1
|
Alam Q, Khah MA, Azad ZRAA. Comparative Analysis of Different Chemical Mutagens in Inducing Chromosomal Aberrations in Meiotic Cells of <i>Triticum aestivum</i> L. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Qamre Alam
- Department of Biotechnology, Shri JJT University
| | | | | |
Collapse
|
2
|
Abstract
The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH, cysK, and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.
Collapse
|
3
|
Fun HK, Chia TS, Kayarmar R, Dinesha, Nagaraja GK. 2-Azido-1-(3,6-dichloro-9 H-fluoren-1-yl)ethanone. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o2656-7. [PMID: 22058777 PMCID: PMC3201472 DOI: 10.1107/s1600536811036762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/10/2011] [Indexed: 11/10/2022]
Abstract
In the title compound, C15H9Cl2N3O, an intramolecular C—H⋯O interaction generates an S(7) ring motif. The cyclopenta-1,3-diene ring forms dihedral angles of 1.93 (6) and 2.78 (6)° with its attached benzene rings. In the crystal, molecules are linked by C—H⋯N and C—H⋯O hydrogen bonds, thereby forming layers lying parallel to the ac plane. The crystal also features a π–π interaction with a centroid–centroid distance of 3.5612 (6) Å.
Collapse
|
4
|
Ruzo LO. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. PEST MANAGEMENT SCIENCE 2006; 62:99-113. [PMID: 16308867 DOI: 10.1002/ps.1135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Production and use of methyl bromide, a soil fumigant, are being restricted because of this chemical's deleterious effects on stratospheric ozone concentrations. Several products, some of which are currently used as soil fumigants, are being considered as possible replacements for methyl bromide, alone and in various combinations. Among these, 1,3-dichloropropene, methyl isothiocyanate generators such as metam-sodium, and chloropicrin are currently registered, while others such as methyl iodide and sodium azide are at different stages of the registration process. This review examines physicochemical properties, environmental fate, and metabolism of the various potential methyl bromide replacement products.
Collapse
Affiliation(s)
- Luis O Ruzo
- PTRL West, Inc., 625-B Alfred Nobel Drive, Hercules, CA 94547, USA.
| |
Collapse
|
5
|
Sadiq MF, Owais WM. Mutagenicity of sodium azide and its metabolite azidoalanine in Drosophila melanogaster. Mutat Res 2000; 469:253-7. [PMID: 10984686 DOI: 10.1016/s1383-5718(00)00079-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mutagenic and toxic activities of sodium azide (NaN(3) ) and its organic metabolite L-azidoalanine [N(3)-CH(2)-CH(NH)(2)-COOH] were examined in the different stages of spermatogenesis in Drosophila melanogaster. Both azide and azidoalanine were toxic to the injected males, but azidoalanine was significantly less toxic than sodium azide. Following the injection with 0.2 microl of these compounds in the hemocoel of young adult wild-type males, the minimum concentrations of these compounds with complete toxic effects (zero survival) were 40 mM sodium azide and 160 mM azidoalanine. Sex-linked recessive lethals were scored by the Muller-5 method in three successive broods, representing sperms (brood A), spermatids (brood B), and a compiled group of meiotic and premeiotic germ cell stages (brood C). The results provide strong experimental evidence that azidoalanine is significantly (p<0.01) mutagenic to all stages of spermatogenesis in Drosophila melanogaster. Sodium azide, however, was not significantly (p>0.05) mutagenic and did not increase the rate of sex-linked recessive lethals over those produced by the control group injected with 0.45% NaCl. These results indicate the requirement of metabolic activation of azide in Drosophila as a prerequisite for its mutagenic effects.
