1
|
Xie H, Zhang A, Li J, Mou X, He T, Yeung TC, Lau CBS, Zuo Z, Li P, Kennelly EJ, Leung PC, Tang Y, Fan X, Wang CC, Li L. Cycasin derivative: a potential embryotoxic component of Atractylodes macrocephala rhizome for limb malformation. Toxicol Res (Camb) 2024; 13:tfae057. [PMID: 38623091 PMCID: PMC11015991 DOI: 10.1093/toxres/tfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Objective The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), called Atractylodes macrocephala rhizome (AMR) and known by its traditional name Bai Zhu, is a prominent Chinese herbal medicine employed for preventing miscarriage. However, our previous study revealed that high dosages of AMR administered during pregnancy could cause embryotoxicity but the specific embryotoxic components and their underlying mechanisms remain unclear. This study aimed to screen and identify the potential embryotoxic components of AMR. Methods The AMR extracts and sub-fractions were analyzed by thin layer chromatography and subsequently screened by in vitro mouse limb bud micromass and mouse whole embryo culture bioassays. The embryotoxic fractions from AMR were further evaluated in vivo using a pregnant mouse model. The structures of the potential embryotoxic components were analyzed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Results In vitro and in vivo bioassays revealed that AMR glycoside-enriched sub-fractions (AMR-A-IIa and AMR-A-IIb) exhibited potential embryotoxicity. These sub-fractions, when administered to pregnant animals, increased the incidence of stillbirth and congenital limb malformations. MS spectrometry analysis identified cycasin derivatives in both sub-fractions, suggesting their possible role in the observed limb malformations. However, further experiments are necessary to validate this hypothesis and to elucidate the underlying mechanisms. Conclusions Our study provides significant scientific evidence on the pharmacotoxicity of AMR, which is important for the safe clinical application of commonly used Chinese herbal medicines during pregnancy.
Collapse
Affiliation(s)
- Hongliang Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Aolin Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Junwei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Xuan Mou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Tao He
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Tsz Ching Yeung
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Ping Li
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468, United States
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468, United States
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- Modern Chinese Medicine and Reproductive Health Joint Innovation Center, Innovation Center of Yangtze River Delta, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
- Modern Chinese Medicine and Reproductive Health Joint Innovation Center, Innovation Center of Yangtze River Delta, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou City, Zhejiang Province, 310053, China
| | - Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
- Modern Chinese Medicine and Reproductive Health Joint Innovation Center, Innovation Center of Yangtze River Delta, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Shangcheng District, Hangzhou City, Zhejiang Province, 310016, China
| |
Collapse
|
2
|
Wang YK, Li WQ, Xia S, Guo L, Miao Y, Zhang BK. Metabolic Activation of the Toxic Natural Products From Herbal and Dietary Supplements Leading to Toxicities. Front Pharmacol 2021; 12:758468. [PMID: 34744736 PMCID: PMC8564355 DOI: 10.3389/fphar.2021.758468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Currently, herbal and dietary supplements have been widely applied to prevent and treat various diseases. However, the potential toxicities and adverse reactions of herbal and dietary supplements have been increasingly reported, and have gradually attracted widespread attention from clinical pharmacists and physicians. Metabolic activation of specific natural products from herbal and dietary supplements is mediated by hepatic cytochrome P450 or intestinal bacteria, and generates chemical reactive/toxic metabolites that bind to cellular reduced glutathione or macromolecules, and form reactive metabolites-glutathione/protein/DNA adducts, and these protein/DNA adducts can result in toxicities. The present review focuses on the relation between metabolic activation and toxicities of natural products, and provides updated, comprehensive and critical comment on the toxic mechanisms of reactive metabolites. The key inductive role of metabolic activation in toxicity is highlighted, and frequently toxic functional groups of toxic natural products were summarized. The biotransformation of drug cytochrome P450 or intestinal bacteria involved in metabolic activation were clarified, the reactive metabolites-protein adducts were selected as biomarkers for predicting toxicity. And finally, further perspectives between metabolic activation and toxicities of natural products from herbal and dietary supplements are discussed, to provide a reference for the reasonable and safe usage of herbal and dietary supplements.
