lysozyme (Lys) was fabricated in a layer-by-layer (LBL) manner, where TA deposited onto HA firmly stuck Lys and HA together. The deposition of TA onto HA, the growth of (TA@HA/Lys)n, and multiple related biofunctionalities were thoroughly investigated. Our data demonstrated that such a hybrid coating displayed antibacterial and antioxidant effects, and also facilitated the rapid attachment of cells [both mouse embryo osteoblast precursor cells (MC3T3-E1) and dental pulp stem cells (DPSCs)] in the early stage and their proliferation over a long period. This accelerated osteogenesis in vitro and promoted bone formation in vivo. We believe that our findings and the developed strategy here could pave the way for multifunctional coatings not only on orthopedic implants, but also for additional applications in catalysts, sensors, tissue engineering, etc.
Collapse
Affiliation(s)
- Guofeng Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yaxin Zhu
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingjie Zan
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Meng Li
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Synthesis, Structural and Biomedical Characterization of Hydroxyapatite/Borosilicate Bioactive Glass Nanocomposites. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02070-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Cerium doped ZIF nanoparticles and hydroxyapatite co‐deposited coating on titanium dioxide nanotubes array exhibiting biocompatibility and antibacterial property. NANO SELECT 2021. [DOI: 10.1002/nano.202000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Han LS, Keillor RB, Weatherhead RG. Case series of shrinking hydroxyapatite orbital implants. Br J Ophthalmol 2021; 105:1338-1340. [PMID: 34039563 DOI: 10.1136/bjophthalmol-2021-319397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND An orbital implant is used after enucleation or evisceration surgery to replace the volume lost and to aid in prosthesis fitting and movement. Different materials have been used through the years. The authors noted that with bone-derived hydroxyapatite orbital implants, some patients lose their orbital volume. METHODS The operating theatre record was searched to find patients who had their hydroxyapatite orbital implant removed at Dunedin Hospital, New Zealand, between 2011 and 2015. The original implant size and size at removal were noted. Histological results were noted. Medical notes were reviewed. RESULTS A total of six patients had hydroxyapatite orbital implants removed during this time. Four patients had implants that were smaller than their original sizes. All specimens had fibrovascular infiltration noted, three had chronic inflammatory cells and one had osteoclastic activity. CONCLUSIONS Bone-derived hydroxyapatite orbital implants can reduce in size, and this may occur due to osteoclastic activity. The surgeon must consider this scenario when choosing the type of implant to be used after enucleation or evisceration.
Collapse
Affiliation(s)
- Louis S Han
- Ophthalmology, Christchurch Hospital, Christchurch, New Zealand .,Ophthalmology, Greenlane Clinical Centre, Auckland, New Zealand
| | | | | |
Collapse
|
23
|
Zhang Z, Zhang Y, Zhang S, Yao K, Sun Y, Liu Y, Wang X, Huang W. Synthesis of rare earth doped MOF base coating on TiO2nanotubes arrays by electrochemical method using as antibacterial implant material. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Prakash VCA, Venda I, Thamizharasi V, Sathya E. Influence of DMSO-Sr on the Synthesis of Hydroxyapatite by Hydrothermal Coupled Microemulsion Method. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01723-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Naik VG, Kumar V, Bhasikuttan AC, Kadu K, Ramanan SR, Bhosle AA, Banerjee M, Chatterjee A. Solid-Supported Amplification of Aggregation Emission: A Tetraphenylethylene-Cucurbit[6]uril@Hydroxyapatite-Based Supramolecular Sensing Assembly for the Detection of Spermine and Spermidine in Human Urine and Blood. ACS APPLIED BIO MATERIALS 2021; 4:1813-1822. [PMID: 35014527 DOI: 10.1021/acsabm.0c01527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of sensitive and selective tools for the detection and quantification of biomarkers is important in the diagnosis and treatment of clinical diseases. Spermine (SP) and spermidine (SPD) act as biomarkers for early-stage diagnosis of cancer in humans as their increased levels in urine are indicative of abnormal biological processes associated with this