Collapse
Affiliation(s)
- M F Sadiq
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan.
| | | |
Collapse
|
6
|
Li J, Ayyadevera R, Shmookler Reis RJ. Carcinogens stimulate intrachromosomal homologous recombination at an endogenous locus in human diploid fibroblasts. Mutat Res 1997; 385:173-93. [PMID: 9506887 DOI: 10.1016/s0921-8777(97)00054-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitotic recombination is believed to play an important role in the development of many cancers. An improved system has been developed to detect reversion of an intragenic DNA duplication, as a model for intrachromosomal homologous recombination. The 'LNtd' strain of human fibroblasts, derived from a Lesch-Nyhan donor, produces no detectable hypoxanthine phosphoribosyltransferase (HPRT) activity due to a 13.7-kilobase-pair DNA insertion duplicating exons 2 and 3 of the HPRT locus. These cells are therefore sensitive to selection in HAT medium, against cells lacking functional HPRT enzyme. Clonal reversion to HAT resistance occurs spontaneously at 1-3 x 10(-5)/cell/generation, and can be induced by brief exposure to a variety of carcinogenic agents. Six known carcinogens, including two (diethylstilbestrol and nickel chloride) which were non-mutagenic in Salmonella by Ames HIS-reversion tests, showed dose-dependent induction of LNtd reversion by a maximum of 2.4- to > 11-fold over controls (each p < 0.01). In contrast, 5 non-carcinogenic agents, including two 'Ames-positive' chemicals, sodium azide and 8-hydroxyquinoline, evoked no more than a 1.7-fold increase in reversion (not significant). The molecular events associated with reversion to HAT-resistance were characterized, relative to the parental strain, in HATR clones derived from either untreated or carcinogen-treated cells. Both the intron-3:intron-1 junction situated between the duplicated HPRT segments in LNtd cells (amplified by polymerase chain reaction), and a restriction fragment corresponding to the duplicated HPRT DNA (assessed by Southern-blot hybridization), were lost from the majority of HATR revertant clones, whether they arose spontaneously or following exposure to Cr(VI) or ultraviolet light. These results imply that HATR reversion is induced in LNtd cells by carcinogenic treatments, through a mechanism consistent with homologous recombination, and is highly concordant with induction of in vivo carcinogenesis by the same agents.
Collapse
Affiliation(s)
- J Li
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
7
|
Ma TH, Cabrera GL, Chen R, Gill BS, Sandhu SS, Vandenberg AL, Salamone MF. Tradescantia micronucleus bioassay. Mutat Res 1994; 310:221-30. [PMID: 7523893 DOI: 10.1016/0027-5107(94)90115-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four coded chemicals, azidoglycerol (AG), N-methyl-N-nitrosourea (MNU), sodium azide (NaN3), and maleic hydrazide (MH), were tested with the Tradescantia micronucleus (Trad-MCN) bioassay by five independent laboratories from five different countries. The purpose of this international collaborative study was to evaluate four plant bioassays, of which the Trad-MCN assay was one, for their sensitivity, efficiency and reliability. The study was carried out under the sponsorship of the International Programme on Chemical Safety. All laboratories adhered to a standard Trad-MCN protocol which suggested that three replicate tests be conducted with each chemical. The results reported by all laboratories, although not equal, showed good agreement among the laboratories. In fact, all five laboratories obtained positive results with MH and MNU, while four of the five laboratories achieved positive results with NaN3. AG was tested in only three laboratories. Two reported negative results, while one reported positive results but only at a single high dose. The data from this study suggest that under normal conditions, the Trad-MCN bioassay is an efficient and reliable short-term bioassay for clastogens. It is suitable for the rapid screening of chemicals, and also is specially qualified for in situ monitoring of ambient pollutants.
