1
|
Kim S, Doukmak EJ, Shanguhyia M, Gray DJ, Steinhardt RC. Photoactivatable Agonist-Antagonist Pair as a Tool for Precise Spatiotemporal Control of Serotonin Receptor 2C Signaling. ACS Chem Neurosci 2023; 14:3665-3673. [PMID: 37721710 PMCID: PMC10557072 DOI: 10.1021/acschemneuro.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
Orthogonal recreation of the signaling profile of a chemical synapse is a current challenge in neuroscience. This is due in part to the kinetics of synaptic signaling, where neurotransmitters are rapidly released and quickly cleared by active reuptake machinery. One strategy to produce a rapid rise in an orthogonally controlled signal is via photocaged compounds. In this work, photocaged compounds are employed to recreate both the rapid rise and equally rapid fall in activation at a chemical synapse. Specifically, a complementary pair of photocages based on BODIPY were conjugated to a 5-HT2C subtype-selective agonist, WAY-161503, and antagonist, N-desmethylclozapine, to generate "caged" versions of these drugs. These conjugates release the bioactive drug upon illumination with green light (agonist) or red light (antagonist). We report on the synthesis, characterization, and bioactivity testing of the conjugates against the 5-HT2C receptor. We then characterize the kinetics of photolysis quantitatively using HPLC and qualitatively in cell culture conditions stimulating live cells. The compounds are shown to be stable in the dark for 48 h at room temperature, yet photolyze rapidly when irradiated with visible light. In live cells expressing the 5-HT2C receptor, precise spatiotemporal control of the degree and length of calcium signaling is demonstrated. By loading both compounds in tandem and leveraging spectral multiplexing as a noninvasive method to control local small-molecule drug availability, we can reproducibly initiate and suppress intracellular calcium flux on a timescale not possible by traditional methods of drug dosing. These tools enable a greater spatiotemporal control of 5-HT2C modulation and will allow for more detailed studies of the receptors' signaling, interactions with other proteins, and native physiology.
Collapse
Affiliation(s)
- Spencer
T. Kim
- Syracuse University, Syracuse, New York 13244, United States
| | - Emma J. Doukmak
- Syracuse University, Syracuse, New York 13244, United States
| | | | - Dylan J. Gray
- Syracuse University, Syracuse, New York 13244, United States
| | | |
Collapse
|
2
|
Hetzler B, Donthamsetti P, Peitsinis Z, Stanley C, Trauner D, Isacoff EY. Optical Control of Dopamine D2-like Receptors with Cell-Specific Fast-Relaxing Photoswitches. J Am Chem Soc 2023; 145:18778-18788. [PMID: 37586061 PMCID: PMC10472511 DOI: 10.1021/jacs.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.
Collapse
Affiliation(s)
- Belinda
E. Hetzler
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Prashant Donthamsetti
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zisis Peitsinis
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Cherise Stanley
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry and Department of Systems Pharmacology and Translational
Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ehud Y. Isacoff
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- Helen
Wills Neuroscience Institute, University
of California, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Asad N, McLain DE, Condon AF, Gore S, Hampton SE, Vijay S, Williams JT, Dore TM. Photoactivatable Dopamine and Sulpiride to Explore the Function of Dopaminergic Neurons and Circuits. ACS Chem Neurosci 2020; 11:939-951. [PMID: 32077679 PMCID: PMC7101055 DOI: 10.1021/acschemneuro.9b00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kinetic analysis of dopamine receptor activation and inactivation and the study of dopamine-dependent signaling requires precise simulation of the presynaptic release of the neurotransmitter dopamine and tight temporal control over the release of dopamine receptor antagonists. The 8-cyano-7-hydroxyquinolinyl (CyHQ) photoremovable protecting group was conjugated to dopamine and the dopamine receptor antagonist sulpiride to generate "caged" versions of these neuromodulators (CyHQ-O-DA and CyHQ-sulpiride, respectively) that could release their payloads with 365 or 405 nm light or through 2-photon excitation (2PE) at 740 nm. These compounds are stable under physiological conditions in the dark, yet photolyze rapidly and cleanly to yield dopamine or sulpiride and the caging remnant CyHQ-OH. CyHQ-O-DA mediated the light activation of dopamine-1 (D1) receptors on the breast cancer cell line MDA-MB-231 in culture. In mouse brain slice from the substantia nigra pars compacta, localized flash photolysis of CyHQ-O-DA accurately mimicked the natural presynaptic release of dopamine and activation of dopamine-2 (D2) receptors, causing a robust, concentration-dependent, and repeatable G protein-coupled inwardly rectifying potassium channel-mediated outward current in whole-cell voltage clamp recordings that was amplified by cocaine and blocked by sulpiride. Photolysis of CyHQ-sulpiride rapidly blocked synaptic activity, enabling measurement of the unbinding rates of dopamine and quinpirole, a D2 receptor agonist. These tools will enable more detailed study of dopamine receptors, their interactions with other GPCRs, and the physiology of dopamine signaling in the brain.
