1
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Al Kury LT, Voitychuk OI, Yang KHS, Thayyullathil FT, Doroshenko P, Ramez AM, Shuba YM, Galadari S, Howarth FC, Oz M. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. Br J Pharmacol 2015; 171:3485-98. [PMID: 24758718 DOI: 10.1111/bph.12734] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/17/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1-10 μM AEA, suppression of both Na(+) and L-type Ca(2+) channels was observed. Inhibition of Na(+) channels was voltage and Pertussis toxin (PTX) - independent. Radioligand-binding studies indicated that specific binding of [(3) H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd . Further studies on L-type Ca(2+) channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba(2+) currents. MetAEA also inhibited Na(+) and L-type Ca(2+) currents. Radioligand studies indicated that specific binding of [(3) H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd . CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na(+) and L-type Ca(2+) channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation.
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, UAE University, Al Ain, UAE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Al Kury LT, Yang KHS, Thayyullathil FT, Rajesh M, Ali RM, Shuba YM, Howarth FC, Galadari S, Oz M. Effects of endogenous cannabinoid anandamide on cardiac Na⁺/Ca²⁺ exchanger. Cell Calcium 2014; 55:231-7. [PMID: 24674601 DOI: 10.1016/j.ceca.2014.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
Abstract
Endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) has been shown to cause negative inotropic and antiarrhythmic effects in ventricular myocytes. In this study, using whole-cell patch clamp technique, we have investigated the effects of AEA on cardiac Na(+)/Ca(2+) exchanger (NCX1)-mediated currents. AEA suppressed NCX1 with an IC50 value of 4.7 μM. Both inward and outward components of exchanger currents were suppressed by AEA equally. AEA inhibition was mimicked by the metabolically stable analogue, methanandamide (metAEA, 10 μM) while it was not influenced by inhibition of fatty acid amide hydrolase with 1 μM URB597 incubation. The effect of AEA, was not altered in the presence of cannabinoid receptor 1 and 2 antagonists AM251 (1 μM) and AM630 (1 μM), respectively. In addition, inhibition by AEA remained unchanged after pertussis toxin (PTX, 2 μg/ml) treatment or following the inclusion of GDP-β-S (1 mM) in pipette solution. Currents mediated by NCX1 expressed in HEK-293 cells were also inhibited by 10 μM AEA a partially reversible manner. Confocal microscopy images indicated that the intensity of YFP-NCX1 expression on cell surface was not altered by AEA. Collectively, the results indicate that AEA directly inhibits the function of NCX1 in rat ventricular myocytes and in HEK-293 cells expressing NCX1.
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Faisal T Thayyullathil
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohanraj Rajesh
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Ramez M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv 24, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Al Kury LT, Voitychuk OI, Ali RM, Galadari S, Yang KHS, Howarth FC, Shuba YM, Oz M. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes. Cell Calcium 2014; 55:104-18. [PMID: 24472666 DOI: 10.1016/j.ceca.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/25/2013] [Accepted: 12/26/2013] [Indexed: 02/08/2023]
Abstract
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+ -uptake and Ca2+ -ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Arachidonic Acids/pharmacology
- Caffeine/pharmacology
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/drug effects
- Endocannabinoids/pharmacology
- Fura-2/chemistry
- Heart Ventricles/cytology
- In Vitro Techniques
- Indoles/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Pertussis Toxin/toxicity
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Sarcoplasmic Reticulum/metabolism
- Transport Vesicles/drug effects
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Oleg I Voitychuk
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Ramiz M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Wei Z, Wang L, Han J, Song J, Yao L, Shao L, Sun Z, Zheng L. Decreased Expression of Transient Receptor Potential Vanilloid 1 Impaires the Postischemic Recovery of Diabetic Mouse Hearts. Circ J 2009; 73:1127-32. [DOI: 10.1253/circj.cj-08-0945] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhonghai Wei