Collapse
Affiliation(s)
- T H Ma
- Department of Biological Sciences, Western Illinois University, Macomb 61455
| | | | | | | | | | | | | |
Collapse
|
8
|
Grant WF, Salamone MF. Comparative mutagenicity of chemicals selected for test in the International Program on Chemical Safety's collaborative study on plant systems for the detection of environmental mutagens. Mutat Res 1994; 310:187-209. [PMID: 7523891 DOI: 10.1016/0027-5107(94)90113-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A review has been made for the four compounds (maleic hydrazide, methyl nitrosourea, sodium azide, azidoglycerol) tested in the International Program on Chemical Safety's collaborative study on plant systems. Maleic hydrazide (MH) is a weak cytotoxic/mutagenic chemical in mammalian tissues and is classified as a class 4 chemical. In contrast, with few exceptions such as Arabidopsis, MH is a potent mutagen/clastogen in plant systems. The difference in its response between plant and animal tissue is likely due to differences in the way MH is metabolized. MH appears to be noncarcinogenic and has been given a negative NCI/NTP carcinogen rating. Methyl nitrosourea (MNU) is a toxic, mutagenic, radiomimetic, carcinogenic, and teratogenic chemical. It has been shown to be a mutagen in bacteria, fungi, Drosophila, higher plants, and animal cells both in vitro and in vivo. MNU is a clastogen in both animal and human cell cultures, plant root tips and cell cultures inducing both chromosome and chromatid aberrations as well as sister-chromatid exchanges. Carcinogenicity has been confirmed in numerous studies and involves the nervous system, intestine, kidney, stomach, bladder and uterus, in the rat, mouse, and hamster. MNU produces stage-specific teratogenic effects and also interferes with embryonic development. The experimental evidence that strongly indicates the mutagenic effects of MNU underlines the possible hazard of this compound to human beings. The experimental evidence for the stringent handling of this compound is clear. Sodium azide (NaN3) is cytotoxic in several animal and plant systems and functions by inhibiting protein synthesis and replicative DNA synthesis at low dosages. It is mutagenic in bacteria, higher plants and human cells and has been used as a positive control in some systems. In general, tests for clastogenicity have been negative or weakly positive. No evidence of carcinogenicity has been reported in a 2-year study seeking carcinogenic activity in male and female rats. Its advantages in comparison to other efficient mutagens are claimed to be a high production of gene mutations accompanied by a low frequency of chromosomal rearrangements and safer handling because of its nonclastogenic and noncarcinogenic action on humans. Azidoglycerol (AG) is a very potent mutagen in bacteria, yeast and higher plants including Arabidopsis and Tradescantia; however, it only slightly enhances the frequencies of recessive lethals in Drosophila. AG is at best a weak clastogen and is without effect in inducing chromosomal aberrations and SCEs in human peripheral lymphocytes in vitro. In microbial and plant systems, AG is considerably more potent than sodium azide in the maximal frequencies of mutation induced. In particular, in Saccharomyces cerevisae, AG is 3000-fold more mutagenic than sodium azide. Its carcinogenic and teratogenic properties are unknown.
Collapse
Affiliation(s)
- W F Grant
- Department of Plant Science, McGill University, Que., Canada
| | | |
Collapse
|
9
|
Mangold JB, Du Y, Mischke MR, LaVelle JM. Effects of deuterium labeling on azido amino acid mutagenicity in Salmonella typhimurium. Mutat Res 1994; 308:33-42. [PMID: 7516484 DOI: 10.1016/0027-5107(94)90196-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mutagenic effects of azide (N3-) anion in bacterial test systems require the formation of the novel mutagenic metabolite, 3-azido-L-alanine (AZAL). Although the mechanism of AZAL-induced mutagenicity is unknown, subsequent bioactivation of this metabolite appears likely. Earlier studies have shown that other azide-containing amino acids are mutagenic as well. In fact, the mutagenic potency of the synthetic AZAL homologue, L-2-amino-4-azidobutanoic acid (HomoAZAL), was several times that of AZAL. To gain insight into the biochemical processing and mutagenicity of azido amino acids in Salmonella typhimurium, several specifically deuterium-labeled azido amino acids have been prepared and tested for mutagenic potency. In addition, the effect of (aminooxy)acetic acid (AOA) (a potent inhibitor of pyridoxal-dependent processes) on AZAL-induced mutagenesis was examined. The results showed that 2-deuterium substitution of AZAL resulted in a slight increase in mutagenic potency, while AOA treatment resulted in no change in AZAL potency. Taken together these findings did not support the involvement of pyridoxal-dependent processes in AZAL bioactivation. In contrast, deuterium substitution adjacent to the azide group in HomoAZAL and 5-azido-L-norvaline (N3-Norval) resulted in a large decrease in mutagenic potency when compared to the non-deuterium labeled compounds. These observations are consistent with a bioactivation mechanism involving rate-limiting C-H bond cleavage in the formation of the ultimate mutagen. Moreover, this effect of deuterium labeling points to processing of the azide-containing side chain as a key feature in the mutagenic activation mechanism.