fatal disease. In this study, we introduced a strategy for solid-supported amplification of the effective aggregation-induced-emission (AIE) effect of a water-soluble tetraphenylethylene (TPE)-based probe in developing a supramolecular sensing platform for the rapid, sensitive, and selective detection of SP and SPD in water. The nonemissive TPE derivative (TPEHP) forms a less emissive conjugate with hydroxyl cucurbit[6]uril (CB[6]OH) in water, which undergoes several-fold enhancement of effective emission upon electrostatic interaction with the solid surface of hydroxyapatite nanoparticles (HAp NPs), dispersed in the aqueous media. The corresponding three-component supramolecular assembly disrupts by the intrusion of SP and SPD in the CB[6] portal because of the stronger binding ability with CB[6], resulting in a turn-off fluorescence sensor for SP and SPD with enhanced sensitivity. The assembly-disassembly-based sensing mechanism was thoroughly demonstrated by carrying out isothermal titration calorimetry (ITC), spectroscopic, and microscopic experiments. The sensing system showed low limits of detection (LODs) of 1.4 × 10-8 and 3.6 × 10-8 M for SP and SPD, respectively, which are well below the required range for the early diagnosis of cancer. Besides, a good linear relationship was obtained for both SP and SPD. Nominal interference from various metal ions, anions, common chemicals, amino acids, and other biogenic amines makes this sensing platform suitable for the real-time, low-level measurement of spermine (and spermidine) in human urinary and blood samples.
Collapse
Affiliation(s)
- Viraj G Naik
- Department of Chemistry, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| | - Vikash Kumar
- Department of Chemistry, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400094, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kavita Kadu
- Department of Chemical Engineering, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| | - Sutapa Roy Ramanan
- Department of Chemical Engineering, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| | - Akhil A Bhosle
- Department of Chemistry, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale 403726, Goa, India
| |
Collapse
|
26
|
Raja N, Park H, Choi YJ, Yun HS. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:1123-1133. [PMID: 33541070 DOI: 10.1021/acsbiomaterials.0c01341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we fabricated unique coiled-structured bioceramics contained in hydrogel beads for simultaneous drug and cell delivery using a combination of bone cement chemistry and bioprinting and characterized them. The core of the calcium-deficient hydroxyl apatite (CDHA) contains quercetin, which is a representative phytoestrogen isolated from onions and apples, to control the metabolism of bone tissue regeneration through sustained release over a long period of time. The shell consists of an alginate hydrogel that includes preosteoblast MC3T3-E1 cells. Ceramic paste and hydrogel were simultaneously extruded to fabricate core-shell beads through the inner and outer nozzles, respectively, of a concentric nozzle system based on a material-extruding-based three-dimensional (3D) printing system. The formation of beads and the coiled ceramic core is related to both alginate concentration and printing conditions. The size of the microbeads and the thickness of the coiled structure could be controlled by adjusting the nozzle conditions. The whole process was carried out at physiological conditions (37 °C) to be gentle on the cells. The alginate shell undergoes solidification by cross-linking in CaCl2 or monocalcium phosphate monohydrate (MCPM) solution, while the hardening and cementation of the α-tricalcium phosphate (α-TCP) core to CDHA are subsequently initiated by immersion in phosphate-buffered saline solution. This process replaces the typical sintering of ceramic processing to prevent damage to the hydrogel, cells, and drugs in the beads. The cell-loaded beads were then cultured in cell culture media where the cells could maintain good viability during the entire testing period, which was over 50 days. Cell growth and elongation were observed even in the alginate along the CDHA coiled structure over time. Sustained release of quercetin without any initial burst was also confirmed during a test period of 120 days. These novel structured microbeads with multibiofunctionality can be used as new bone substitutes for hard tissue regeneration in indeterminate defect sites.