Collapse
Affiliation(s)
- Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Miao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
3
|
Whitaker MRL, Salzman S. Ecology and evolution of cycad-feeding Lepidoptera. Ecol Lett 2020; 23:1862-1877. [PMID: 32969575 DOI: 10.1111/ele.13581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Cycads are an ancient group of tropical gymnosperms that are toxic to most animals - including humans - though the larvae of many moths and butterflies (order: Lepidoptera) feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees of specialisation and diverse feeding ecologies, presenting numerous opportunities for comparative studies of chemically mediated eco-evolutionary dynamics. This review presents the first evolutionary evaluation of cycad-feeding among Lepidoptera along with a comprehensive review of their ecology. Our analysis suggests that multiple lineages have independently colonised cycads from angiosperm hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive traits are likely important for diversification, as many cycad specialists are warningly coloured and sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to cycad-feeding and several cycadivorous lycaenids are warningly coloured and chemically defended. Cycad-herbivore interactions provide a promising but underutilised study system for investigating plant-insect coevolution, convergent and divergent adaptations, and the multi-trophic significance of defensive traits; therefore the review ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and other cycad-feeding insects.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Weinbergstrasse 56/58, Zürich, 8092, Switzerland.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Shayla Salzman
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.,School of Integrative Plant Science, Cornell University, 502 Mann Library, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
5
|
Salzman S, Whitaker M, Pierce NE. Cycad-feeding insects share a core gut microbiome. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shayla Salzman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Melissa Whitaker
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Pharmacological and Predicted Activities of Natural Azo Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:151-169. [PMID: 28054247 PMCID: PMC5315673 DOI: 10.1007/s13659-016-0117-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/26/2016] [Indexed: 05/16/2023]
Abstract
This paper describes research on natural azo compounds isolated from fungi, plant, bacteria, and invertebrates. More than 120 biologically active diazene containing alkaloids demonstrate confirmed pharmacological activity, including antitumor, antimicrobial, and antibacterial effects. The structures, origin, and biological activities of azo compounds are reviewed. Utilizing the computer program PASS, some structure-activity relationship new activities are also predicted, pointing toward possible new applications of these compounds. This article emphasizes the role of natural azo compounds as an important source of drug prototypes and leads for drug discovery.
Collapse
Affiliation(s)
- Valery M Dembitsky
- National Scientific Center of Marine Biology, 17 Palchevsky Str., Vladivostok, Russia, 690041.
| | | | | |
Collapse
|
7
|
Riebeling C, Hayess K, Peters AK, Steemans M, Spielmann H, Luch A, Seiler AEM. Assaying embryotoxicity in the test tube: current limitations of the embryonic stem cell test (EST) challenging its applicability domain. Crit Rev Toxicol 2012; 42:443-64. [PMID: 22512667 DOI: 10.3109/10408444.2012.674483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Testing for embryotoxicity in vitro is an attractive alternative to animal experimentation. The embryonic stem cell test (EST) is such a method, and it has been formally validated by the European Centre for the Validation of Alternative Methods. A number of recent studies have underscored the potential of this method. However, the EST performed well below the 78% accuracy expected from the validation study using a new set of chemicals and pharmaceutical compounds, and also of toxicity criteria, tested to enlarge the database of the validated EST as part of the Work Package III of the ReProTect Project funded within the 6th Framework Programme of the European Union. To assess the performance and applicability domain of the EST we present a detailed review of the substances and their effects in the EST being nitrofen, ochratoxin A, D-penicillamine, methylazoxymethanol, lovastatin, papaverine, warfarin, β-aminopropionitrile, dinoseb, furosemide, doxylamine, pravastatin, and metoclopramide. By delineation of the molecular mechanisms of the substances we identify six categories of reasons for misclassifications. Some of these limitations might also affect other in vitro methods assessing embryotoxicity. Substances that fall into these categories need to be included in future validation sets and in validation guidelines for embryotoxicity testing. Most importantly, we suggest conceivable improvements and additions to the EST which will resolve most of the limitations.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), ZEBET - Alternative Methods to Animal Experiments, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Koster S, Boobis AR, Cubberley R, Hollnagel HM, Richling E, Wildemann T, Würtzen G, Galli CL. Application of the TTC concept to unknown substances found in analysis of foods. Food Chem Toxicol 2011; 49:1643-60. [DOI: 10.1016/j.fct.2011.03.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
|
9
|
Fonnum F, Lock EA. The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 2004; 88:513-31. [PMID: 14720201 DOI: 10.1046/j.1471-4159.2003.02211.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Six chemicals, 2-halopropionic acids, thiophene, methylhalides, methylmercury, methylazoxymethanol (MAM) and trichlorfon (Fig. 1), that cause selective necrosis to the cerebellum, in particular to cerebellar granule cells, have been reviewed. The basis for the selective toxicity to these neurones is not fully understood, but mechanisms known to contribute to the neuronal cell death are discussed. All six compounds decrease cerebral glutathione (GSH), due to conjugation with the xenobiotic, thereby reducing cellular antioxidant status and making the cells more vulnerable to reactive oxygen species. 2-Halopropionic acids and methylmercury appear to also act via an excitotoxic mechanism leading to elevated intracellular Ca2+, increased reactive oxygen species and ultimately impaired mitochondrial function. In contrast, the methylhalides, trichlorfon and MAM all methylate DNA and inhibit O6-guanine-DNA methyltransferase (OGMT), an important DNA repair enzyme. We propose that a combination of reduced antioxidant status plus excitotoxicity or DNA damage is required to cause cerebellar neuronal cell death with these chemicals. The small size of cerebellar granule cells, the unique subunit composition of their N-methyl-d-aspartate (NMDA) receptors, their low DNA repair ability, low levels of calcium-binding proteins and vulnerability during postnatal brain development and distribution of glutathione and its conjugating and metabolizing enzymes are all important factors in determining the sensitivity of cerebellar granule cells to toxic compounds.