Collapse
Affiliation(s)
- J B Mangold
- Medicinal Chemistry Program, School of Pharmacy, University of Connecticut, Storrs
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- R J Griffin
- Department of Chemistry, University of Newcastle, Newcastle upon Tyne, U.K
| |
Collapse
|
11
|
Grúz P, Jurícek M, Zák P, Velemínský J. Mutagenicity of 3-azido-1,2-propanediol and 9-(3-azido-2-hydroxypropyl)-adenine in repair deficient strains of Escherichia coli. Mutat Res 1993; 303:1-9. [PMID: 7690900 DOI: 10.1016/0165-7992(93)90002-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mutagenicity of two non-aromatic organic azido compounds, 3-azido-1,2-propanediol (AG) and 9-(3-azido-2-hydroxypropyl)-adenine (AHPA), was studied in E. coli repair deficient strains uvrA6, uvrA6 + umuC36, uvrA6+ umuC122::Tn5, polA1, tagA1+ alkA1, ada and dam3. The mutagenicity of both agents was markedly enhanced by defects of UvrABC excinuclease (uvrA6) and was independent of umuC function of the SOS error-prone pathway. Neither azido compound promoted umuDC operon expression. The mutagenicity of AG in tag A1, alkA1 and ada mutants does not differ from that found in the wild-type strain. The expression of both ada and alkA genes was not elevated by AG. Experiments on polA1 and dam3 mutants suggest that DNA polymerase I as well as the mutHLS mismatch repair pathway does not contribute to the removal of putative DNA lesions induced by AG.
Collapse
Affiliation(s)
- P Grúz
- Department of Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | |
Collapse
|
12
|
Abstract
A Bacillus subtilis transformation system was used to investigate the possible direct effect of L-azidoalanine on DNA in vitro. A B. subtilis (trp-) deletion and repair deficient (uvr-) strain was constructed and used as a recipient for treated DNA. The data obtained indicate that L-azidoalanine, at the described conditions, does not interact with DNA in vitro. Thus, L-azidoalanine failed to produce any DNA damage even in the absence of an excision repair mechanism.
Collapse
Affiliation(s)
- W M Owais
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| |
Collapse
|
13
|
Juricek M, Gruz P, Veleminsky J, Stanek J, Kefurt K, Moravcova J, Jary J. Mutagenic activity of 6-azido deoxyhexoses and azido alcohols in Salmonella typhimurium and its inhibition by a structure-similar carbon source in the medium. Mutat Res 1991; 251:13-20. [PMID: 1944370 DOI: 10.1016/0027-5107(91)90211-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
6-Azido-6-deoxy (AZd) derivatives of D-glucose, D-mannose, D-altrose, D-allose, L-idose, D-galactose, D-galactonic acid and D-galactitol, 3-azido-1,2-propanediol (azidoglycerol), 3,1-diazido-2-propanol (diazidoglycerol) and (at much higher doses) 2-azidoethanol were mutagenic in Salmonella typhimurium strains TA100 and TA1535. The mutagenic response was similar to that induced by sodium azide, i.e., the azido compounds failed to induce mutations in strain TA98, and mutagenesis was independent of plasmid pKM101, and independent of external activation. The specific mutagenicity (his+ rev/mmole) of AZd-glucose and AZd-galactose was decreased with increasing concentrations of D-glucose or D-galactose in the minimal agar medium and enhanced 100-fold or more when 0.2% citrate rather than 0.2% glucose served as the carbon source in the medium. Similarly, the mutagenic efficiency of azidoglycerol was inhibited by glycerol but not by D-glucose or D-galactose; however, the mutagenicity of sodium azide was not influenced by any of these carbon sources in the medium. The inhibition of the mutagenic action of azido hexoses and azido alcohols by non-azido structural analogs is assumed to reside in competition in transmembrane transport or for the metabolic pathways.