Collapse
Affiliation(s)
- Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.,Korea University of Science and Technology (UST), 217 Gajeong-ro, Yeseong-gu, Daejeon 305-350, Republic of Korea
| |
Collapse
|
27
|
Wang Z, Yang Y. Application of 3D Printing in Implantable Medical Devices. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653967. [PMID: 33521128 PMCID: PMC7817310 DOI: 10.1155/2021/6653967] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
3D printing technology is widely used in the field of implantable medical device in recent decades because of its advantages in high precision, complex structure, and high material utilization. Based on the characteristics of 3D printing technology, this paper reviews the manufacturing process, materials, and some typical products of 3D printing implantable medical devices and analyzes and summarizes the development trend of 3D printed implantable medical devices.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China
| | - Yan Yang
- College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
28
|
Tchoffo R, Ngassa GBP, Tonlé IK, Ngameni E. Electroanalysis of diquat using a glassy carbon electrode modified with natural hydroxyapatite and β-cyclodextrin composite. Talanta 2021; 222:121550. [DOI: 10.1016/j.talanta.2020.121550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023]
|
29
|
Burns SR, Dolgos MR. Sizing up (K 1−xNa x)NbO 3 films: a review of synthesis routes, properties & applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01092a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review discusses (K,Na)NbO3 thin films, with a focus on synthesis, chemically modifying properties, plus piezoelectric and biomedical KNN devices.
Collapse
|
30
|
Imani SM, Maclachlan R, Chan Y, Shakeri A, Soleymani L, Didar TF. Hierarchical Structures, with Submillimeter Patterns, Micrometer Wrinkles, and Nanoscale Decorations, Suppress Biofouling and Enable Rapid Droplet Digitization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004886. [PMID: 33230941 DOI: 10.1002/smll.202004886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Liquid repellant surfaces have been shown to play a vital role for eliminating thrombosis on medical devices, minimizing blood contamination on common surfaces as well as preventing non-specific adhesion. Herein, an all solution-based, easily scalable method for producing liquid repellant flexible films, fabricated through nanoparticle deposition and heat-induced thin film wrinkling that suppress blood adhesion, and clot formation is reported. Furthermore, superhydrophobic and hydrophilic surfaces are combined onto the same substrate using a facile streamlined process. The patterned superhydrophobic/hydrophilic surfaces show selective digitization of droplets from various solutions with a single solution dipping step, which provides a route for rapid compartmentalization of solutions into virtual wells needed for high-throughput assays. This rapid solution digitization approach is demonstrated for detection of Interleukin 6. The developed liquid repellant surfaces are expected to find a wide range of applications in high-throughput assays and blood contacting medical devices.
Collapse
Affiliation(s)
- Sara M Imani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Yuting Chan
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| |
Collapse
|
31
|
Ivorra-Martinez J, Quiles-Carrillo L, Boronat T, Torres-Giner S, A. Covas J. Assessment of the Mechanical and Thermal Properties of Injection-Molded Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)/Hydroxyapatite Nanoparticles Parts for Use in Bone Tissue Engineering. Polymers (Basel) 2020; 12:E1389. [PMID: 32575881 PMCID: PMC7362193 DOI: 10.3390/polym12061389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5-20 wt % range were incorporated into P(3HB-co-3HHx) by melt compounding and the resulting pellets were shaped into parts by injection molding. The addition of nHA improved the mechanical strength and the thermomechanical resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased the tensile (Et) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal stability of the parts also declined. The P(3HB-co-3HHx) parts filled with nHA contents of up to 10 wt % matched more closely the mechanical properties of the native bone in terms of strength and ductility when compared with metal alloys and other biopolymers used in bone tissue engineering. This fact, in combination with their biocompatibility, enables the development of nanocomposite parts to be applied as low-stress implantable devices that can promote bone reconstruction and be reabsorbed into the human body.
Collapse
Affiliation(s)
- Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.I.-M.); (L.Q.-C.); (T.B.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.I.-M.); (L.Q.-C.); (T.B.)
