1
|
Bezrodnykh EA, Holyavka MG, Belyaeva TN, Pankova SM, Artyukhov VG, Antonov YA, Berezin BB, Blagodatskikh IV, Tikhonov VE. Viability and Surface Morphology of Human Erythrocytes upon Interaction with Chitosan Derivatives. ACS APPLIED BIO MATERIALS 2025; 8:1909-1920. [PMID: 39930723 DOI: 10.1021/acsabm.4c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The viability and surface morphology of human erythrocytes upon interaction with oligochitosan (OCH), having a molecular weight (MW) of 6.2-15.4 kDa and a degree of acetylation (DA) of 1-2%, and interaction with N-reacetylated OCH (ROCH) with a 6.4-14.3 kDa MW and 24-30% DA were studied in isotonic saline phosphate buffer with pH 7.4. It was shown that the use of OCH caused high hemolysis and irreversible transformation of the erythrocytes. Thus, OCH having a 6.2 kDa MW and 1% DA, used at a 0.01% concentration, induced high hemolysis of erythrocytes, and their viability did not exceed the maximal value of 60%. Among the nonhemolyzed erythrocytes, about 20% reversibly transformed erythrocytes and about 20% irreversibly transformed erythrocytes were observed in comparison with the control experiments. For the first time, it was shown that ROCHs had a much lower impact on the cells. Thus, about 82% of the erythrocytes had a discoid form, while 12% and ∼6% of the cells underwent reversible and irreversible transformations, respectively, in the presence of ROCH (MW 6.4, DA 24%), used at a 0.01% concentration. It was observed that an increase in the MW and concentration of chitosan derivatives led to a decrease in the cell viability. It was supposed that the complexation of chitosan derivatives with phosphate counterions in the buffer might reduce the impact of chitosan derivatives on the viability and surface morphology of erythrocytes due to a reduction in the average zeta-potential of chitosan derivative/phosphate complexes from positive to negative values. These results supported the suggestion that reacetylation and reduction of the overall charge of chitosan molecules could improve the compatibility of chitosan derivatives with erythrocytes. This finding opens an opportunity for the construction of chitosan derivatives and their complexes that are compatible with other blood forming elements.
Collapse
Affiliation(s)
- Evgeniya A Bezrodnykh
- A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 119991, Vavilov st. 28, Moscow, Russia
| | - Marina G Holyavka
- Voronezh State University (VSU), 364018 Voronezh, University sq. 1, Russia
| | - Tatyana N Belyaeva
- Voronezh State University (VSU), 364018 Voronezh, University sq. 1, Russia
| | - Svetlana M Pankova
- Voronezh State University (VSU), 364018 Voronezh, University sq. 1, Russia
| | - Valery G Artyukhov
- Voronezh State University (VSU), 364018 Voronezh, University sq. 1, Russia
| | - Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics (IBCP), Russian Academy of Sciences, 119334, Kosigin st. 4, Moscow, Russia
| | - Boris B Berezin
- A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 119991, Vavilov st. 28, Moscow, Russia
| | - Inesa V Blagodatskikh
- A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 119991, Vavilov st. 28, Moscow, Russia
| | - Vladimir E Tikhonov
- A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 119991, Vavilov st. 28, Moscow, Russia
| |
Collapse
|
2
|
Mahboubi Kancha M, Mehrabi M, Aghaie F, Bitaraf FS, Dehghani F, Bernkop-Schnürch A. Preparation and characterization of PVA/chitosan nanofibers loaded with Dragon's blood or poly helixan as wound dressings. Int J Biol Macromol 2024; 272:132844. [PMID: 38834119 DOI: 10.1016/j.ijbiomac.2024.132844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Nanofibers have been investigated in regenerative medicine. Dragon's blood (DB)- and poly helixan PF (PHPF) are natural materials used in cosmetics. Herein, we generated DB- and PHPF-loaded polyvinyl alcohol/chitosan (PVA/CS/DB and PVA/CS/PHPF, respectively) nanofibers. PVA/CS/DB and PVA/CS/PHPF nanofibers had an average diameter of 547.5 ± 17.13 and 521 ± 24.67 nm, respectively as assessed by SEM, and a degradation rate of 43.1 and 47.6 % after 14 days, respectively. PVA/CS/DB and PVA/CS/PHPF nanofibers had a hemolysis rate of 0.10 and 0.39 %, respectively, and a water vapor transmission rate of ∼2200 g.m-2.day-1. These nanofibers exhibited favorable antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis in vitro. PVA/CS/DB and PVA/CS/PHPF nanofibers demonstrated a sustained release of 77.91 and 76.55 % over 72 h. PVA/CS/DB and PVA/CS/PHPF nanofibers had a high rate of cytocompatibility and significantly improved the viability of NIH/3T3 cells as compared with free drugs or unloaded nanofibers. Histological inspection via H&E and Verhoeff's staining demonstrated PVA/CS/DB and PVA/CS/PHPF nanofibers enhanced the wound healing and damaged tissue recovery of unsplinted wound models by promoting epithelial layer formation, collagen deposition, and enhancing the presence of fibroblasts. Conclusively, PVA/CS/DB and PVA/CS/PHPF can be introduced as potential wound dressing candidates with favorable properties.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Faeze Aghaie
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Farzaneh Dehghani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck 6020, Austria
| |
Collapse
|
3
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
4
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
5
|
Rodrigues T, Mota R, Gales L, Tamagnini P, Campo-Deaño L. Microrheological characterisation of Cyanoflan in human blood plasma. Carbohydr Polym 2024; 326:121575. [PMID: 38142107 DOI: 10.1016/j.carbpol.2023.121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023]
Abstract
Naturally occurring polysaccharidic biopolymers released by marine cyanobacteria are of great interest for numerous biomedical applications, such as wound healing and drug delivery. Such polymers generally exhibit high molecular weight and an entangled structure that impact the rheology of biological fluids. However, biocompatibility tests focus not so much on rheological properties as on immune response. In the present study, the rheological behaviour of native blood plasma as a function of the concentration of a cyanobacterium biopolymer is investigated via multiple particle tracking microrheology, which measures the Brownian motion of probes embedded in a sample, and cryogenic scanning electron microscope microstructural characterisation. We use Cyanoflan as the biopolymer of choice, and profit from our knowledge of its chemical structure and its exciting potential for biotechnological applications. A sol-gel transition is identified using time-concentration superposition and the power-law behaviour of the incipient network's viscoelastic response is observed in a variety of microrheological data. Our results point to rheology-based principles for blood compatibility tests by facilitating the assignment of quantitative values to specific properties, as opposed to more heuristic approaches.