Collapse
Affiliation(s)
- F Fonnum
- Norwegian Defence Research Establishment, Division for Protection and Material, Kjeller, Norway.
| | | |
Collapse
|
10
|
Affiliation(s)
- Mark A Myers
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria, 3800 Australia.
| | | | | |
Collapse
|
11
|
Kevekordes S, Mersch-Sundermann V, Burghaus CM, Spielberger J, Schmeiser HH, Arlt VM, Dunkelberg H. SOS induction of selected naturally occurring substances in Escherichia coli (SOS chromotest). Mutat Res 1999; 445:81-91. [PMID: 10521693 DOI: 10.1016/s1383-5718(99)00141-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Naturally occurring substances were tested for genotoxicity using a modified laboratory protocol of the Escherichia coli PQ37 genotoxicity assay (SOS chromotest) in the presence and in the absence of an exogenous metabolizing system from rat liver S9-mix. Aristolochic acid I, II, the plant extract aristolochic acid and psoralene were genotoxic; cycasine, emodine, monocrotaline and retrorsine were classified as marginal genotoxic in the SOS chromotest in the absence of S9-mix. In the presence of an exogenous metabolizing system from rat liver S9-mix aristolochic acid I, the plant extract, beta-asarone, cycasin, monocrotaline, psoralen and retrorsine showed genotoxic effects; aristolochic acid II marginal genotoxic effects. Arecoline, benzyl acetate, coumarin, isatidine dihydrate, reserpine, safrole, sanguinarine chloride, senecionine, senkirkine, tannin and thiourea revealed no genotoxicity in the SOS chromotest either in the presence or in the absence of an exogenous metabolizing system from rat liver S9-mix. For 17 of 20 compounds, the results obtained in the SOS chromotest could be compared to those obtained in the Ames test. It was found that 12 (70.6%) of these compounds give similar responses in both tests (6 positive and 6 negative responses). The present investigation and those reported earlier, the SOS chromotest, using E. coli PQ37, was able to detect correctly most of the Salmonella mutagens and non-mutagens.
Collapse
Affiliation(s)
- S Kevekordes
- Medical Institute of General Hygiene and Environmental Health, University of Göttingen, Windausweg 2, 37073, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Esclaire F, Kisby G, Spencer P, Milne J, Lesort M, Hugon J. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulates tau mRNA expression and excitotoxicity. Exp Neurol 1999; 155:11-21. [PMID: 9918700 DOI: 10.1006/exnr.1998.6962] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As in Alzheimer's disease, brains of Guam Chamorros with amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) contain intraneuronal-paired helical filaments composed of accumulated phosphorylated tau protein. Tau mRNA expression in rat neuronal cultures-normally modulated by glutamate-increases after treatment with the aglycone of cycasin, a cycad-derived toxin whose concentration in Chamorro food varies with disease incidence. Elevated Tau gene expression in vitro is coincident with increased cycasin-related DNA adducts and reduced DNA repair. Cycasin and endogenous glutamate may together promote the accumulation of tau protein and neuronal degeneration in Western Pacific ALS/PDC.