Collapse
Affiliation(s)
- M Juricek
- Institute of Experimental Botany, Czechoslovak Academy of Sciences, Prague
| | | | | | | | | | | | | |
Collapse
|
14
|
Owais WM, Gharaibeh R. Cloning of the E. coli O-acetylserine sulfhydrylase gene: ability of the clone to produce a mutagenic product from azide and O-acetylserine. Mutat Res 1990; 245:151-5. [PMID: 2122244 DOI: 10.1016/0165-7992(90)90043-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gene coding for O-acetylserine sulfhydrylase (OASS) from E. coli K12 was cloned into the vector pBR322 plasmid and expressed in a cysk mutant strain of E. coli that is deficient in O-acetylserine sulfhydrylase (OASS-). The clone containing the OASS gene was selected by using tetracycline-ammonium bismuth citrate medium. Retransformation of the hybrid plasmid into competent cysk mutant cells resulted in the recovery of a clone containing normal levels of O-acetylserine sulfhydrylase. Negative selection of retransformed cysk cells on 1,2,4-triazole plates resulted in the complete inhibition of growth indicating the presence of a functional OASS gene. The ability of the new clone to convert azide to its mutagenic metabolite was tested. Cultures of the clone cells containing significant levels of OASS activity were able to produce a mutagenic product from azide and O-acetylserine as tested on Salmonella typhimurium TA1530. This cloning method could be applied also to clone the same gene from eukaryotic sources.
Collapse
Affiliation(s)
- W M Owais
- Zoology Department, Kuwait University, Safat
| | | |
Collapse
|
15
|
Arenaz P, Hallberg L, Mancillas F, Gutierrez G, Garcia S. Sodium azide mutagenesis in mammals: inability of mammalian cells to convert azide to a mutagenic intermediate. Mutat Res 1989; 227:63-7. [PMID: 2671718 DOI: 10.1016/0165-7992(89)90070-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sodium azide is unique among mutagens. It is highly mutagenic in many plant and bacterial species but marginally mutagenic in mammalian cells. A possible explanation for this difference in mutagenic efficiency may lie in the inability of mammalian cells to convert azide to the putative ultimate mutagen. Normal human fibroblasts and Chinese hamster cells or cell-free extracts from these cell lines were treated with azide and the sonicates tested for mutagenicity in Salmonella strain TA1530. The data suggest that neither cell line was capable of converting azide to a mutagenic intermediate. In addition, both cell lines expressed the enzyme O-acetylserine(thio)-lyase which is responsible for the conversion of azide to azidoalanine, the putative mutagenic intermediate. Although mammalian cells possess the enzyme responsible for the conversion of azide to azidoalanine, they appear incapable of converting azide into a mutagenic intermediate in appreciable quantities. Further, the data support the conclusion that azide may be further modified in mammalian cells to an intermediate that is not genotoxic.
Collapse
Affiliation(s)
- P Arenaz
- Department of Biological Sciences, University of Texas, El Paso 79968
| | | | | | | | | |
Collapse
|
16
|
Dotson SB, Somers DA. Differential metabolism of sodium azide in maize callus and germinating embryos. Mutat Res 1989; 213:157-63. [PMID: 2761555 DOI: 10.1016/0027-5107(89)90147-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sodium azide is a potent mutagen of maize (Zea mays L.) kernels that may have potential as a point mutagen for inducing biochemical mutations in maize tissue cultures. Azide mutagenicity was evaluated in friable, embryogenic maize callus and a nonregenerable maize suspension culture by determining the number of resistant variant cell lines able to grow on media containing inhibitory concentrations of lysine plus threonine (LT). The number of LT-resistant variants selected from either culture type did not increase in response to azide treatment. In addition, there was no increase in somatic mutations in more than 100 plants regenerated from azide treated LT-resistant lines. The levels of mutagenic metabolite of azide (presumably azidoalanine), were determined by bioassay in the two azide-treated maize callus types and compared to levels of mutagenic metabolite in embryos isolated from azide-treated kernels. The two types of maize tissue cultures and isolated embryos contained similar levels of mutagenic metabolite 4 h after azide treatment indicating similar uptake and conversion of azide to mutagenic metabolite in the three tissues. Mutagenic metabolite in azide-treated embryos did not significantly decrease after 40 h. However, mutagenic metabolite levels in both azide-treated tissue cultures decreased to near background levels within 20 h providing evidence for rapid metabolism of the azide mutagenic metabolite. The lack of evidence for azide mutagenicity in maize callus and its known potent mutagenicity in kernels appears to be associated with specific differences in azide metabolism between callus tissues and kernel embryos.