Collapse
Affiliation(s)
- T Rodrigues
- CEFT - Centro de Estudos de Fenómenos de Transporte, Depto. de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Laboratório Associado em Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - R Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - L Gales
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Depto. de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal
| | - L Campo-Deaño
- CEFT - Centro de Estudos de Fenómenos de Transporte, Depto. de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Laboratório Associado em Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Ji G, Li Y, Zhang Z, Li H, Sun P. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma. Heliyon 2024; 10:e24667. [PMID: 38312669 PMCID: PMC10834828 DOI: 10.1016/j.heliyon.2024.e24667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, is often diagnosed at an advanced stage. Surgical interventions are often ineffective, leading HCC patients to rely on systemic chemotherapy. Unfortunately, commonly used chemotherapeutic drugs have limited efficacy and can adversely affect vital organs, causing significant physical and psychological distress for patients. Natural medicine monomers (NMMs) have shown promising efficacy and safety profiles in HCC treatment, garnering attention from researchers. In recent years, the development of novel targeted drug delivery systems (TDDS) combining NMMs with nanocarriers has emerged. These TDDS aim to concentrate drugs effectively in HCC cells by manipulating the characteristics of nanomedicines, leveraging receptor and ligand interactions, and utilizing endogenous stimulatory responses to promote specific nanomedicines distribution. This comprehensive review presents recent research on TDDS for HCC treatment using NMMs from three perspectives: passive TDDS, active TDDS, and stimuli-responsive drug delivery systems (SDDS). It consolidates the current state of research on TDDS for HCC treatment with NMMs and highlights the potential of these innovative approaches in improving treatment outcomes. Moreover, the review also identifies research gaps in the related fields to provide references for future targeted therapy research in HCC.
Collapse
Affiliation(s)
- Guanjie Ji
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Li
- Department of Clinical Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Ping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
7
|
Zhang J, Su L, Liu Z, Tang J, Zhang L, Li Z, Zhou D, Sun Z, Xi K, Lu P, Deng G. A responsive hydrogel modulates innate immune cascade fibrosis to promote ocular surface reconstruction after chemical injury. J Control Release 2024; 365:1124-1138. [PMID: 38123070 DOI: 10.1016/j.jconrel.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Following an ocular chemical injury, the release of neutrophil extracellular traps (NETs) triggers an innate immune cascade fibrotic effect involving macrophages (Mø), which limits corneal repair. However, the interplay and mechanisms between NETs and macrophages, as well as the coordination between the innate immunity and corneal repair, remain challenging issues. Using a co-culture system, we report that chemical stimulation exacerbates the accumulation of reactive oxygen species (ROS) within the polymorphonuclear neutrophils, leading to NET formation and the activation of M2 macrophages, ultimately inducing pathological fibrosis of the ocular surface through the IL-10/STAT3/TGF-β1/Smad2 axis. Inspired by the locally formed acidic microenvironment mediated by innate acute inflammatory stimulation, we further integrate sericin with oxidized chitosan nanoparticles loaded with black phosphorus quantum dots (BPQDs) using Schiff base chemistry to construct a functional pH-responsive hydrogel. Following corneal injury, the hydrogel selectively releases BPQDs in response to the acidic environment, inhibiting the innate immune cascade fibrosis triggered by the PMN-ROS-NETs. Thus, corneal pathological fibrosis is alleviated and reshaping of the ocular surface takes place. These results represent a refinement of the mechanism of inherent immune effector cell interactions, and provide new research ideas for the construction of nano biomaterials that regulate pathological fibrosis.
Collapse
Affiliation(s)
- Jun Zhang
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China; Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Lei Su
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Street, SuZhou, Jiangsu 215000, China
| | - Zhinan Liu
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China
| | - Jincheng Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Lichen Zhang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Ziang Li
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Dong Zhou
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China
| | - Zhuo Sun
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Guohua Deng
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
8
|
Vishnevetskii DV, Mekhtiev AR, Averkin DV, Polyakova EE. Cysteine-Silver-Polymer Systems for the Preparation of Hydrogels and Films with Potential Applications in Regenerative Medicine. Gels 2023; 9:924. [PMID: 38131910 PMCID: PMC10742544 DOI: 10.3390/gels9120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, the problem concerning the poorer mechanical properties of gels based on low molecular weight gelators (LMWGs)-L-cysteine and silver nitrate-was solved by the addition of various polymers-polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG)-to the initial cysteine-silver sol (CSS). The physicochemical methods of analysis-viscosimetry, UV spectroscopy, DLS, and SEM-identified that cysteine-silver hydrogels (CSG) based on PVA possess the best rheological properties and porous microstructure (the average pore size is 2-10 µm) compared to gels without the polymer or with PVP or PEG. Such gels are able to form cysteine-silver cryogels (CSC) and then porous cysteine-silver films (CSF) with an average pore size of 10-20 µm and good mechanical, swelling, and adhesion to skin characteristics as long as the structure of CSS particles remains stable. In vitro experiments have shown that hydrogels are non-toxic to normal human fibroblast cells. The obtained materials could potentially be applied to regenerative medicine.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| |
Collapse
|
9
|
Ghalayani Esfahani A, Sartori M, Bregoli C, Fiocchi J, Biffi CA, Tuissi A, Giavaresi G, Presentato A, Alduina R, De Luca A, Cabrini A, De Capitani C, Fini M, Gruppioni E, Lavorgna M, Ronca A. Bactericidal Activity of Silver-Doped Chitosan Coatings via Electrophoretic Deposition on Ti 6Al 4V Additively Manufactured Substrates. Polymers (Basel) 2023; 15:4130. [PMID: 37896373 PMCID: PMC10610813 DOI: 10.3390/polym15204130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.
Collapse
Affiliation(s)
- Arash Ghalayani Esfahani
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Chiara Bregoli
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Jacopo Fiocchi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Carlo Alberto Biffi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Ausonio Tuissi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Angela De Luca
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Alessia Cabrini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Cristina De Capitani
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Milena Fini
- Scientific Directorate, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Emanuele Gruppioni
- INAIL Centro Protesi, Via Rabuina 14, Vigorso di Budrio, 40054 Bologna, Italy;
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Alfredo Ronca
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| |
Collapse
|
10
|
Zhang J, Xi K, Deng G, Zou X, Lu P. Composite Hydrogel Modulates Intrinsic Immune-Cascade Neovascularization for Ocular Surface Reconstruction after Corneal Chemical Injury. Gels 2023; 9:676. [PMID: 37754358 PMCID: PMC10528829 DOI: 10.3390/gels9090676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Ocular alkali burns recruit neutrophils and triggers neutrophil extracellular trap (NET)-neovascularization cascade effects that limit ocular surface reconstruction and functional repair. However, effective inhibition of the release of neutrophil extracellular traps after a corneal chemical injury, coordination of intrinsic immunity with corneal repair, and exploration of more effective and non-invasive drug-delivery modes are still urgently needed. Using an in vitro coculture system, we found that an alkaline environment stimulates neutrophils to release NETs, which can be regulated by deoxyribonuclease I (DNase I). Inspired by this, we loaded DNase I, which effectively regulates NETs, onto chitosan nanoparticles and combined them with silk fibroin to construct a composite hydrogel that can sustainably regulate NETs. The hydrogel reduced neutrophil extracellular trap production by 50% and neovascularization by approximately 70% through sustained DNase I release after a corneal alkali burn. The complex hydrogel promotes ocular surface reconstruction by modulating the intrinsic immune-cascade neovascularization effect, providing a new research basis for the construction of nanobiomaterials that modulate pathological neovascularization.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215000, China;
- Department of Ophthalmology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou 213000, China; (G.D.); (X.Z.)
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215000, China;
| | - Guohua Deng
- Department of Ophthalmology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou 213000, China; (G.D.); (X.Z.)
| | - Xi Zou
- Department of Ophthalmology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou 213000, China; (G.D.); (X.Z.)