Collapse
Affiliation(s)
- F Esclaire
- Faculty of Medicine, University of Limoges, 87025 Limoges, ERS CNRS 6101, France
| | | | | | | | | | | |
Collapse
|
13
|
Neurotoxins and Neurodegenerative Diseases. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Hirayama B, Hazama A, Loo DF, Wright EM, Kisby GE. Transport of cycasin by the intestinal Na+/glucose cotransporter. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1193:151-4. [PMID: 8038185 DOI: 10.1016/0005-2736(94)90344-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The medicinal and food use of seed from the cycad plant (Cycas spp.), which contains the neurotoxin cycasin, is a proposed etiological factor for amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC), a prototypical neurodegenerative disease found in the western Pacific. Cycasin, the beta-D-glucoside of methylazoxymethanol might enter neurons and other cells via a glucose transporter. Since the intestinal brush-border Na+/glucose cotransporter plays a major role in the absorption of monosaccharides, the following studies were conducted to determine if cycasin, the beta-D-glucoside of methylazoxymethanol, is a substrate for the transporter. We measured the ability of cycasin to (i) inhibit Na+/glucose uptake into rabbit intestinal brush-border membrane vesicles, and (ii) to generate current by the cloned Na+/glucose cotransporter (SGLT1) expressed in Xenopus laevis oocytes. The results show that cycasin inhibits Na(+)-dependent sugar transport in the vesicles, and cycasin generates phlorizin-sensitive currents in oocytes. We conclude that cycasin is a substrate for the intestinal brush-border Na+/glucose cotransporter, albeit with a lower affinity than D-glucose. This suggests that cycasin may be absorbed from the gut lumen by the cotransporter, and as a result either cycasin or the aglycone is presented to the blood-brain barrier for uptake into the brain.
Collapse
Affiliation(s)
- B Hirayama
- Department of Physiology, UCLA School of Medicine
| | | | | | | | | |
Collapse
|
15
|
Reams RY, Janovitz EB, Robinson FR, Sullivan JM, Rivera Casanova C, Más E. Cycad (Zamia puertoriquensis) toxicosis in a group of dairy heifers in Puerto Rico. J Vet Diagn Invest 1993; 5:488-94. [PMID: 8373871 DOI: 10.1177/104063879300500337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- R Y Reams
- Indiana Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette 47907
| | | | | | | | | | | |
Collapse
|
16
|
Kier LD, Brusick DJ, Auletta AE, Von Halle ES, Brown MM, Simmon VF, Dunkel V, McCann J, Mortelmans K. The Salmonella typhimurium/mammalian microsomal assay. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 1986; 168:69-240. [PMID: 3528831 DOI: 10.1016/0165-1110(86)90002-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Salmonella assay has been in use for almost 15 years and can be defined as a routine test for mutagenicity and for predicting potential carcinogenicity. It detects the majority of animal carcinogens and consequently plays an important role in safety assessment. The test is also routinely used as the frontline screen for environmental samples (complex mixtures) isolated from air, water and food. This role will continue to remain an area of growth as or because sample volumes associated with these testing areas are generally very limited and more extensive testing is generally impossible. While this test, like all others, has some limitations, it is recommended that it be regularly included in all genetic testing batteries.
Collapse
|
17
|
Knasmüller S, Mohn GR. On the distribution of genotoxic factors in various organs of mice treated with cycasin. Chem Biol Interact 1986; 58:109-16. [PMID: 3518968 DOI: 10.1016/s0009-2797(86)80090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The distribution of genotoxic factors in various organs of mice treated orally with methylazoxymethanol-beta-D-glycoside (cycasin) was investigated using the DNA-repair host mediated assay. Indicator of genotoxic activity was a pair of streptomycin dependent Escherichia coli strains differing vastly in DNA repair capacity; uvrB/recA vs. uvr+/rec+. The animal-mediated assays were performed by injecting mixtures of the two strains i.v. and orally into mice, which were subsequently treated with the test chemical and from which the differential survival of the indicator bacteria present in several organs was determined. The same strains and selection procedures were also used for assessing the DNA-damaging activity in vitro. In the animal-mediated assays in which cycasin was applied orally, significant effects were observed at doses of 100 and 500 mg/kg body weight. The organ distribution of genotoxic factors in the host animal was as follows: the highest genotoxic activity was observed in the liver, followed by intestine and stomach; a clear effect was also observed in the kidneys and, to a lower extent, in the blood stream and in the lungs at the highest dose administered (500 mg/kg body weight). Under in vitro conditions a marginal genotoxic effect was observed even in the absence of liver homogenate, indicating that the test compound is possible activated (hydrolysed) by the E. coli cells. Therefore the genotoxic activity of cycasin observed in the gastrointestinal tract was not unexpected, since the substance was applied orally, thereby exposing the indicator bacteria in these organs to high levels of unmetabolised compound, especially in the stomach. In the intestine members of the microbial flora probably contribute to the metabolic activation of the test compound. The occurrence of genotoxic factors remote from the gastrointestinal tract shows that the present compound or active metabolites thereof penetrate through the intestinal barrier. The extraordinarily high genotoxic activity observed in the liver suggests that the compound is additionally activated in this organ. In compliance with previous in vitro findings this second activation step might lead to the formation of the highly reactive aldehydic form of methylazoxymethanol (MAMAL) mediated by dehydrogenases. Comparison with carcinogenicity studies indicates a good correlation between the distribution of genotoxic effects as determined in the present studies and the localisation of tumors in various organs of rodents treated with cycasin.