Collapse
Affiliation(s)
- S B Dotson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
17
|
Mangold JB, Mischke MR, LaVelle JM. Azidoalanine mutagenicity in Salmonella: effect of homologation and alpha-methyl substitution. Mutat Res 1989; 216:27-33. [PMID: 2645513 DOI: 10.1016/0165-1161(89)90020-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Azide mutagenicity in susceptible non-mammalian systems involves the requisite formation of L-azidoalanine, a novel mutagenic amino acid. The biochemical mechanism(s) of azidoalanine-induced mutagenesis, however, is not known. Previous studies of the structural requirements for azidoalanine mutagenicity suggested the importance of free L-amino acid character, and that bioactivation of azidoalanine to the ultimate mutagenic species is required. To gain more insight into possible enzymatic processing, the alpha-methyl analogue, alpha-methyl-azidoalanine, and the homologue, 2-amino-4-azidobutanoic acid, were synthesized and tested for mutagenic potency in Salmonella typhimurium strain TA1530. In addition, azidoacetic acid, a possible azidoalanine metabolite, was prepared and tested. The results show that alpha-methyl substitution effectively blocks the mutagenic effects of azidoalanine with alpha-methyl-azidoalanine being nearly devoid of mutagenic activity. In contrast, homologation of azidoalanine to yield 2-amino-4-azidobutanoic acid produces a marked increase in molar mutagenic potency. As with azidoalanine, the mutagenic activity of this homologue is associated with the L-isomer. Azidoacetic acid, however, was only very weakly mutagenic when tested as either the free acid or ethyl ester. This low mutagenic potency may indicate that bioactivation does not involve the entry of azide-containing azidoalanine catabolite into the Kreb's cycle. The high potency of 2-amino-4-azidobutanoic acid may be indicative of more efficient bioactivation and/or greater intrinsic activity. Importantly, the latter finding clearly shows that potent azido-amino acid mutagenicity is not limited to azidoalanine alone.
Collapse
Affiliation(s)
- J B Mangold
- Section of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs 06268
| | | | | |
Collapse
|
18
|
Abstract
Inorganic azide (N3-) mutagenicity is mediated through a metabolically synthesized organic azide, L-azidoalanine (N3-CH2-CH(-NH2)-COOH). L-Azidoalanine appears to be formed by the action of O-acetylserine (thiol)-Lyase (EC 4.2.99.8) using O-acetylserine and azide as substrates. In both plants and bacteria tested, azide substitutes for the natural substrate sulfide (S2-) in this reaction. Azide (L-azidoalanine) mutagenesis is highly attenuated by a deficiency in the excision of UV-like DNA damage (uvr-). Thus a premutation lesion recognizable by the bacterial excision-repair enzymes must be formed. Mutagenesis appears to proceed from this by 'direct mispairing' pathway. Azide (L-azidoalanine) mutagenicity is highly specific and involves a stereoselective process, but the molecular nature of the specificity has not been determined.