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215000, China;
| |
Collapse
|
11
|
Zhang R, Chang SJ, Jing Y, Wang L, Chen CJ, Liu JT. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr Polym 2023; 314:120890. [PMID: 37173038 DOI: 10.1016/j.carbpol.2023.120890] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Cartilage tissue engineering involves the invention of novel implantable cartilage replacement materials to help heal cartilage injuries that do not heal themselves, aiming to overcome the shortcomings of current clinical cartilage treatments. Chitosan has been widely used in cartilage tissue engineering because of its similar structure to glycine aminoglycan, which is widely distributed in connective tissues. The molecular weight, as an important structural parameter of chitosan, affects not only the method of chitosan composite scaffold preparation but also the effect on cartilage tissue healing. Thus, this review identifies methods for the preparation of chitosan composite scaffolds with low, medium and high molecular weights, as well as a range of chitosan molecular weights appropriate for cartilage tissue repair, by summarizing the application of different molecular weights of chitosan in cartilage repair in recent years.
Collapse
Affiliation(s)
- Runjie Zhang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yanzhen Jing
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiYuan Wang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Feng G, Huang H, Zhang M, Wu Z, Sun D, Chen Q, Yang D, Zheng Y, Chen Y, Jing X. Single Atom Iron-Doped Graphic-Phase C 3 N 4 Semiconductor Nanosheets for Augmented Sonodynamic Melanoma Therapy Synergy with Endowed Chemodynamic Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302579. [PMID: 37282773 PMCID: PMC10427360 DOI: 10.1002/advs.202302579] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 06/08/2023]
Abstract
Sonodynamic therapy (SDT) is a non-invasive therapeutic modality with high tissue-penetration depth to induce reactive oxygen species (ROS) generation for tumor treatment. However, the clinical translation of SDT is restricted seriously by the lack of high-performance sonosensitizers. Herein, the distinct single atom iron (Fe)-doped graphitic-phase carbon nitride (C3 N4 ) semiconductor nanosheets (Fe-C3 N4 NSs) are designed and engineered as chemoreactive sonosensitizers to effectively separate the electrons (e- ) and holes (h+ ) pairs, achieving high yields of ROS generation against melanoma upon ultrasound (US) activation. Especially, the single atom Fe doping not only substantially elevates the separation efficiency of the e- -h+ pairs involved in SDT, but also can serve as high-performance peroxidase mimetic enzyme to catalyze the Fenton reaction for generating abundant hydroxyl radicals, therefore synergistically augmenting the curative effect mediated by SDT. As verified by density functional theory simulation, the doping of Fe atom significantly promotes the charge redistribution in the C3 N4 -based NSs, which improves their synergistic SDT/chemodynamic activities. Both the in vitro and in vivo assays demonstrate that Fe-C3 N4 NSs feature an outstanding antitumor effect by aggrandizing the sono-chemodynamic effect. This work illustrates a unique single-atom doping strategy for ameliorating the sonosensitizers, and also effectively expands the innovative anticancer-therapeutic applications of semiconductor-based inorganic sonosensitizers.
Collapse
Affiliation(s)
- Guiying Feng
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| | - Hui Huang
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Min Zhang
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| | - Zhuole Wu
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| | - Dandan Sun
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| | - Qiqing Chen
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| | - Dayan Yang
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in MedicineShanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine200032ShanghaiP. R. China
| | - Yu Chen
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiangxiang Jing
- Department of UltrasonographyHainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University570311HaikouP. R. China
| |
Collapse
|
13
|
Nathan KG, Genasan K, Kamarul T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar Drugs 2023; 21:md21050304. [PMID: 37233498 DOI: 10.3390/md21050304] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. Preclinical studies showed that the PVA-CS scaffold can be fabricated and tailored to fit the specific needs of different tissues and organs. Additionally, PVA-CS can be combined with other materials and technologies to enhance its regenerative capabilities. Furthermore, PVA-CS represents a promising therapeutic solution for developing new and innovative TERM therapies. Therefore, in this review, we summarized the potential role and functions of PVA-CS in TERM applications.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Krishnamurithy Genasan
- Department of Physiology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Tunku Kamarul
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
14
|
Mobarakeh ZT, Hasanzadeh E, Farzin A, Goodarzi A, Farahani MS, Shirian S, Mahmoodi N, Zamani N, Karimi A, Ai J. Enhanced sciatic nerve regeneration with fibrin scaffold containing human endometrial stem cells and insulin encapsulated chitosan particles: An in vivo study. Injury 2023:S0020-1383(23)00082-7. [PMID: 36894467 DOI: 10.1016/j.injury.2023.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Based on recent advances in tissue engineering and stem cell therapy in nervous system diseases treatments, this study aimed to investigate sciatic nerve regeneration using human endometrial stem cells (hEnSCs) encapsulated fibrin gel containing chitosan nanoparticle loaded by insulin (Ins-CPs). Stem cells and also Insulin (Ins), which is a strong signaling molecule in peripheral nerve regeneration, play an important role in neural tissue engineering. METHODS The fibrin hydrogel scaffold containing insulin loaded chitosan particles was synthesized and characterized. Release profiles of insulin from hydrogel was determined through UV-visible spectroscopy. Also, human endometrial stem cells encapsulated in hydrogel and its cell biocompatibility were assigned. Furthermore, the sciatic nerve crush injury was carried out and prepared fibrin gel was injected at the crush injury site by an 18-gage needle. Eight and twelve weeks later, the recovery of motor and sensory function and histopathological evaluation were assessed. RESULTS The in vitro experiments showed that the insulin can promote hEnSCs proliferation within a certain concentration range. Animals' treatment confirmed that developed fibrin gel containing Ins-CPs and hEnSCs significantly improves motor function and sensory recovery. Hematoxylin and Eosin (H&E) images provided from cross-sectional and, longitudinal-sections of the harvested regenerative nerve showed that regenerative nerve fibers had been formed and accompanied with new blood vessels in the fibrin/insulin/hEnSCs group. CONCLUSION Our results demonstrated that the prepared hydrogel scaffolds containing insulin nanoparticles and hEnSCs could be considered as a potential biomaterial aimed at regeneration of sciatic nerves.