- Department of Medicine, The Affiliated DrumTower Hospital, Nanjing University Medical School
| | - Lihong Wang
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Jie Han
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Junxian Song
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Lei Yao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Lei Shao
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Zhihui Sun
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Liangrong Zheng
- Department of Cardiovascular Sciences, The First Affiliated Hospital, College of Medicine, Zhejiang University
| |
Collapse
|
6
|
Abstract
BACKGROUND Although pharmacological studies suggest that the transient receptor potential vanilloid type 1 (TRPV1) channels expressed in sensory nerve fibers innervating the heart may exert a cardioprotective effect, definitive evidence supporting such a notion is lacking. In addition, function and regulation of sensory neuropeptides, namely, calcitonin gene-related peptide (CGRP) and substance P (SP), in the face of challenges induced by cardiac injury in the presence or absence of the TRPV1 are largely unknown. METHODS AND RESULTS The hearts of gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice or wild-type (WT) mice were perfused in a Langendorff apparatus in the presence or absence of capsazepine (a TRPV1 receptor antagonist), CGRP, CGRP(8-37) (a CGRP receptor antagonist), SP, or RP67580 (a neurokinin-1 [NK1] receptor antagonist) when hearts were subjected to 40 minutes of ischemia and 30 minutes of reperfusion. Hemodynamic alterations and SP release measured by radioimmunoassay were assessed before and after ischemia/reperfusion injury of the heart. Expression of the NK1 receptor in the hearts of TRPV1(-/-) and WT mice were determined with the use of Western blot analyses. Impairment of postischemic recovery, defined by increased left ventricular end-diastolic pressure (LVEDP) and decreased left ventricular developed pressure (LVDP) and coronary flow (CF), was more severe in TRPV1(-/-) hearts than in WT hearts. Although it had no effect on postischemic recovery of TRPV1(-/-) hearts, blockade of the TRPV1 with capsazepine caused a most severe impairment of postischemic recovery in WT hearts compared with untreated WT and TRPV1(-/-) hearts. Exogenous CGRP and SP produced a significant improvement in postischemic recovery in both TRPV1(-/-) and WT hearts, and the maximal functional improvement in TRPV1(-/-) hearts was not different from that of WT hearts except that SP-induced increases in LVDP were larger in the former than in the latter. Blockade of the NK1 receptor with RP67580, but not blockade of the CGRP receptor with CGRP(8-37), caused more severe impairment in postischemic recovery in both TRPV1(-/-) and WT hearts than in untreated hearts in both genotypes. The release of SP after ischemia/reperfusion injury was increased in both WT and TRPV1(-/-) hearts, albeit with a smaller magnitude of the increase in the latter. Capsazepine attenuated injury-induced SP release in WT but not TRPV1(-/-) hearts. There was no difference in the expression of the NK1 receptor between the 2 genotype hearts. CONCLUSIONS Thus, our data show that (1) TRPV1 gene deletion decreases injury-induced SP release and impairs cardiac recovery function after ischemia/reperfusion injury; (2) TRPV1 gene deletion leads to reconditioning of the heart with improved postischemic recovery compared with that induced by acute TRPV1 blockade and in terms of cardiac response to exogenous SP; and (3) blockade of the NK1 but not CGRP receptors worsens postischemic recovery of hearts in both genotypes. Taken together, these data indicate that TRPV1 plays a role in protecting the heart from injury possibly via increasing SP release and that deletion of this receptor reconditions the heart for escaping, at least in part, from injury possibly via enhancing NK1 receptor function.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Cardiovascular Sciences, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | | |
Collapse
|
7
|