Collapse
Affiliation(s)
- W M Owais
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | | |
Collapse
|
19
|
Velemínský J, Gichner T. Mutagenic activity of promutagens in plants: indirect evidence of their activation. Mutat Res 1988; 197:221-42. [PMID: 3277041 DOI: 10.1016/0027-5107(88)90095-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review summarizes data concerning mutagenic activity of promutagens in various plant in vivo assays. These data are compared with the present knowledge about the metabolism of xenobiotics and activation of promutagens in plants obtained by biochemical studies and by the separation of the activation process from the genetic endpoints assayed for the mutagenicity. The article documents a differential response of plant species in the endogenous transforming of various classes of promutagens into mutagens. Attention is devoted to the following types of promutagens: nitrosamines, polycyclic aromatic hydrocarbons and aromatic amines, aflatoxins, pyrrolizidine alkaloids, diallate, styrene, vinylchloride, ethanol, cycasin, nitrofurans, sodium azide, s-triazine herbicides, 1,2-dibromoethane and maleic hydrazide.
Collapse
Affiliation(s)
- J Velemínský
- Institute of Experimental Botany, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
20
|
Velemínský J, Rosichan JL, Jurícek M, Kleinhofs A, Nilan RA, Gichner T. Interaction of the mutagenic metabolite of sodium azide, synthesized in vitro, with DNA of barley embryos. Mutat Res 1987; 181:73-9. [PMID: 3670324 DOI: 10.1016/0027-5107(87)90289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The in vitro synthesized sodium azide mutagenic metabolite (azidoalanine) produced single-strand breaks and proteinase K-sensitive sites in isolated, germinating barley embryos. In contrast with sodium azide, the efficiency of DNA damage induction was lower, and both types of DNA lesions were totally or partially repaired in the course of subsequent 24 h incubation of the embryos. The mutagenic azide metabolite did not inhibit DNA replication, while azide did so even at doses which are not highly mutagenic. The metabolite labelled with 14C at the amino acid residue was taken up with a similar efficiency both into barley embryos germinating for 2 days and into cells of Salmonella typhimurium TA100. The majority of the radioactivity was incorporated into proteins, less into RNA and a negligible amount into DNA.
Collapse
Affiliation(s)
- J Velemínský
- Institute of Experimental Botany, Czechoslovak Academy of Sciences, Praha
| | | | | | | | | | | |
Collapse
|
21
|
Jurícek M, Gichner T, Kocisová J, Yefremova GI, Velemínský J, Stanĕk J, Moravcová J, Jarý J. Comparative mutagenicity of 3-azido-1,2-propanediol and sodium azide in various pro- and eu-karyote systems. Mutat Res 1987; 179:175-82. [PMID: 3112566 DOI: 10.1016/0027-5107(87)90308-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Jurícek M, Grúz P, Velemínský J, Stanĕk S, Moravcová J, Jarý J. High mutagenic activity of 3-azido-1,2-propanediol (azidoglycerol, AG) in strain D7 of Saccharomyces cerevisiae. Mutat Res 1987; 178:43-7. [PMID: 3553915 DOI: 10.1016/0027-5107(87)90084-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3-Azido-1,2-propanediol (azidoglycerol, AG) showed a high mutagenicity in strain D7 of Saccharomyces cerevisiae. At 5 mM it increased the spontaneous frequency of isoleucine revertants 3500 times and the frequency of gene convertants 3000 times during 24 h of growth, reducing the growth rate to 30%. In non-growth conditions, treatment with 150 mM of AG for 3 h reduced cell survival to 60% and enhanced the frequency of isoleucine revertants 490 times and tryptophan-independent convertants 50 times. At equal survival levels, AG was found to be 3000-fold more mutagenic and 200-fold more convertogenic than sodium azide.