Collapse
Affiliation(s)
- Zahra Taherian Mobarakeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farzin
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Sagharjoghi Farahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Sharekord University, Shahrekord, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zamani
- Department of Obstetrics and Gynecology, Emam Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anita Karimi
- Chronic Respiratory Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules 2023; 28:molecules28041963. [PMID: 36838951 PMCID: PMC9959713 DOI: 10.3390/molecules28041963] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Collapse
|
16
|
In vitro evaluation of antibacterial activity and biocompatibility of synergistically cross-linked gelatin-alginate hydrogel beads as gentamicin carriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Chang HK, Yang DH, Ha MY, Kim HJ, Kim CH, Kim SH, Choi JW, Chun HJ. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydr Polym 2022; 287:119328. [DOI: 10.1016/j.carbpol.2022.119328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
|
18
|
Dubashynskaya NV, Bokatyi AN, Gasilova ER, Dobrodumov AV, Dubrovskii YA, Knyazeva ES, Nashchekina YA, Demyanova EV, Skorik YA. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications. Int J Biol Macromol 2022; 215:243-252. [PMID: 35724903 DOI: 10.1016/j.ijbiomac.2022.06.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 μg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskii 26, St. Petersburg, Petrodvorets, 198504, Russian Federation
| | - Ekaterina R Gasilova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Elena S Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
19
|
Trends in the Design and Evaluation of Polymeric Nanocarriers: The In Vitro Nano-Bio Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:19-41. [PMID: 35583639 DOI: 10.1007/978-3-030-88071-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Different types of natural and synthetic polymeric nanocarriers are being tested for diverse biomedical applications ranging from drug/gene delivery vehicles to imaging probes. The development of such innovative nanoparticulate systems (NPs) should include in the very beginning of their conception a comprehensive evaluation of the nano-bio interactions. Specifically, intrinsic physicochemical properties as size, surface charge and shape may have an impact on cellular uptake, intracellular trafficking, exocytosis and cyto- or genocompatibility. Those properties can be tuned for effectiveness purposes such as targeting intracellular organelles, but at the same time inducing unforeseen adverse nanotoxicological effects. Further, those properties may change due to the adsorption of biological components (e.g. proteins) with a tremendous impact on the cellular response. The evaluation of these NPs is highly challenging and has produced some controversial results. Future research work should focus on the standardization of analytical or computational methodologies, aiming the identification of toxicity trends and the generation of a useful meta-analysis database on polymeric nanocarriers.This chapter covers all the aforementioned aspects, emphasizing the importance of the in vitro cellular studies in the first stages of polymeric nanocarriers development.
Collapse
|
20
|
Asfour MH, Abd El-Alim SH, Awad GEA, Kassem AA. Chitosan/β-glycerophosphate in situ forming thermo-sensitive hydrogel for improved ocular delivery of moxifloxacin hydrochloride. Eur J Pharm Sci 2021; 167:106041. [PMID: 34655737 DOI: 10.1016/j.ejps.2021.106041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023]
Abstract
The aim of the current work is to develop a thermo-sensitive hydrogel system of moxifloxacin hydrochloride (MOX) for improved ocular delivery. Fifteen formulations were prepared at different concentrations of β-glycerophosphate disodium salt (β-GP) 12-20% (w/v) and chitosan (CS) 1.7-1.9% (w/v). The optimized MOX loaded thermo-sensitive hydrogel system (F8), consisting of CS (1.8%, w/v) and β-GP (16%, w/v), showed optimum gelation temperature (35 °C) and gelation time (2 min), thus was selected for further investigations. It showed a significant decrease (p < 0.05) in the zeta potential value compared to CS solution with a favorable pH value (7.1) and confirmed thermoreversible behavior. MOX loaded F8 displayed a porous structure under scanning electron microscopy. Rheological investigation of MOX loaded F8 revealed the presence of a strong hydrogel network with high elasticity along with a small loss factor of 0.08 indicating a great ease of gel formation. The release of MOX from F8 was found to be governed by a combined mechanism of diffusion and relaxation. Biological assessment of two concentrations of MOX loaded F8 (0.25 and 0.5%) was conducted using healthy and infected male albino New Zealand rabbits, where an improved and prolonged antibacterial activity against Staphylococcus aureus compared to plain MOX (0.5%), marketed MOX eye drops (0.5%), was shown. Moreover, histopathological examination of ocular tissues confirmed the antibacterial efficacy of the optimized formulation eight days post topical therapy. Consequently, the developed CS/β-GP thermo-sensitive hydrogel system (F8) reveals a promising potential for enhancing the ocular delivery of MOX for treatment of bacterial infections.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| | - Ghada Elsayed Ahmed Awad
- Chemistry of Natural and Microbial Products Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
21
|
pH responsive release of paclitaxel by self-assembling Chitosan-ethyl vanillin@GNRs nanocomposites. Int J Pharm 2021; 607:121047. [PMID: 34450226 DOI: 10.1016/j.ijpharm.2021.121047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022]
Abstract
Carboxylation chitosan achieved by alkalization linked with ethyl vanillin to obtain Chitosan-ethyl vanillin (EV-CMCS) compound through Schiff base reaction and confirmed by FT-IR, UV, XRD, TG and NMR. EV-CMCS refluxed with GNRs for acquisition of EV-CMCS@GNRs nanocomposites for PTX Loading and release. Results demonstrated that both EV-CMCS and EV-CMCS@GNRs are nanoscale composites with excellent solubilization due to their micelle structure taking CMC values of 0.06683 mg/mL and 0.06537 mg/mL. It was found that the loading and encapsulation rate of EV-CMCS and EV-CMCS@GNRs for PTX are 19.59~37.64% and 60.36~80.79% as well as 20.99~37.02% and 58.78~79.77%. Compared with only the delayed release of EV-CMCS that it have 11.5% and 18.7% accumulative release amount for 24 h and 14.9% and 23.7% for 48 h under both pH 6.8 and 7.4, the EV-CMCS@GNRs represent sudden release that it have an accumulative release amount of 90.2% for 24 h and 96.0% for 48 h at pH 6.8. It deduced that the broken Schiff base under acidic condition can increase CMC of EV-CMCS@GNRs, which offered an alternative way for paclitaxel delivery for tumor therapy.
Collapse
|
22
|
Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112298. [PMID: 34474849 DOI: 10.1016/j.msec.2021.112298] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Guided Bone Regeneration (GBR) is a widely used process for the treatment of periodontal defects to prevent the formation of surrounding soft tissue at the periodontal defect and to provide hard tissue regeneration. Recently GBR designs have focused on the development of resorbable natural polymer-based barrier membranes due to their biodegradability and excellent biocompatibility. The aim of this study is to fabricate a novel bilayer nanocomposite membrane with microporous sublayer composed of chitosan and Si doped nanohydroxyapatite particles (Si-nHap) and chitosan/PEO nanofiber upper layer. Bilayer membrane was designed to prevent epithelial and fibroblastic cell migration and growth impeding bone formation with its upper layer and to support osteogenic cell bioactivity at the defect site with its sublayer. Microporous and nanofiber layers were fabricated by using freeze-drying and electrospinning techniques respectively. The effect of Si-nHap content on the morphological, mechanical and physical properties of the composites were investigated using SEM, AFM, micro-Ct, compression test, water uptake capacity and enzymatic degradation study. Antimicrobial properties of nanocomposite membranes were investigated with tube dilution and disk diffusion methods. In vitro cytotoxicity of bilayer membranes was evaluated. Saos-2 and NIH/3T3 proliferation studies were carried out on each layer. In vitro bioactivity of Saos-2 and NIH/3T3 cells were evaluated with ALP activity and hydroxyproline content respectively. Results showed that Si-nHap incorporation enhanced the mechanical and physical properties as well as controlling biodegradability of the polymer matrix. Besides, Si-nHap loading induced the bioactivity of Saos-2 cells by enhancing cell attachment, spreading and biomineralization on the material surface. Thus, results supported that designed bilayer nanocomposite membranes can be used as a potential biomaterial for guided bone regeneration in periodontal applications.