Oz M, Alptekin A, Tchugunova Y, Dinc M. Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2+ fluxes in rabbit T-tubule membranes. Arch Biochem Biophys 2005; 434:344-51. [PMID: 15639235 DOI: 10.1016/j.abb.2004.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 11/04/2004] [Indexed: 11/29/2022]
Abstract
The effects of saturated long-chain (C: 16-22) N-acylethanolamines and a series of saturated fatty acids with the same length of carbon chains were investigated on depolarization-induced (45)Ca(2+) fluxes mediated by voltage-dependent Ca(2+) channels in transverse tubule membrane vesicles from rabbit skeletal muscle. Vesicles were loaded with (45)Ca(2+) and membrane potentials were generated by establishing potassium gradients across the vesicle using the ionophore valinomycin. Arachidonoylethanolamide and docosaenoylethanolamide but not palmitoylethanolamide and stearoylethanolamide (all 10 microM) caused a significant inhibition of depolarization-induced (45)Ca(2+) fluxes and specific binding of [(3)H]Isradipine to transverse tubule membranes. On the other hand, saturated fatty acids including palmitic, stearic, arachidic, and docosanoic acids (all 10 microM) were ineffective in functional and radioligand binding experiments. Additional experiments using endocannabinoid metabolites suggested that whereas ethanolamine and arachidic acids were ineffective, arachidonoylethanolamide inhibited Ca(2+) effluxes and specific binding of [(3)H]Isradipine. Further studies indicated that only those fatty acids containing ethanolamine as a head group and having a chain length of more than 18 carbons were effective in inhibiting depolarization-induced Ca(2+) effluxes and specific binding of [(3)H]Isradipine. In conclusion, results indicate that depending on the chain length and the head group of fatty acid, N-acylethanolamines have differential effects on the function of voltage-dependent Ca(2+) channels and on the specific binding of [(3)H]Isradipine in skeletal muscle membranes.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, Cellular Neurobiology Section, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
8
|
Ramakrishnan M, Swamy MJ. Molecular packing and intermolecular interactions in N-acylethanolamines: crystal structure of N-myristoylethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1418:261-7. [PMID: 10320678 DOI: 10.1016/s0005-2736(99)00035-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
N-Acylethanolamines elicited much interest in recent years owing to their occurrence in biological membranes under conditions of stress as well as under normal conditions. The molecular conformation, packing properties and intermolecular interactions of N-myristoylethanolamine (NMEA) have been determined by single crystal X-ray diffraction analysis. The lipid crystallized in the space group P21/a with unit cell dimensions: a=9.001, b=4.8761, c=39. 080. There are four symmetry-related molecules in the monoclinic unit cell. The molecules are organized in a tail-to-tail fashion, similar to the arrangement in a bilayer membrane. The hydrophobic acyl chain of the NMEA molecule is tilted with respect to the bilayer normal by an angle of 37 degrees. Each hydroxy group forms two hydrogen bonds, one as a donor and the other as an acceptor, with the hydroxy groups of molecules in the opposing leaflet. These O-H...O hydrogen bonds form an extended, zig-zag type network along the b-axis. In addition, the N-H and C=O groups of adjacent molecules are involved in N-H...O hydrogen bonds, which also connect adjacent molecules along the b-axis.
Collapse
Affiliation(s)
- M Ramakrishnan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | |
Collapse
|
9
|
Gulaya NM, Kuzmenko AI, Margitich VM, Govseeva NM, Melnichuk SD, Goridko TM, Zhukov AD. Long-chain N-acylethanolamines inhibit lipid peroxidation in rat liver mitochondria under acute hypoxic hypoxia. Chem Phys Lipids 1998; 97:49-54. [PMID: 10081148 DOI: 10.1016/s0009-3084(98)00093-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two long-chain N-acylethanolamines (NAEs), N-palmitoyl- (NPE) and N-stearoylethanolamine (NSE), are shown to inhibit an in vitro non-enzymatic Fe(2+)-induced free radical oxidation of lipids in the liver mitochondria of rats with hypoxic hypoxia. NSE appeared to be more effective than NPE in suppressing some kinetic parameters of the Fe(2+)-induced chemiluminescence. The inhibitory action of NAEs on non-enzymatic lipid peroxidation supports the idea that they possess membrane protective properties.