| | - Teodomiro Boronat
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.I.-M.); (L.Q.-C.); (T.B.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - José A. Covas
- Institute for Polymers and Composites, University of Minho, 4804-533 Guimarães, Portugal
| |
Collapse
|
32
|
Macrophage Transplantation Fails to Improve Repair of Critical-Sized Calvarial Defects. J Craniofac Surg 2020; 30:2640-2645. [PMID: 31609958 DOI: 10.1097/scs.0000000000005797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Over 500,000 bone grafting procedures are performed every year in the United States for neoplastic and traumatic lesions of the craniofacial skeleton, costing $585 million in medical care. Current bone grafting procedures are limited, and full-thickness critical-sized defects (CSDs) of the adult human skull thus pose a substantial reconstructive challenge for the craniofacial surgeon. Cell-based strategies have been shown to safely and efficaciously accelerate the rate of bone formation in CSDs in animals. The authors recently demonstrated that supraphysiological transplantation of macrophages seeded in pullalan-collagen composite hydrogels significantly accelerated wound healing in wild type and diabetic mice, an effect mediated in part by enhancing angiogenesis. In this study, the authors investigated the bone healing effects of macrophage transplantation into CSDs of mice. METHODS CD1 athymic nude mice (60 days of age) were anesthetized, and unilateral full-thickness critical-sized (4 mm in diameter) cranial defects were created in the right parietal bone, avoiding cranial sutures. Macrophages were isolated from FVB-L2G mice and seeded onto hydroxyapatite-poly (lactic-co-glycolic acid) (HA-PLGA) scaffolds (1.0 × 10 cells per CSD). Scaffolds were incubated for 24 hours before they were placed into the CSDs. Macrophage survival was assessed using three-dimensional in vivo imaging system (3D IVIS)/micro-CT. Micro-CT at 0, 2, 4, 6, and 8 weeks was performed to evaluate gross bone formation, which was quantified using Adobe Photoshop. Microscopic evidence of bone regeneration was assessed at 8 weeks by histology. Bone formation and macrophage survival were compared at each time point using independent samples t tests. RESULTS Transplantation of macrophages at supraphysiological concentration had no effect on the formation of bones in CSDs as assessed by either micro-CT data at any time point analyzed (all P > 0.05). These results were corroborated by histology. 3D IVIS/micro-CT demonstrated survival of macrophages through 8 weeks. CONCLUSION Supraphysiologic delivery of macrophages to CSDs of mice had no effect on bone formation despite survival of transplanted macrophages through to 8 weeks posttransplantation. Further research into the physiological effects of macrophages on bone regeneration is needed to assess whether recapitulation of these conditions in macrophage-based therapy can promote the healing of large cranial defects.
Collapse
|
33
|
Kim Y, Lim JY, Yang GH, Seo JH, Ryu HS, Kim G. 3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Zafar MJ, Zhu D, Zhang Z. 3D Printing of Bioceramics for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3361. [PMID: 31618857 PMCID: PMC6829398 DOI: 10.3390/ma12203361] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
Bioceramics have frequent use in functional restoration of hard tissues to improve human well-being. Additive manufacturing (AM) also known as 3D printing is an innovative material processing technique extensively applied to produce bioceramic parts or scaffolds in a layered perspicacious manner. Moreover, the applications of additive manufacturing in bioceramics have the capability to reliably fabricate the commercialized scaffolds tailored for practical clinical applications, and the potential to survive in the new era of effective hard tissue fabrication. The similarity of the materials with human bone histomorphometry makes them conducive to use in hard tissue engineering scheme. The key objective of this manuscript is to explore the applications of bioceramics-based AM in bone tissue engineering. Furthermore, the article comprehensively and categorically summarizes some novel bioceramics based AM techniques for the restoration of bones. At prior stages of this article, different ceramics processing AM techniques have been categorized, subsequently, processing of frequently used materials for bone implants and complexities associated with these materials have been elaborated. At the end, some novel applications of bioceramics in orthopedic implants and some future directions are also highlighted to explore it further. This review article will help the new researchers to understand the basic mechanism and current challenges in neophyte techniques and the applications of bioceramics in the orthopedic prosthesis.