Collapse
Affiliation(s)
- Sedef Tamburaci
- Izmir Institute of Technology, Graduate Program of Biotechnology and Bioengineering, Gulbahçe Campus, Urla, İzmir, Turkey
| | - Funda Tihminlioglu
- Izmir Institute of Technology, Department of Chemical Engineering, Gulbahçe Campus, Urla, İzmir, Turkey.
| |
Collapse
|
23
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
24
|
Optimizing Chitin Depolymerization by Lysozyme to Long-Chain Oligosaccharides. Mar Drugs 2021; 19:md19060320. [PMID: 34072871 PMCID: PMC8229320 DOI: 10.3390/md19060320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.
Collapse
|
25
|
Marapureddy SG, Hivare P, Kumar S, Gupta S, Thareja P. Carbamoylated chitosan hydrogels with improved viscoelastic properties and stability for potential 3D cell culture applications. Biomed Mater 2021; 16. [PMID: 33857925 DOI: 10.1088/1748-605x/abf88c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Abstract
We demonstrate a benign and straightforward method to modify the chitosan (CH) by carbamoylation. The free amines on CH are converted into carbamyl functionalities by reacting with potassium cyanate (KCNO). One wt% CH solution, when reacted with KCNO ⩾ 0.1 M, leads to the sol-gel transition of CH through the hydrogen bonding to form carbamoylated chitosan (CCH) hydrogel. Gelation time of CCH decreases with an increase in the KCNO concentration and an interconnected porous network is formed as observed under SEM. Rheological studies show that while one wt% CH solution is a viscous liquid, the CCH hydrogel with 0.5 M KCNO has a storage modulus (G') of 104Pa. The CCH hydrogel is proved to be non-cytotoxic and promotes the attachment and growth of the small lung cancer model A549, and the neuroblastoma SH-SY5Y cell lines. CCH hydrogel also promotes the differentiation of SH-SY5Y cells into neuronal cells, as supported by immunostaining and thus demonstrating its utility as a versatile scaffold for three-dimensional cell-culture systems.
Collapse
Affiliation(s)
| | - Pravin Hivare
- Biological Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Siddhant Kumar
- Biological Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Sharad Gupta
- Biological Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Prachi Thareja
- Chemical Engineering, Indian Institute of Technology, Gandhinagar, India
| |
Collapse
|
26
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
27
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, Wei G, Dong P, Ren M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol 2020; 166:1365-1376. [PMID: 33161079 DOI: 10.1016/j.ijbiomac.2020.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Phytophthora infestans, the pathogen of potato late blight which is a devastating disease of potatoes, causes stem and leaf rot, leading to significant economic losses. Chitosan is a naturally occurring polysaccharide with a broad spectrum of antimicrobial properties. However, the specific mechanism of chitosan on Phytophthora infestans has not been studied. In this study, we found that chitosan significantly inhibited the mycelial growth and spore germination of Phytophthora infestans in vitro, reduced the resistance of Phytophthora infestans to various adverse conditions, and it had synergistic effect with pesticides, making it a potential way to reduce the use of chemical pesticides. In addition, chitosan could induce resistance in potato pieces and leaves to Phytophthora infestans. Transcriptome analysis data showed that chitosan mainly affected cell growth of Phytophthora infestans, and most of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene ontology (GO) terms revolved in metabolic processes, cell membrane structure and function and ribosome biogenesis. Differentially expressed genes (DEGs) related to adverse stress and virulence were also discussed. On the whole, this study provided new ideas for the development of chitosan as an eco-friendly preparation for controlling potato late blight.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Ziyue You
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Yang Luo
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Chengji Yang
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Jie Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Yanlin Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guangjing Wei
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Pan Dong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China.
| | - Maozhi Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
29
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
30
|
Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 2020; 152:681-702. [DOI: 10.1016/j.ijbiomac.2020.02.196] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
|
31
|
Characterization and toxicology evaluation of low molecular weight chitosan on zebrafish. Carbohydr Polym 2020; 240:116164. [PMID: 32475540 DOI: 10.1016/j.carbpol.2020.116164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Chitosan is suggested as no or low toxicity and biocompatible biomaterial. Digestion of chitosan to reduce molecular weight and formulate nanoparticle was generally used to improve efficiency for DNA or protein delivery. However, the toxicity of low-molecular-weight chitosan (LMWCS) towards freshwater fishes has not been well evaluated. Here, we reported the toxic mechanism of LMWCS using zebrafish (Danio rerio) liver (ZFL) cell line, zebrafish larvae, and adult fish. LMWCS rapidly induced cytotoxicity of ZFL cells and death of zebrafish. Cell membrane damaged by LMWCS reduced cell viability. Damaged membrane of epithelial cell in zebrafish larvae induced breakage of the yolk. Adult fish exhibited hypoxia before death due to multiple damages induced by LMWCS. Although the toxicity of LMWCS was revealed in zebrafish model, the toxicity was only present in pH < 7 and easy be neutralized by other negative ions. Collectively, these data improved a new understanding of LMWCS properties.
Collapse
|
32
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Marques C, Som C, Schmutz M, Borges O, Borchard G. How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept. Front Bioeng Biotechnol 2020; 8:165. [PMID: 32211394 PMCID: PMC7077258 DOI: 10.3389/fbioe.2020.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Efficacy and safety of nanomedicines based on polymeric (bio)materials will benefit from a rational implementation of a Safe-by-Design (SbD) approach throughout their development. In order to achieve this goal, however, a standardization of preparation and characterization methods and their accurate reporting is needed. Focusing on the example of chitosan, a biopolymer derived from chitin and frequently used in drug and vaccine delivery vector preparation, this review discusses the challenges still to be met and overcome prior to a successful implementation of the SbD approach to the preparation of chitosan-based protein drug delivery systems.
Collapse
Affiliation(s)
- Cíntia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Som
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Mélanie Schmutz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Farion IA, Burdukovskii VF, Kholkhoev BC, Timashev PS, Bardakova KN, Gerasimov YV, Grosheva AG, Vorob’eva NN, Chailakhyan RK. Grafting of Unsaturated Higher Fatty Acids to Chitosan in Aqueous Medium. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Sustained release of TGF-β 3 from polysaccharide nanoparticles induces chondrogenic differentiation of human mesenchymal stromal cells. Colloids Surf B Biointerfaces 2020; 189:110843. [PMID: 32044676 DOI: 10.1016/j.colsurfb.2020.110843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/24/2022]
Abstract
Medical treatment of certain diseases and biomedical implants are tending to use delivery systems on the nanoscale basis for biologically active factors including drugs (e. g. antibiotics) or growth factors. Nanoparticles are a useful tool to deliver bioactive substances of different chemical nature directly to the site where it is required in the patient. Here we developed three innovative delivery systems based on different polysaccharides in order to induce a sustained release of TGF-β3 to mediate chondrogenesis of human mesenchymal stromal cells. We were able to encapsulate the protein into nanoparticles and subsequently release TGF-β3 from these particles. The protein was still active and was able to induce chondrogenic differentiation of human mesenchymal stromal cells.