Collapse
Affiliation(s)
- N M Gulaya
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | | | | | | | | | | | | |
Collapse
|
10
|
Differential scanning calorimetric studies on the thermotropic phase transitions of N-acylethanolamines of odd chainlengths. Chem Phys Lipids 1998. [DOI: 10.1016/s0009-3084(98)00020-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kondo S, Sugiura T, Kodaka T, Kudo N, Waku K, Tokumura A. Accumulation of various N-acylethanolamines including N-arachidonoylethanolamine (anandamide) in cadmium chloride-administered rat testis. Arch Biochem Biophys 1998; 354:303-10. [PMID: 9637740 DOI: 10.1006/abbi.1998.0688] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in the levels of various molecular species of N-acylethanolamine in CdCl2-administered rat testis were examined. We found that the levels of various N-acylethanolamines including anandamide (N-arachidonoylethanolamine), an endogenous cannabinoid receptor ligand, were dramatically increased in CdCl2-admin-istered rat testis. Such changes were particularlyprominent for saturated and monoenoic species such as N-palmitoyl species (39-fold at 9 h) and N-stearoyl species (21-fold at 9 h), compared with unsaturated fatty acid-containing species such as anandamide (5-fold at 9 h). Noticeably, increased levels were observed of not only N-acylethanolamines but also several species of N-acylphosphatidylethanolamine, potential precursors for N-acylethanolamines. We confirmed that the rat testis microsomal fraction contains phosphodiesterase activity catalyzing the release of N-acylethanolamine from N-acylphosphatidylethanolamine and transacylase activity catalyzing the formation of N-acylphosphatidylethanolamine from phosphatidylethanolamine and phosphatidylcholine. These enzyme activities were not dramatically different in the microsomal fraction obtained from CdCl2-administered rat testis compared with that in the case of control rat testis, at least when estimated in cell-free assay systems, suggesting that the accessibility of the substrates to the enzymes may be increased in CdCl2-administered rat testis to generate a large amount of N-acylethanolamine. Possible pathophysiological implications of the augmented generation of N-acylethanolamine including anandamide in CdCl2-administered rat testis were discussed.
Collapse
Affiliation(s)
- S Kondo
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Sagamiko, 199-01, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Swamy MJ, Marsh D, Ramakrishnan M. Differential scanning calorimetry of chain-melting phase transitions of N-acylphosphatidylethanolamines. Biophys J 1997; 73:2556-64. [PMID: 9370449 PMCID: PMC1181157 DOI: 10.1016/s0006-3495(97)78284-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylethanolamines in which the polar headgroup is N-acylated by a long-chain fatty acid (N-acyl PEs) are present in many plasma membranes under normal conditions, and their content increases dramatically in response to membrane stress in a variety of organisms. The thermotropic phase behavior of a homologous series of saturated N-acyl PEs, in which the length of the N-acyl chain is equal to that of the O-acyl chains attached at the glycerol backbone, has been investigated by differential scanning calorimetry (DSC). All fully hydrated N-acyl PEs with even chain lengths from C-12 to C-18 exhibit sharp endothermic chain-melting phase transitions in the absence of salt and in 1 M NaCl. Cooperative chain-melting is demonstrated directly by the temperature dependence of the electron spin resonance spectra from probe phospholipids bearing a spin label group in the acyl chain. The calorimetric transition enthalpy and the transition entropy obtained from DSC depend approximately linearly on the chain length with incremental values per CH2 group that exceed those of normal diacyl phosphatidylethanolamines, but to an extent that underrepresents the additional N-acyl chain. A thermodynamic model is constructed for the chain-length dependences and end effects of the calorimetric quantities, which includes a deficit proportional to the difference in O-acyl and N-acyl chain lengths for nonmatched chains, as is found and justified structurally for mixed-chain diacyl phospholipids. From data on the chain-length dependence of N-acyl diC16PEs, it is then deduced that the N-acyl chains are less well packed than the O-acyl chains and, from the data on the matched-chain N-acyl PEs, that the O-acyl chain packing is similar to that in normal diacyl PEs. The gel-to-fluid phase transition temperatures of the N-acyl PEs in the absence of salt are practically the same as those of the normal diacyl PEs of the corresponding chain lengths, although the transition enthalpies and entropies are appreciably greater, indicating entropy-enthalpy compensation. In 1 M NaCl, the transition temperatures are 3-4.5 degrees higher than in the absence of salt, representing the contribution of the electrostatic surface potential of the N-acyl PEs.