Collapse
Affiliation(s)
| | - Dongbin Zhu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Zhengyan Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
35
|
Dulski M, Dudek K, Chalon D, Kubacki J, Sulowicz S, Piotrowska-Seget Z, Mrozek-Wilczkiewicz A, Gawecki R, Nowak A. Toward the Development of an Innovative Implant: NiTi Alloy Functionalized by Multifunctional β-TCP+Ag/SiO 2 Coatings. ACS APPLIED BIO MATERIALS 2019; 2:987-998. [PMID: 35021389 DOI: 10.1021/acsabm.8b00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, one of the more important and costly problems of modern medicine is the need to replace or supplement organs in order to improve the quality of human life. In this field, promising solutions seem to have been implants which are based on NiTi alloys with shape memory effects. Unfortunately, this material is susceptible to the corrosion and release of toxic nickel to the human organism. Hence, its application as a long-term material is strongly limited. Therefore, this paper presents a new solution which should help to improve the functionality of the NiTi alloy and elongate its medical stability to use. The idea was focused on functionalization of the implant surface by a biocompatible, multifunctional coating without any impact on the features of the substrate, i.e., the martensitic transformation responsible for shape memory effects. For this purpose, we prepared a colloidal suspension, composed of β-TCP (particle size ∼450 nm) and the Ag/SiO2 nanocomposite which due to the electrophoretic deposition (EPD) led to the formation of structurally atypical calcium phosphosilicate coating. Those biomaterials formed a crack-free coating, adhering well to the NiTi surface when distributed over the entire surface, with low concentration of metallic and oxide silver (<3 at. %). At the same time, the coat-forming materials had resulted in the growth of a Gram-negative bacterial biofilm. Additionally, the additive of the silver-silica composite enhances cell proliferation, effectively a few times higher than commonly used coat-forming materials (e.g., pure β-TCP).
Collapse
Affiliation(s)
- Mateusz Dulski
- Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Karolina Dudek
- Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Toszecka 99, 44-100 Gliwice, Poland
| | - Damian Chalon
- Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Jerzy Kubacki
- A. Chelkowski Institute of Physics, University of Silesia,75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Slawomir Sulowicz
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.,A. Chelkowski Institute of Physics, University of Silesia,75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Robert Gawecki
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.,A. Chelkowski Institute of Physics, University of Silesia,75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Anna Nowak
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.,A. Chelkowski Institute of Physics, University of Silesia,75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
36
|
Chen K, Ustriyana P, Moore F, Sahai N. Biological Response of and Blood Plasma Protein Adsorption on Silver-Doped Hydroxyapatite. ACS Biomater Sci Eng 2019; 5:561-571. [DOI: 10.1021/acsbiomaterials.8b00996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kexun Chen
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325-3909, United States
| | - Putu Ustriyana
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325-3909, United States
| | - Francisco Moore
- Department of Biology, The University of Akron, 235 Carroll Street, Akron, Ohio 44325-3908, United States
- Integrated Bioscience Program, The University of Akron, 235 Carroll Street, Akron, Ohio 44325-3909, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325-3909, United States
- Integrated Bioscience Program, The University of Akron, 235 Carroll Street, Akron, Ohio 44325-3909, United States
- Department of Geosciences, The University of Akron, Crouse Hall 114, Akron, Ohio 44325-3909, United States
| |
Collapse
|
37
|
Radha G, Venkatesan B, Rajashree P, Vellaichamy E, Balakumar S. Insights into the apatite mineralization potential of thermally processed nanocrystalline Ca10−xFex(PO4)6(OH)2. NEW J CHEM 2019. [DOI: 10.1039/c8nj03579b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal treatment of Ca10−xFex(PO4)6(OH)2 at different temperatures had an effect on the mineralization potential under non-cellular and cellular conditions by releasing its bioactive ions at optimal or excessive levels.
Collapse
Affiliation(s)
- G. Radha
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600025
- India
| | | | - P. Rajashree
- Centre for Advanced Study in Crystallography and Biophysics
- University of Madras
- Chennai – 600025
- India
| | | | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600025
- India
| |
Collapse
|
38
|
Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent 2019; 80:1-14. [DOI: 10.1016/j.jdent.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
|
39
|
Increased Internal Porosity and Surface Area of Hydroxyapatite Accelerates Healing and Compensates for Low Bone Marrow Mesenchymal Stem Cell Concentrations in Critically-Sized Bone Defects. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For clinical treatment of skeletal defects, osteoinductive scaffolds must have the ability to conform to the unique geometry of the injury site without sacrificing biologically favorable properties, including porosity. This investigation seeks to combine the osteoinductive properties of porous hydroxyapatite (HA) scaffolds with the beneficial handling characteristics of granules or putties, while evaluating the effects of mesenchymal stem cell (MSC) concentration on the composite grafts’ ability to regenerate bone in vivo. The results demonstrate that porous HA granules regenerate significantly larger volumes of bone compared to non-porous HA. Increased MSC concentrations in autologous bone marrow aspirate (BMA) contributed to greater bone regeneration. This effect was most predominant with non-porous HA. While the extent of bone regeneration using non-porous HA was strongly correlated with MSC concentration of the marrow, porous HA microparticles combined with autologous BMA were successful in faster treatment of critically-sized bone defects and with less dependence on the MSC concentration than non-porous HA.