Collapse
|
36
|
Campos Y, Sola FJ, Almirall A, Fuentes G, Eich C, Que I, Chan A, Kaijzel E, Tabata Y, Quintanilla L, Rodríguez‐Cabello JC, Cruz LJ. Design, construction, and biological testing of an implantable porous trilayer scaffold for repairing osteoarthritic cartilage. J Tissue Eng Regen Med 2019; 14:355-368. [DOI: 10.1002/term.3001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Yaima Campos
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
- Biomaterials CenterUniversity of Havana Havana Cuba
| | | | - Amisel Almirall
- Biomaterials CenterUniversity of Havana Havana Cuba
- Laboratory of Biomaterials, Department of Regeneration Science and EngineeringInstitute for Frontier Life and Medical Sciences, Kyoto University Kyoto Japan
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
- Biomaterials CenterUniversity of Havana Havana Cuba
- Laboratory of Biomaterials, Department of Regeneration Science and EngineeringInstitute for Frontier Life and Medical Sciences, Kyoto University Kyoto Japan
- Bioforge Lab, Campus Miguel Delibes, CIBER‐BBNUniversidad de Valladolid, Edificio LUCIA Valladolid Spain
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| | - Alan Chan
- Percuros B.V. Leiden The Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and EngineeringInstitute for Frontier Life and Medical Sciences, Kyoto University Kyoto Japan
| | - Luis Quintanilla
- Bioforge Lab, Campus Miguel Delibes, CIBER‐BBNUniversidad de Valladolid, Edificio LUCIA Valladolid Spain
| | - José C. Rodríguez‐Cabello
- Bioforge Lab, Campus Miguel Delibes, CIBER‐BBNUniversidad de Valladolid, Edificio LUCIA Valladolid Spain
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| |
Collapse
|
37
|
Niemczyk A, Goszczyńska A, Gołda-Cępa M, Kotarba A, Sobolewski P, El Fray M. Biofunctional catheter coatings based on chitosan-fatty acids derivatives. Carbohydr Polym 2019; 225:115263. [PMID: 31521311 DOI: 10.1016/j.carbpol.2019.115263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/04/2023]
Abstract
Multifunctional and biofunctional coatings for medical devices are an attractive strategy towards tailoring the interactions of the device with the body, thereby influencing the host response, and the susceptibility to microbial colonization. Here we describe the development of a coating process to yield amphiphilic, lubricious coatings, resistant to bacterial colonization, based on chitosan. Chitosan-fatty acid derivatives were obtained by simultaneous N,O-acylation of chitosan with either linoleic, α-linolenic, or dilinoleic acid. Chemical characterization of new materials was carried out using 1H NMR, FTIR, and XPS. Surface properties of coated polyester samples were studied using SEM and contact angle measurements, which indicated that the incorporation of hydrophobic constituents into chitosan macromolecules led to a decrease of both surface roughness and water contact angle. Importantly, tribological testing demonstrated that these new coatings decrease the coefficient of friction due to the self-organization of fatty acid (from 0.53 for the neat chitosan to 0.35 for chitosan-fatty acid derivative). Meanwhile, preliminary bacterial colonization tests indicated significant-over 80%-reduction in E. coli colonization following coating with chitosan-linoleic and chitosan-α-linolenic derivatives. Finally, cytotoxicity and hemocompatibility studies confirmed that all amphiphilic chitosan-fatty acid derivatives were non-toxic and non-hemolytic. Collectively, our results demonstrate the potential of the developed coating strategy, particularly the chitosan-linoleic and chitosan-α-linolenic acid derivatives, for applications as biofunctional catheter coatings.
Collapse
Affiliation(s)
- Agata Niemczyk
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland.
| | - Agata Goszczyńska
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland
| | - Monika Gołda-Cępa
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Peter Sobolewski
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland
| | - Miroslawa El Fray
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland.
| |
Collapse
|
38
|
Zhang H, Yang L, Yang XG, Wang F, Feng JT, Hua KC, Li Q, Hu YC. Demineralized Bone Matrix Carriers and their Clinical Applications: An Overview. Orthop Surg 2019; 11:725-737. [PMID: 31496049 PMCID: PMC6819172 DOI: 10.1111/os.12509] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Reconstruction of massive bone defects is challenging for orthopaedic clinicians, especially in cases of severe trauma and resection of tumors in various locales. Autologous iliac crest bone graft (ICBG) is the “gold standard” for bone grafting. However, the limited availability and complications at donor sites resulted in seeking other options like allografts and bone graft substitutes. Demineralized bone matrix (DBM) is a form of allograft using acidic solution to remove mineral components, while leaving much of the proteinaceous components native to bone, with small amounts of calcium‐based solids, inorganic phosphates, and some trace cell debris. It is an osteoconductive and osteoinductive biomaterial and is approved as a medical device for use in bone defects and spinal fusion. To pack consistently into the defect sites and stay firmly in the filling parts, DBM products have various forms combined with biocompatible viscous carriers, including sponges, strips, injectable putty, paste, and paste infused with chips. The present review aims to summarize the properties of various kind of viscous carriers and their clinical use combined with DBM in commercially available products. Given DBM'mercially available products. Given DBM;s long clinical track record and commercial accessibility in standard forms, opportunities to further develop and validate DBM as a versatile bone biomaterial in orthopaedic repair and regenerative medicine contexts are attractive.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Bone Tumor, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China
| | - Li Yang
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Feng Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jiang-Tao Feng
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kun-Chi Hua
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Qi Li
- Beijing Wonderful Medical Biomaterial Co. Ltd., Beijing, China
| | - Yong-Cheng Hu
- Department of Bone Tumor, Tianjin Hospital, Tianjin, China
| |
Collapse
|
39
|
N-Acetyl-D-Glucosamine-Loaded Chitosan Filaments Biodegradable and Biocompatible for Use as Absorbable Surgical Suture Materials. MATERIALS 2019; 12:ma12111807. [PMID: 31167371 PMCID: PMC6600723 DOI: 10.3390/ma12111807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
The aim of this study was to prepare chitosan (CS) filaments incorporated with N-acetyl-D-Glucosamine (GlcNAc), using the wet spinning method, in order to combine the GlcNAc pharmacological properties with the CS biological properties for use as absorbable suture materials. The filaments were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), uniaxial tensile testing, in vitro biodegradation, and through in vitro drug release and cytotoxicity studies. It was observed that the addition of GlcNAc did not alter the morphology of the filaments. The CS and CS/GlcNAc filaments presented diameters 145 µm and 148 µm, respectively, and the surfaces were homogeneous. Although the mechanical resistance of the chitosan filaments decreased with the incorporation of the GlcNAc drug, this property was greater than the mean values indicated in the U.S. Pharmacopeia (1.7 N) for suture number 6-0 (filament diameter of 100–149 μm). The biodegradation of the CS filaments was accelerated by the addition of GlcNAc. After 35 days, the CS/GlcNAc filaments degradability was at its total, and for the CS filaments it was acquired in 49 days. The in vitro kinetic of the release process was of the zero-order and Hopfenberg models, controlled by both diffusion and erosion process. The in vitro cytotoxicity data of the CS and CS/GlcNAc filaments toward L929 cells showed that these filaments are nontoxic to these cells. Thus, the GlcNAc-loaded CS filaments might be promising as absorbable suture materials. In addition, this medical device may be able to enhance healing processes, relieve pain, and minimize infection at the surgery site due the prolonged release of GlcNAc.