Collapse
Affiliation(s)
- M J Swamy
- School of Chemistry, University of Hyderabad, India
| | | | | |
Collapse
|
13
|
Ramakrishnan M, Sheeba V, Komath SS, Swamy MJ. Differential scanning calorimetric studies on the thermotropic phase transitions of dry and hydrated forms of N-acylethanolamines of even chainlengths. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1329:302-10. [PMID: 9371422 DOI: 10.1016/s0005-2736(97)00120-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-acylethanolamines (NAEs) have attracted the attention of researchers in the last two decades due to their occurrence in biological membranes under conditions of stress as well as under normal conditions. Differential scanning calorimetric studies have been carried out on dry and hydrated samples of a homologous series of N-acylethanolamines containing saturated acyl chains of even number of carbon atoms (n = 8-20). In both cases a major sharp endothermic transition was observed which occurs at the melting point for the dry NAEs whereas for the hydrated samples it occurs at considerably lower temperatures. The enthalpies and entropies corresponding to this transition could be fitted, in each case, to a straight line suggesting that the transition enthalpy and transition entropy consist of a fixed component from the polar head group and the terminal methyl group, whereas the contribution of the methylene groups, (CH2)n, is linearly proportional to the number of carbon atoms in it. The contributions of each methylene unit to the transition enthalpy and transition entropy of NAEs were found to be deltaH(inc) = 0.82 (+/-0.02) and 0.96 (+/-0.06) kcal mol(-1), and deltaS(inc) = 2.01 (+/- 0.06) and 2.37 (+/-0.17) cal mol(-1) K(-1), respectively, for the dry and hydrated samples of NAEs, whereas the end contributions arising from the head group and the terminal methyl group were determined to be deltaH(o) = -0.10 (+/-0.26) and -0.52 (+/-0.82) kcal mol(-1) and deltaS(o) = 2.12 (+/-0.71) and 3.1 (+/-2.3) cal mol(-1) K(-1), respectively, for the dry and hydrated samples of NAEs. These results are relevant to an understanding of the thermodynamics of the phase properties of NAEs in membranes.
Collapse
|
14
|
Berdyshev EV, Boichot E, Lagente V. Anandamide--a new look on fatty acid ethanolamides. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 15:49-67. [PMID: 9029374 DOI: 10.1016/s0929-7855(96)00548-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Abstract
Long-chain N-acylethanolamines (NAEs) elicit a variety of biological and pharmacological effects. Anandamide (20:4n-6 NAE) and other polyunsaturated NAEs bind to the cannabinoid receptor and may thus serve as highly specific lipid mediators of cell signalling. NAEs can be formed by phospholipase D-catalyzed hydrolysis of N-acylethanolamine phospholipids or by direct condensation of ethanolamine and fatty acid. So far, most of the latter biosynthetic activity has been shown to be the reverse reaction of the NAE amidohydrolase that catalyzes NAE degradation. Thus, increasing evidence supports the hypothesis that the N-acylation-phosphodiesterase pathway yields not only saturated-monounsaturated NAEs, but polyunsaturated ones, including anandamide, as well.
Collapse
Affiliation(s)
- H H Schmid
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | |
Collapse
|
16
|
Fontana A, Di Marzo V, Cadas H, Piomelli D. Analysis of anandamide, an endogenous cannabinoid substance, and of other natural N-acylethanolamines. Prostaglandins Leukot Essent Fatty Acids 1995; 53:301-8. [PMID: 8577784 DOI: 10.1016/0952-3278(95)90130-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent reports have suggested that N-arachidonoylethanolamine (anandamide) acts as an endogenous ligand for cannabinoid receptors in mammalian brain. Here we describe methods for the extraction, purification and analysis of anandamide and related N-fatty acyl-ethanolamines (NAEs). Liquid-phase extraction, silica gel G column chromatography and thin-layer chromatography (TLC) were employed for sample fractionation. Three analytical high-performance liquid chromatography (HPLC) methods for purification of NAEs were developed. Finally, analyses of NAEs by gas chromatography/mass spectrometry (GC/MS) are described. The applications of these analytical methods to the identification of anandamide and related NAEs in cell cultures as well as of artifacts in biosynthetic studies are described.