Collapse
|
40
|
Hu B, Li Y, Wang M, Zhu Y, Zhou Y, Sui B, Tan Y, Ning Y, Wang J, He J, Yang C, Zou D. Functional reconstruction of critical-sized load-bearing bone defects using a Sclerostin-targeting miR-210-3p-based construct to enhance osteogenic activity. Acta Biomater 2018; 76:275-282. [PMID: 29898419 DOI: 10.1016/j.actbio.2018.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
A considerable amount of research has focused on improving regenerative therapy strategies for repairing defects in load-bearing bones. The enhancement of tissue regeneration with microRNAs (miRNAs) is being developed because miRNAs can simultaneously regulate multiple signaling pathways in an endogenous manner. In this study, we developed a miR-210-based bone repair strategy. We identified a miRNA (miR-210-3p) that can simultaneously up-regulate the expression of multiple key osteogenic genes in vitro. This process resulted in enhanced bone formation in a subcutaneous mouse model with a miR-210-3p/poly-l-lactic acid (PLLA)/bone marrow-derived stem cell (BMSC) construct. Furthermore, we constructed a model of critical-sized load-bearing bone defects and implanted a miR-210-3p/β-tricalcium phosphate (β-TCP)/bone mesenchymal stem cell (BMSC) construct into the defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. We also identified a new mechanism by which miR-210-3p regulates Sclerostin protein levels. This miRNA-based strategy may yield novel therapeutic methods for the treatment of regenerative defects in vital load-bearing bones by utilizing miRNA therapy for tissue engineering. STATEMENT OF SIGNIFICANCE The destroyed maxillofacial bone reconstruction is still a real challenge for maxillofacial surgeon, due to that functional bone reconstruction involved load-bearing. Base on the above problem, this paper developed a novel miR-210-3p/β-tricalcium phosphate (TCP)/bone marrow-derived stem cell (BMSC) construct (miR-210-3p/β-TCP/BMSCs), which lead to functional reconstruction of critical-size mandible bone defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. In addition, we also found the mechanism of how the delivered microRNA activated the signaling pathways of endogenous stem cells, leading to the defect regeneration. This miRNA-based strategy can be used to regenerate defects in vital load-bearing bones, thus addressing a critical challenge in regenerative medicine by utilizing miRNA therapy for tissue engineering.
Collapse
Affiliation(s)
- Bin Hu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200001, China
| | - Yan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Mohan Wang
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, China
| | - Youming Zhu
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, China
| | - Yong Zhou
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, China
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | - Yu Tan
- Second Dental Clinic, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200001, China
| | - Yujie Ning
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China
| | - Jiacai He
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200001, China
| | - Duohong Zou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200001, China.