Collapse
|
23
|
LaVelle JM, Mangold JB. Structure-activity relationships of the azide metabolite, azidoalanine, in S. typhimurium. Mutat Res 1987; 177:27-33. [PMID: 3547101 DOI: 10.1016/0027-5107(87)90018-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Azide is metabolized to the proximate mutagen, L-azidoalanine in bacterial systems. While this novel mutagenic metabolite plays a key role in azide mutagenesis, the biochemistry of this role is unknown. The chemical synthesis of authentic racemic azidoalanine and several derivatives thereof allowed the exploration of structure-activity relationships with this unique mutagen. We found that whereas azide, azidoalanine and azidoalanine tert.-butyl ester were of comparable mutagenic potency, derivatives which lack the free amino group, such as azidopropionic acid and amino-blocked azidoalanine, were orders of magnitude less active. These findings demonstrate that the free amino group is essential for significant activity, while the carboxyl group may be less important. This conclusion together with the finding that DL-azidoalanine is a less potent mutagen than azide itself, suggests that the metabolite, while necessary for azide mutagenicity, may not be the ultimate mutagenic species. Instead, the data are consistent with the hypothesis that azidoalanine requires further bioactivation.
Collapse
|
24
|
|
25
|
Mangold JB, Lavelle JM. Synthesis and enantioselective mutagenicity of azidoalanine in Salmonella typhimurium. Chem Biol Interact 1986; 60:183-90. [PMID: 3539375 DOI: 10.1016/0009-2797(86)90026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Azide mutagenicity involves the requisite formation of the putative novel aminoacid metabolite, beta-azidoalanine. The role of this metabolite, however, is unclear. In order to confirm the identity of this metabolite and provide additional information on possible stereochemical requirements for mutagenicity, authentic racemic and L-azidoalanine were synthesized by an unambiguous route and tested for mutagenicity in Salmonella typhimurium TA100, TA1535, hisG46 and Escherichia coli WP2-. A marked antipodal potency ratio was observed in strains TA100 and TA1535 when racemic and L-azidoalanine were compared. The mutagenic activity resided primarily in the L-isomer. The molar potency of L-azidoalanine in TA100 and TA1535 was nearly identical to that of azide. The lack of mutagenic response for racemic or L-azidoalanine in hisG46 and E. coli WP2- was like that reported for azide and is consistent with similar modes of action for these agents.
Collapse
|
26
|
Owais WM, Ronald RC, Kleinhofs A, Nilan RA. Synthesis and mutagenicity of the two stereoisomers of an azide metabolite (azidoalanine). Mutat Res 1986; 175:121-6. [PMID: 3534556 DOI: 10.1016/0165-7992(86)90109-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The L- and D-isomers of azidoalanine (azide metabolite) have been chemically synthesized with 60% yield using corresponding N-(tert-butoxycarbonyl)-serine as starting materials. The mutagenic properties of synthesized L-azidoalanine are very similar to those of azide and in vivo synthesized azidoalanine. Synthetic D-azidoalanine shows very low mutagenic activity on Salmonella typhimurium TA1530 strain compared to that of the L-isomer. Thus a stereoselective process is involved in azidoalanine mutagenicity. The data presented in this study suggest that further biochemical activation is required for L-azidoalanine to produce its mutagenic activity.
Collapse
|
27
|
Owais WM, Janakat S, Hunaiti A. Activation of sodium cyanide to a toxic but non-mutagenic metabolite in Salmonella typhimurium. Mutat Res 1985; 144:119-25. [PMID: 3932844 DOI: 10.1016/0165-7992(85)90126-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salmonella typhimurium strains (OASS-positive) synthesize a toxic but non-mutagenic metabolite from cyanide and O-acetylserine. Salmonella typhimurium mutant DW379 (OASS-deficient) is neither able to carry out this reaction in vitro nor produce the toxic metabolite in vivo. L-Cysteine reverses the cyanide metabolite mediated inhibition and thus allows OASS-positive strains to grow in medium containing cyanide and O-acetylserine. The results suggest that the enzyme O-acetylserine sulfhydrylase catalyzes the reaction of cyanide and O-acetylserine to form the toxic metabolite. This metabolite is ninhydrin-positive, adheres strongly to the cation-exchange column, and migrates in TLC to an Rf value similar to that of beta-cyanoalanine.
Collapse
|
28
|
Rosichan J, Blake N, Stallard R, Owais W, Kleinhofs A, Nilan R. O-acetylserine (thiol)-lyase from barley converts sodium azide to a mutagenic metabolite. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0167-4838(83)90181-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|