Collapse
|
40
|
Peng L, Zhou Y, Lu W, Zhu W, Li Y, Chen K, Zhang G, Xu J, Deng Z, Wang D. Characterization of a novel polyvinyl alcohol/chitosan porous hydrogel combined with bone marrow mesenchymal stem cells and its application in articular cartilage repair. BMC Musculoskelet Disord 2019; 20:257. [PMID: 31138200 PMCID: PMC6540438 DOI: 10.1186/s12891-019-2644-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Different substances are combined to compensate for each other's drawbacks and create an appropriate biomaterial. A novel Polyvinyl alcohol (PVA)/chitosan (CS) porous hydrogel was designed and applied to the treatment of osteochondral defects. METHODS Hydrogels of various PVA/CS ratios were tested for physiochemical and mechanical properties in addition to cytotoxicity and biocompatibility. The hydrogels with the best PVA/CS ratio were used in the animal study. Osteochondral defects were created at the articular cartilage of 18 rabbits. They were assigned to different groups randomly (n = 6 per group): the osteochondral defect only group (control group), the osteochondral defect treated with hydrogel group (HG group), and the osteochondral defect treated with hydrogel loaded with bone marrow mesenchymal stem cells (BMSCs) group (HG-BMSCs group). The cartilage was collected for macro-observation and histological evaluation at 12 weeks after surgery. RESULTS The Hydrogel with PVA/CS ratio of 6:4 exhibited the best mechanical properties; it also showed stable physical and chemical properties with porosity and over 90% water content. Furthermore, it demonstrated no cytotoxicity and was able to promote cell proliferation. The HG-BMSCs group achieved the best cartilage healing. CONCLUSIONS The novel PVA/CS porous composite hydrogel could be a good candidate for a tissue engineering material in cartilage repair.
Collapse
Affiliation(s)
- Liangquan Peng
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
- Key Laboratory of Tissue Engineering of Shenzhen, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 Guangdong China
- Guangzhou Medical University, Guangzhou, 510182 Guangdong China
| | - Yong Zhou
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| | - Wei Lu
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Weimin Zhu
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Kang Chen
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Greg Zhang
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Jian Xu
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| | - Zhenhan Deng
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Daping Wang
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| |
Collapse
|
41
|
Evaluation of cytotoxicity, hemocompatibility and spectral studies of chitosan assisted polyurethanes prepared with various diisocyanates. Int J Biol Macromol 2019; 129:116-126. [DOI: 10.1016/j.ijbiomac.2019.01.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
|
42
|
Tsatsakis A, Stratidakis AK, Goryachaya AV, Tzatzarakis MN, Stivaktakis PD, Docea AO, Berdiaki A, Nikitovic D, Velonia K, Shtilman MI, Rizos AK, Kuskov AN. In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles. Food Chem Toxicol 2019; 127:42-52. [PMID: 30836108 DOI: 10.1016/j.fct.2019.02.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
This study focused on defining the in vitro behavior of amphiphilic poly-N-vinylpyrrolidone (Amph-PVP) nanoparticles toward whole blood, blood plasma and blood cells in order to assess nanoparticle blood compatibility. In addition, possible effects on endothelium cell growth/viability were evaluated. The Amph-PVP nanoparticles were formed via self-assembling in aqueous media and composed of a hydrophobic alkyl core and a hydrophilic PVP outer shell. Their blood compatibility was evaluated by investigating their effect on red blood cells (RBCs) or erythrocytes, white blood cells (WBCs) or leukocytes, platelets (PLTs) and on complement system activation. Our results clearly demonstrate that the Amph-PVP nanoparticles are stable in presence of blood serum, have no significant effects on the function of RBCs, WBCs, PLTs and complement system activation. The Amph-PVP nanoparticles did not show considerable hemolytic or inflammatory effect, neither influence on platelet aggregation, coagulation process, or complement activation at the tested concentration range of 0.05-0.5 mg/ml. The Amph-PVP nanoparticles did not exhibit any significant effect on HMEC-1 microvascular skin endothelial cells' growth in in vitro experiments. The excellent blood compatibility of the Amph-PVP nanoparticles and the lack of effect on endothelium cell growth/viability represent a crucial feature dictating their further study as novel drug delivery systems.
Collapse
Affiliation(s)
- A Tsatsakis
- Laboratory of Toxicology, University of Crete, Voutes, Heraklion, 71003, Crete, Greece; Department of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation; Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation.
| | - A K Stratidakis
- Laboratory of Toxicology, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - A V Goryachaya
- Department of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - M N Tzatzarakis
- Laboratory of Toxicology, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - P D Stivaktakis
- Laboratory of Toxicology, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - A O Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, Romania
| | - Ai Berdiaki
- Laboratory of Anatomy-Histology-Embryology, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - D Nikitovic
- Laboratory of Anatomy-Histology-Embryology, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - K Velonia
- Department of Materials Science and Technology, University of Crete, University Campus Voutes, Heraklion, 71003, Crete, Greece
| | - M I Shtilman
- Department of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - A K Rizos
- Department of Chemistry, University of Crete, Foundation for Research and Technology-Hellas, FORTH-IESL, Heraklion, 71003, Crete, Greece
| | - A N Kuskov
- Department of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation; Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation.
| |
Collapse
|
43
|
Zubair M, Ullah A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2019; 60:406-434. [DOI: 10.1080/10408398.2018.1534800] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Wang L, Pan K, Li J, Li Y, Zhu B, Wang Y, Feng C, Han J. Influence of the physicochemical characteristics of diatom frustules on hemorrhage control. Biomater Sci 2019; 7:1833-1841. [DOI: 10.1039/c9bm00099b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diatom frustules are good resources for hemostasis agent production.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture
- Ocean University of China
- Ministry of Education
- Qingdao 266003
- China
| | - Kehou Pan
- Key Laboratory of Mariculture
- Ocean University of China
- Ministry of Education
- Qingdao 266003
- China
| | - Jing Li
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Yun Li
- Key Laboratory of Mariculture
- Ocean University of China
- Ministry of Education
- Qingdao 266003
- China
| | - Baohua Zhu
- Key Laboratory of Mariculture
- Ocean University of China
- Ministry of Education
- Qingdao 266003
- China
| | - Yanan Wang
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Chao Feng
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Jichang Han
- Key Laboratory of Mariculture
- Ocean University of China
- Ministry of Education
- Qingdao 266003
- China
| |
Collapse
|
45
|
Parsa P, Paydayesh A, Davachi SM. Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int J Biol Macromol 2019; 121:1061-1069. [DOI: 10.1016/j.ijbiomac.2018.10.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 01/12/2023]
|
46
|
Anticancer Activity of Chitosan, Chitosan Derivatives, and Their Mechanism of Action. Int J Biomater 2018; 2018:2952085. [PMID: 30693034 PMCID: PMC6332982 DOI: 10.1155/2018/2952085] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Tailoring of chitosan through the involvement of its amino, acetamido, and hydroxy groups can give derivatives of enhanced solubility and remarkable anticancer activity. The general mechanism of such activity is associated with the disturbances in normal functioning of cell cycle, interference to the central dogma of biological system from DNA to RNA to protein or enzymatic synthesis, and the disruption of hormonal path to biosynthesis to inhibit the growth of cancer cells. Both chitosan and its various derivatives have been reported to selectively permeate through the cancer cell membranes and show anticancer activity through the cellular enzymatic, antiangiogenic, immunoenhancing, antioxidant defense mechanism, and apoptotic pathways. They get sequestered from noncancer cells and provide their enhanced bioavailability in cancer cells in a sustained release manner. This review presents the putative mechanisms of anticancer activity of chitosan and mechanistic approaches of structure activity relation upon the modification of chitosan through functionalization, complex formation, and graft copolymerization to give different derivatives.