Collapse
Affiliation(s)
- Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Duncan E. McLain
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Alec F. Condon
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Shahienaz E. Hampton
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Sauparnika Vijay
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - John T. Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Batton AD, Blaha CD, Bieber A, Lee KH, Boschen SL. Stimulation of the subparafascicular thalamic nucleus modulates dopamine release in the inferior colliculus of rats. Synapse 2018; 73:e22073. [PMID: 30291737 DOI: 10.1002/syn.22073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 11/08/2022]
Abstract
Although dopamine is commonly studied for its role in incentive motivation, cognition, and various neuropsychiatric disorders, evidence from Parkinson's disease (PD) patients that present auditory deficits suggest that dopamine is also involved in central auditory processing. It has been recently discovered that the subparafascicular thalamic nucleus (SPF) sends dopaminergic projections to the inferior colliculus (IC), an important convergence hub for the ascending and descending auditory pathways. In the present study, our aim was to provide neurochemical evidence that activation of SPF neurons evokes dopamine release in the IC of anesthetized rats using fast-scan cyclic and paired pulse voltammetry in combination with carbon fiber microelectrodes. Electrical stimulation of the SPF (60 and 90 Hz) evoked dopamine release in the IC in a frequency-dependent manner, with higher frequencies evoking greater amplitude dopamine responses. Optogenetic-evoked dopamine responses were similar to the effects of electrical stimulation suggesting that electrical stimulation-evoked dopamine release was not due to nonspecific activation of fibers of passage, but rather to activation of SPF cells projecting to the IC. Selective dopamine reuptake blockade enhanced the evoked dopamine response, while selective blockade of serotonin did not, confirming the selectivity of the neurochemical recordings to dopamine. Therefore, the SPF neuronal pathway functionally mediates dopamine release in the IC and thus may be involved in auditory processing deficits associated with PD.
Collapse
Affiliation(s)
- Aiyana D Batton
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Allan Bieber
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Suelen L Boschen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Shindou T, Shindou M, Watanabe S, Wickens J. A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum. Eur J Neurosci 2018; 49:726-736. [PMID: 29603470 PMCID: PMC6585681 DOI: 10.1111/ejn.13921] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
Dopamine‐dependent synaptic plasticity is a candidate mechanism for reinforcement learning. A silent eligibility trace – initiated by synaptic activity and transformed into synaptic strengthening by later action of dopamine – has been hypothesized to explain the retroactive effect of dopamine in reinforcing past behaviour. We tested this hypothesis by measuring time‐dependent modulation of synaptic plasticity by dopamine in adult mouse striatum, using whole‐cell recordings. Presynaptic activity followed by postsynaptic action potentials (pre–post) caused spike‐timing‐dependent long‐term depression in D1‐expressing neurons, but not in D2 neurons, and not if postsynaptic activity followed presynaptic activity. Subsequent experiments focused on D1 neurons. Applying a dopamine D1 receptor agonist during induction of pre–post plasticity caused long‐term potentiation. This long‐term potentiation was hidden by long‐term depression occurring concurrently and was unmasked when long‐term depression blocked an L‐type calcium channel antagonist. Long‐term potentiation was blocked by a Ca2+‐permeable AMPA receptor antagonist but not by an NMDA antagonist or an L‐type calcium channel antagonist. Pre–post stimulation caused transient elevation of rectification – a marker for expression of Ca2+‐permeable AMPA receptors – for 2–4‐s after stimulation. To test for an eligibility trace, dopamine was uncaged at specific time points before and after pre‐ and postsynaptic conjunction of activity. Dopamine caused potentiation selectively at synapses that were active 2‐s before dopamine release, but not at earlier or later times. Our results provide direct evidence for a silent eligibility trace in the synapses of striatal neurons. This dopamine‐timing‐dependent plasticity may play a central role in reinforcement learning.
Collapse
Affiliation(s)
- Tomomi Shindou
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Mayumi Shindou
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Sakurako Watanabe
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Jeffery Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan
| |
Collapse
|