Collapse
Affiliation(s)
- A Fontana
- Istituto per la Chimica di Molecole di Interesse Biologico, C. N. R., Naples, Italy
| | | | | | | |
Collapse
|
17
|
Di Marzo V, Fontana A. Anandamide, an endogenous cannabinomimetic eicosanoid: 'killing two birds with one stone'. Prostaglandins Leukot Essent Fatty Acids 1995; 53:1-11. [PMID: 7675818 DOI: 10.1016/0952-3278(95)90077-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Arco Felice, Naples, Italy
| | | |
Collapse
|
18
|
Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994; 372:686-91. [PMID: 7990962 DOI: 10.1038/372686a0] [Citation(s) in RCA: 1231] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anandamide (N-arachidonoyl-ethanolamine) was recently identified as a brain arachidonate derivative that binds to and activates cannabinoid receptors, yet the mechanisms underlying formation, release and inactivation of this putative messenger molecule are still unclear. Here we report that anandamide is produced in and released from cultured brain neurons in a calcium ion-dependent manner when the neurons are stimulated with membrane-depolarizing agents. Anandamide formation occurs through phosphodiesterase-mediated cleavage of a novel phospholipid precursor, N-arachidonoyl-phosphatidylethanolamine. A similar mechanism also governs the formation of a family of anandamide congeners, whose possible roles in neuronal signalling remain unknown. Our results and those of others indicate therefore that multiple biochemical pathways may participate in anandamide formation in brain tissue. The life span of extracellular anandamide is limited by a rapid and selective process of cellular uptake, which is accompanied by hydrolytic degradation to ethanolamine and arachidonate. Our results thus strongly support the proposed role of anandamide as an endogenous neuronal messenger.
Collapse
Affiliation(s)
- V Di Marzo
- Unité de Neurobiologie et Pharmacologie, Centre Paul Broca de l'INSERM, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- H H Schmid
- Hormel Institute, University of Minnesota, Austin 55912
| | | | | |
Collapse
|
20
|
Lysophospholipid-mediated alterations in the calcium transport systems of skeletal and cardiac muscle sarcoplasmic reticulum. Mol Cell Biochem 1988; 79:81-9. [PMID: 2967426 DOI: 10.1007/bf00229401] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC greater than lsyoPS, lysoPG greater than lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.
Collapse
|
21
|
Epps DE, Cardin AD. The interaction of N-oleylethanolamine with phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 903:533-41. [PMID: 3663658 DOI: 10.1016/0005-2736(87)90061-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long chain acylamides of ethanolamine were previously found to increase in the infarcted canine myocardium. Subsequent in vitro experiments established a number of interesting biological and physiological properties of these compounds including alteration of rabbit skeletal sarcoplasmic reticulum function and inhibition of permeability dependent calcium release from heart mitochondria. These results suggested an interaction between the N-acylethanolamines and biological membranes. In the present work we show that the most potent species in previous studies, N-oleylethanolamine, forms stable complexes with phospholipid vesicles, lowers diphenylhexatriene polarization ratios in dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine uni- and multilamellar bilayer vesicles, and also produces a concentration dependent decrease in the phase transitions of these lipid structures. In addition studies with parinaric acids also suggested that N-oleylethanolamine partitions preferentially into more fluid areas of the bilayer. The results are discussed in terms of possible effects on biological membranes.
Collapse
Affiliation(s)
- D E Epps
- Department of Pharmacology and Cell Biophysics, University of Cincinnati Medical School, OH
| | | |
Collapse
|
22
|
Schmid PC, Zuzarte-Augustin ML, Schmid HH. Properties of rat liver N-acylethanolamine amidohydrolase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38695-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
|