Collapse
|
47
|
Ghalayani Esfahani A, Lazazzera B, Draghi L, Farè S, Chiesa R, De Nardo L, Billi F. Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. J Appl Microbiol 2018; 126:87-101. [DOI: 10.1111/jam.14133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023]
Affiliation(s)
- A. Ghalayani Esfahani
- Department of Orthopaedic Surgery; University of California, Los Angeles (UCLA); Los Angeles CA USA
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - B. Lazazzera
- Microbiology, Immunology, and Molecular Genetics Department; University of California, Los Angeles (UCLA); Los Angeles CA USA
| | - L. Draghi
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - S. Farè
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - R. Chiesa
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - L. De Nardo
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - F. Billi
- Department of Orthopaedic Surgery; University of California, Los Angeles (UCLA); Los Angeles CA USA
| |
Collapse
|
48
|
Evaluation of modified hyaluronic acid in terms of rheology, enzymatic degradation and mucoadhesion. Int J Biol Macromol 2018; 123:1204-1210. [PMID: 30465836 DOI: 10.1016/j.ijbiomac.2018.11.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 11/18/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE This study aimed to investigate the properties of modified hyaluronic acid in terms of rheological properties, enzymatic degradation and mucoadhesiveness. METHODS Hyaluronic acid (HA) was chemically modified with sulfhydryl ligand cysteine ethyl ester (C) in order to immobilize sulfhydryl groups on the polymeric backbone. MTT assay was performed to evaluate the safety of hyaluronic acid-cysteine ethyl ester (HAC). Rheological and enzymatic degradation studies were accomplished by preparing hydrogels of HA and HAC, respectively. HA served as control. Enzymes such as lysozyme, amylase and hyaluronidase were chosen to perform degradation studies. To study mucoadhesiveness, hydrogels of HA and HAC, respectively, were mixed with mucus and evaluated by rheology. RESULTS MTT assay indicated no toxicity at all. The rheological assay showed 2.2-fold increase in gelling properties in case of HAC in comparison to HA. Furthermore, it could be shown that HAC was degraded by amylase to a lesser extent of 11.5-fold than HA. After 2 h, HA showed a higher degradation by lysozyme with 67.97% than HAC. Adhesion studies exhibited a 2.17-fold higher mucoadhesion of HAC with mucus compared to HA. CONCLUSION These results will open the door for high efficient drug delivery systems based on hydrogels for mucosal application.
Collapse
|
49
|
Nanda B, Manjappa AS, Chuttani K, Balasinor NH, Mishra AK, Ramachandra Murthy RS. Acylated chitosan anchored paclitaxel loaded liposomes: Pharmacokinetic and biodistribution study in Ehrlich ascites tumor bearing mice. Int J Biol Macromol 2018; 122:367-379. [PMID: 30342146 DOI: 10.1016/j.ijbiomac.2018.10.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
Acylated chitosan (Myristoyl and Octanoyl) coated paclitaxel-loaded liposomal formulation was developed with an aim to overcome the cremophor EL related toxicities. They were evaluated for drug entrapment, in vitro drug release, and cytotoxicity and cell uptake behavior using A549 cells. The 99mTc radio-labeled formulations were also evaluated in vivo in Ehrlich Ascites Tumor (EAT) bearing mice for biodistribution and tumor uptake. The mean particle size of both coated and uncoated liposomal formulations was found to be in the range of 180-200 nm with high drug entrapment efficiency (>90% in case of uncoated liposomes and 80 ± 5% in case of coated liposomes). The uncoated liposomes displayed negative zeta potential (-10.5 ± 4.9 mV) whereas coated liposomes displayed positive zeta potential in the range of +21 to +27 mV. Slower drug release was observed in case of liposomes coated with acylated chitosans as compared to uncoated and native chitosan coated liposomes. All liposomal formulations were found less cytotoxic than paclitaxel injection (Celtax™, Celon Labs, India). In vitro cell uptake and intracellular distribution studies confirmed the cytosolic delivery of uncoated and coated liposomes. The myristoyl chitosan coated liposomal system (LMC) exhibited improved pharmacokinetic, biodistribution and tumor uptake characteristics over other formulations. These obtained results confirmed the potential application of acylated chitosn coated liposomal delivery systems (LMC) in tumor targeting of paclitaxel and other drugs.
Collapse
Affiliation(s)
- Biswarup Nanda
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India.
| | - A S Manjappa
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, India
| | - Krishna Chuttani
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - N H Balasinor
- Neuroendocrinology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Anil K Mishra
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Rayasa S Ramachandra Murthy
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Nanomedicine Centre, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
50
|
Cho IS, Oh HM, Cho MO, Jang BS, Cho JK, Park KH, Kang SW, Huh KM. Synthesis and characterization of thiolated hexanoyl glycol chitosan as a mucoadhesive thermogelling polymer. Biomater Res 2018; 22:30. [PMID: 30275973 PMCID: PMC6158885 DOI: 10.1186/s40824-018-0137-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mucoadhesive polymers, which may increase the contact time between the polymer and the tissue, have been widely investigated for pharmaceutical formulations. In this study, we developed a new polysaccharide-based mucoadhesive polymer with thermogelling properties. METHODS Hexanoyl glycol chitosan (HGC), a new thermogelling polymer, was synthesized by the chemical modification of glycol chitosan using hexanoic anhydride. The HGC was further modified to include thiol groups to improve the mucoadhesive property of thermogelling HGC. The degree of thiolation of the thiolated HGCs (SH-HGCs) was controlled in the range of 5-10% by adjusting the feed molar ratio. The structure of the chemically modified polymers was characterized by 1H NMR and ATR-FTIR. The sol-gel transition, mucoadhesiveness, and biocompatibility of the polymers were determined by a tube inverting method, rheological measurements, and in vitro cytotoxicity tests, respectively. RESULTS The aqueous solution (4 wt%) of HGC with approximately 33% substitution showed a sol-gel transition temperature of approximately 41 °C. SH-HGCs demonstrated lower sol-gel transition temperatures (34 ± 1 and 31 ± 1 °С) compared to that of HGC due to the introduction of thiol groups. Rheological studies of aqueous mixture solutions of SH-HGCs and mucin showed that SH-HGCs had stronger mucoadhesiveness than HGC due to the interaction between the thiol groups of SH-HGCs and mucin. Additionally, we confirmed that the thermogelling properties might improve the mucoadhesive force of polymers. Several in vitro cytotoxicity tests showed that SH-HGCs showed little toxicity at concentrations of 0.1-1.0 wt%, indicating good biocompatibility of the polymers. CONCLUSIONS The resultant thiolated hexanoyl glycol chitosans may play a crucial role in mucoadhesive applications in biomedical areas.
Collapse
Affiliation(s)
- Ik Sung Cho
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Hye Min Oh
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Myeong Ok Cho
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
- Predictive Model Research Center, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
| | - Bo Seul Jang
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Jung-Kyo Cho
- ezlab, 120, Heungdeokjungang-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16950 Republic of Korea
| | - Kyoung Hwan Park
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
- Predictive Model Research Center, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
- Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Kang Moo Huh
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| |
Collapse
|