1
|
Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci 2017; 11:68. [PMID: 28360840 PMCID: PMC5350152 DOI: 10.3389/fncel.2017.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10–12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (−38.45%) and glutamatergic (−56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical implications in the field of AD neurodegeneration because it: (i) provides new insights on the earliest molecular mechanisms underlying the loss of synaptic/trafficking proteins and, then, of synapes integrity which occurs in vulnerable basal forebrain population at preclinical stages of neuropathology; (ii) offers prime presynaptic-based molecular target to extend the therapeutic time-window of NGF action in the strategy of improving its neuroprotective in vivo intervention in affected patients.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Italy
| | | | - Cristina Zona
- IRCCS Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| | - Maria T Ciotti
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR)Rome, Italy; NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI)Rome, Italy
| | - Pietro Calissano
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| |
Collapse
|
2
|
Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res 2008; 1187:1-11. [DOI: 10.1016/j.brainres.2007.09.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/12/2007] [Accepted: 09/22/2007] [Indexed: 12/25/2022]
|
3
|
Fujii T, Takada-Takatori Y, Kawashima K. Roles played by lymphocyte function-associated antigen-1 in the regulation of lymphocytic cholinergic activity. Life Sci 2007; 80:2320-4. [PMID: 17289088 DOI: 10.1016/j.lfs.2007.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/04/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Lymphocytes possess the essential components of a cholinergic system, including acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulation of lymphocytes with phytohemagglutinin, which activates T cells via the T cell receptor/CD3 complex, enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. In addition, activation of protein kinase C and increases in intracellular cAMP also enhance cholinergic activity in T cells, and lymphocyte function associated antigen-1 (LFA-1; CD11a/CD18) is an important mediator of leukocyte migration and T cell activation. Anti-CD11a monoclonal antibody (mAb) as well as antithymocyte globulin containing antibodies against CD2, CD7 and CD11a all increase ChAT activity, ACh synthesis and release, and expression of ChAT and M(5) mAChR mRNAs in T cells. The cholesterol-lowering drug simvastatin inhibits LFA-1 signaling by binding to an allosteric site on CD11a (LFA-1 alpha chain), which leads to immunomodulation. We found that simvastatin abolishes anti-CD11a mAb-induced increases in lymphocytic cholinergic activity in a manner independent of its cholesterol-lowering activity. Collectively then, these results indicate that LFA-1 contributes to the regulation of lymphocytic cholinergic activity via CD11a-mediated pathways and suggest that simvastatin exerts its immunosuppressive effects in part via modification of lymphocytic cholinergic activity.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Tokyo 105-8512, Japan
| | | | | |
Collapse
|
4
|
Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke 1998; 29:1687-96; discussion 1697. [PMID: 9707213 DOI: 10.1161/01.str.29.8.1687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE In vitro studies have shown that nerve growth factor (NGF) is protective to cortical neurons against various insults. However, the role of NGF in relation to its high-affinity trkA receptor in the cortical neurons has not been well discussed. In this experiment, we studied the possible involvement of the NGF/receptor system in the ischemic injury of cortical neurons after focal cerebral ischemia in rats. METHODS Male Wistar rats received right middle cerebral artery occlusion of 90 minutes' duration. The rats were decapitated at different reperfusion time points: hour 4 and days 1, 3, 7, and 14 of recirculation. Brain sections at the level of striatum were immunostained against NGF, trkA, glial fibrillary acidic protein (GFAP), and stress protein HSP70. Double immunostaining against NGF and GFAP was also performed. Optical density of NGF immunoreactivity in the ischemic and nonischemic cortexes was compared between sham-control and ischemic animals. RESULTS In the sham-control rats, NGF immunoreactivity was present in the cortical and striatal neurons. However, beginning at hour 4 after recirculation, there was a significant decrease of NGF in the ischemic cortex and striatum. Beginning at day 1, NGF was absent completely in the infarcted striatum and cortex. However, in the peri-infarct penumbra area, despite a decrease in NGF at hour 4 and day 1, NGF recovered beginning at day 3 and returned almost to the sham-control level at day 14. In the nonischemic cortex, NGF increased beginning at hour 4, peaked at day 7, and returned almost to the sham-control level at day 14. The trkA and HSP70 immunoreactivities were not present in the sham-control cortex. However, trkA was induced at hour 4 in the ischemic cortex and at days 1 and 3 in the peri-infarct penumbra cortex. The HSP70 was induced at days 1 and 3 in the peri-infarct penumbra area. Double immunostaining showed that the number of GFAP-positive cells increased gradually, and NGF immunoreactivity in the GFAP-positive cells became gradually intense after ischemia. CONCLUSIONS Our study demonstrated a temporal profile of NGF and trkA in the ischemic cortex and NGF expression by reactive astrocytes. Our data suggest that the NGF/receptor system may play a role in the astrocyte/neuron interaction under certain pathological conditions, such as focal cerebral ischemia.