| |
Collapse
|
41
|
Venkatesan J, Rekha PD, Anil S, Bhatnagar I, Sudha PN, Dechsakulwatana C, Kim SK, Shim MS. Hydroxyapatite from Cuttlefish Bone: Isolation, Characterizations, and Applications. BIOTECHNOL BIOPROC E 2018; 23:383-393. [DOI: 10.1007/s12257-018-0169-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023]
|
42
|
Devi KB, Tripathy B, Kumta PN, Nandi SK, Roy M. In Vivo Biocompatibility of Zinc-Doped Magnesium Silicate Bio-Ceramics. ACS Biomater Sci Eng 2018; 4:2126-2133. [DOI: 10.1021/acsbiomaterials.8b00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K. Bavya Devi
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Bipasa Tripathy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
43
|
Pokhrel S. Hydroxyapatite: Preparation, Properties and Its Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aces.2018.84016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Elbadawi M, Shbeh M. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion. J Mech Behav Biomed Mater 2018; 77:422-433. [DOI: 10.1016/j.jmbbm.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/02/2023]
|
45
|
Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:387-396. [DOI: 10.1016/j.msec.2017.05.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
|
46
|
|
47
|
Mbarki M, Sharrock P, Fiallo M, ElFeki H. Hydroxyapatite bioceramic with large porosity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:985-990. [DOI: 10.1016/j.msec.2017.03.097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/05/2017] [Accepted: 03/12/2017] [Indexed: 11/25/2022]
|
48
|
Han S, Ning Z, Chen K, Zheng J. Preparation and tribological properties of Fe-hydroxyapatite bioceramics. BIOSURFACE AND BIOTRIBOLOGY 2017. [DOI: 10.1016/j.bsbt.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Yoon D, Kang BJ, Kim Y, Lee SH, Rhew D, Kim WH, Kweon OK. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model. J Vet Sci 2016; 16:397-404. [PMID: 26119162 PMCID: PMC4701731 DOI: 10.4142/jvs.2015.16.4.397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/08/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022] Open
Abstract
Composite biological and synthetic grafts with progenitor cells offer an alternative approach to auto- or allografts for fracture repair. This study was conducted to evaluate osteogenesis of autologous serum-derived albumin (ASA) scaffolds seeded with canine adipose tissue-derived mesenchymal stem cells (Ad-MSCs) in a canine segmental bone defect model. ASA scaffold was prepared with canine serum using cross-linking and freeze-drying procedures. Beta-tricalcium phosphate (β-TCP) was mixed at the cross-linking stage. Ad-MSCs were seeded into the scaffold and incubated for one day before implantation. After 16 weeks, the grafts were harvested for histological analysis. The dogs were divided into five groups: control, ASA scaffolds with and without Ad-MSCs, and ASA scaffolds including β-TCP with and without Ad-MSCs. ASA scaffolds with Ad-MSCs had a significantly larger area of increased opacity at the proximal and distal host cortex-implant interfaces in radiographs 16 weeks after implantation compared to the groups with β-TCP (p < 0.05). Histomorphometric analysis showed that ASA scaffolds with Ad-MSCs had significantly greater new bone formation than other groups (p < 0.05). These results suggest that Ad-MSCs seeded into ASA scaffolds enhanced osteogenesis in the bone defect model, but that β-TCP in the ASA scaffold might prevent penetration of the cells required for bone healing.
Collapse
Affiliation(s)
- Daeyoung Yoon
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Yongsun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seung Hoon Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Daeun Rhew
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Wan Hee Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
50
|
Aydin HM, Pi·şki·n E, Çalimli A. Microporous Scaffolds from Poly(Lactide-Co-∊-Caprolactone) Composites with Hydroxyapatite and Tricalcium Phosphates Using Supercritical CO2 for Bone Tissue Engineering. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504046688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A copolymer of L-lactide and ∊-caprolactone ( M n:73,523, M w: 127,990 and PI: 1.74) was synthesized by ring-opening polymerization and confirmed by FTIR, 1 H-NMR and DSC. The copolymer ratio of L-lactide to ∊-caprolactone, determined by 1H-NMR, was 89/11. Specific amounts of hydroxyapatite or tricalcium phosphate were blended in the copolymer matrix to form new composites. Films were made by solvent casting the copolymer and the composite materials. The films were subjected to supercritical CO2 at 3300psi and 70°C to create porous structures. The pore sizes were in the range of 40–80 μm. The porous films (both copolymer and composite) degraded in Ringer solutions much faster than corresponding untreated non-porous films.
Collapse
Affiliation(s)
- Hali·l Murat Aydin
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, and TüBI·TAK, Center of Excellence: BI·YOMüH, Beytepe, 06532, Ankara, Turkey
| | - Erhan Pi·şki·n
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, and TüBI·TAK, Center of Excellence: BI·YOMüH, Beytepe, 06532, Ankara, Turkey
| | - Ayla Çalimli
- Chemical Engineering Department, Ankara University, Tandoğ, 06100, Ankara, Turkey
| |
Collapse
|