Collapse
|
18
|
Tyson CK, Mirsalis JC. Measurement of unscheduled DNA synthesis in rat kidney cells following in vivo treatment with genotoxic agents. ENVIRONMENTAL MUTAGENESIS 1985; 7:889-99. [PMID: 4065062 DOI: 10.1002/em.2860070610] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The kidney is a key target tissue in animal and human carcinogenesis, yet there are no established short-term tests for studying the genotoxicity of chemicals in the kidney. We have developed an assay for the measurement of chemically induced DNA repair as unscheduled DNA synthesis (UDS) in isolated rat kidney cells following in vivo treatment. Male Fischer-344 rats were injected intraperitoneally with chemicals dissolved in saline or corn oil. After various treatment times, the kidneys were perfused with a collagenase/trypsin solution (CTS), minced into small pieces, and stirred in CTS at 37 degrees C for 1 hr to dissociate cells. Cultures contain a high proportion of epithelial cells from the proximal and distal tubules. Cultures were incubated for 16-18 hr with 3H-thymidine in Williams' Medium E supplemented with 20% fetal bovine serum. UDS was measured by quantitative autoradiography as net grains/nucleus (NG). The percentage of cells in repair (% IR) was defined as the percentage of cells with greater than or equal to 3 NG. Saline- or corn oil-injected controls consistently produced -3 to -5 NG with less than 1% IR. The time course of DNA repair following treatment with the direct-acting mutagen methylmethane sulfonate (MMS) or the renal carcinogen azaserine showed a peak response at 2 hr after treatment. Azaserine showed a rapid decline in UDS at 12 and 24 hr, whereas MMS exhibited a relatively high UDS level at 24 hr. The renal carcinogens methylazoxymethanol acetate, N-methyl-N-nitrosourea, and streptozotocin all yielded strong positive UDS responses. The liver and intestinal carcinogen 1, 1-dimethylhydrazine at doses up to 50 mg/kg was cytotoxic to kidney cells, but induced less than 0 NG. Treatment with 1,2-dimethylhydrazine, which induces kidney tumors in mice but not rats, also induced less than 0 NG. Treatment with o-anisidine, a weak renal carcinogen, did not induce UDS in the kidney, suggesting that it may be acting as a tumor promoter. These results demonstrate the usefulness of this assay for the detection and study of a variety of genotoxic kidney carcinogens.
Collapse
|
19
|
Hoffmann GR, Morgan RW. Review: putative mutagens and carcinogens in foods. V. Cycad azoxyglycosides. ENVIRONMENTAL MUTAGENESIS 1984; 6:103-16. [PMID: 6363050 DOI: 10.1002/em.2860060112] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cycasin is a member of a family of azoxyglycosides produced by cycads. It is mutagenic and carcinogenic only when deglucosylated to release its principal metabolite, methylazoxymethanol (MAM). Methylazoxymethanol is also the aglycone of other cycad azoxyglycosides and is responsible for their toxicologic properties. The way in which people can be exposed to cycad azoxyglycosides is through the consumption of foods prepared from cycads. MAM induces genetic alterations in various test systems in bacteria, yeast, plants, Drosophila, and mammalian cells. An important aspect of the biological activities of cycasin and MAM is the intimate connection between their metabolism and their toxicologic effects. In adult mammals, the deglucosylation of cycasin is catalyzed only by enzymes of the microflora of the gut. Cycasin is therefore active when administered orally but not when administered parenterally. In contrast, MAM is active regardless of the route of exposure. Major uncertainties remain regarding the intermediates generated from MAM spontaneously and metabolically. More knowledge of these intermediates is required for a better understanding of the molecular mechanisms underlying the toxicity of cycasin, MAM, and related compounds.
Collapse
|