Collapse
Affiliation(s)
- T H Lee
- Second Department of Neurology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Lee TH, Kato H, Kogure K, Itoyama Y. Temporal profile of nerve growth factor-like immunoreactivity after transient focal cerebral ischemia in rats. Brain Res 1996; 713:199-210. [PMID: 8724992 DOI: 10.1016/0006-8993(95)01510-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We studied the temporal profile of nerve growth factor-like immunoreactivity (NGF-LI) in the rat brains following 30 min of middle cerebral artery occlusion. The rats were decapitated at 4 h, 1, 3, 7, and 14 days of recirculation. Brain sections at the level of striatum were immunostained against NGF as well as a stress protein, HSP70. Also, double immunostaining of NGF and glial fibrillary acidic protein was performed. In the sham-control rats, NGF-LI was normally present in the cortical and striatal neurons. However, at 4 h of recirculation, there was a significant decrease of NGF-LI in the ischemic cortex and striatum. From 1 day, NGF-LI was absent completely in the ischemic striatum. However, in the ischemic cortex, NGF-LI decreased to the lowest level at 1 day, but it recovered gradually from 3 days and increased significantly to above sham-control level at 7 days. At 14 days of recirculation, NGF-LI returned to a near sham-control level. In the non-ischemic cortex, NGF-LI increased gradually from 4 h with a peak at 7 days, and returned to the sham-control level at 14 days of recirculation. A HSP70 was induced in the ischemic cortex at 1 and 3 days, when there was a significant reduction of NGF-LI. The number of reactive astrocytes increased gradually and NGF-LI in the reactive astrocytes became gradually intense after ischemia. The present finding showing that NGF-LI can be recovered in the stressed cortical neurons suggests a possible involvement of NGF in the process of neuronal survival after focal cerebral ischemia. The expression of NGF in reactive astrocytes indicates that astrocyte may also play a role in supporting neuronal survival after ischemia.
Collapse
Affiliation(s)
- T H Lee
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
6
|
Lee TH, Abe K, Kogure K, Itoyama Y. Expressions of nerve growth factor and p75 low affinity receptor after transient forebrain ischemia in gerbil hippocampal CA1 neurons. J Neurosci Res 1995; 41:684-95. [PMID: 7563249 DOI: 10.1002/jnr.490410515] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expressions of nerve growth factor (NGF) and low affinity p75 NGF receptor (p75 NGFR) in gerbil hippocampal neurons after 3.5-min transient forebrain ischemia were studied. Most hippocampal CA1 neurons were lost (neuronal density = 44 +/- 12/mm) at 7 days after recirculation, while no cell death was found in the sham-control neurons (220 +/- 27/mm). NGF immunoreactivity was normally present in the sham-control hippocampal neurons. However, it decreased in hippocampal CA1 neurons, and slightly decreased in the neurons of CA3 and dentate gyrus areas from 3 hr after recirculation. By 7 days, NGF immunoreactivity returned almost completely to the sham-control level in the CA3 and dentate gyrus neurons but decreased markedly in the CA1 neurons. In contrast, p75 NGFR immunoreactivity was scarcely present in the sham-control hippocampal neurons but was induced from 1 hr after recirculation in the CA1 and CA3 neurons and from 3 hr in the dentate gyrus. At 7 days, p75 NGFR immunoreactivity was expressed greatly in the surviving CA1 neurons and the reactive astrocytes but was not seen in the other hippocampal neurons. The markedly decreased NGF and greatly induced p75 NGFR immunoreactivity found in the CA1 neurons after transient forebrain ischemia suggests that NGF and p75 NGFR may be involved in the mechanism of delayed neuronal death.
Collapse
Affiliation(s)
- T H Lee
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
7
|
Mazzoni IE, Kenigsberg RL. Localization and characterization of epidermal growth-factor receptors in the developing rat medial septal area in culture. Brain Res 1994; 656:115-26. [PMID: 7804824 DOI: 10.1016/0006-8993(94)91372-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence and binding properties of epidermal growth-factor receptors (EGF-Rs) in different cell types purified from the rat medial septal area in culture were investigated. We report that astrocytes, oligodendrocytes and neurons from this area possess EGF-Rs while microglia do not. EGF-binding sites are detectable on astrocytes derived from the medial septum of both embryonic and neonatal rats. Scatchard analysis of the data for astrocytes from the fetal rats show that EGF specifically binds to both high- (Kd = 7.21 x 10(-10) M, Bmax = 3602 receptors/cell) and low-affinity (Kd = 3.99 x 10(-8) M, Bmax = 86,265 receptors/cell) receptors on these cells. On the other hand, astrocytes purified from neonatal tissue possess a greater number of high-affinity receptors (Bmax = 10,938 receptors/cell) when compared with the embryonic astroglia. With time in culture, the number of both types of receptors on neonatal astrocytes decreases. Oligodendrocytes also possess high- and low-affinity EGF-Rs with dissociation constants of 3.25 x 10(-10) M and 3.85 x 10(-8) M, respectively. The number of receptors on oligodendrocytes is significantly lower than those of neonatal astrocytes (Bmax = 1185 and 25,081 receptors/cell for high- and low-affinity binding sites, respectively). Finally, neurons from this area also exhibit two different EGF-R types with dissociation constants similar to those described for astrocytes. As the number of receptors/neuron (Bmax = 136 and 1159 receptors/cell for high- and low-affinity binding sites, respectively) appears to be extremely low, it is possible that EGF specifically binds only to a subpopulation of neurons from this area. These studies demonstrate which cell types in the developing medial septal area possess EGF-Rs and provide a detailed characterization of these binding sites. These EGF-R-bearing cells may be potential targets for this growth factor or for transforming growth factor alpha in this brain area.
Collapse
Affiliation(s)
- I E Mazzoni
- Department of Physiology, University of Montreal, Que., Canada
| | | |
Collapse
|
8
|
Sohrabji F, Greene LA, Miranda RC, Toran-Allerand CD. Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. JOURNAL OF NEUROBIOLOGY 1994; 25:974-88. [PMID: 7525871 DOI: 10.1002/neu.480250807] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent work has shown that estrogen receptor mRNA and protein co-localize with neurotrophin receptor systems in the developing basal forebrain. In the present study we examined the potential for reciprocal regulation of estrogen and neurotrophin receptor systems by their ligands in a prototypical neurotrophin target, the PC12 cell. Using in situ hybridization histochemistry, RT-PCR and a modified nuclear exchange assay, we found both estrogen receptor mRNA and estrogen binding in PC12 cells. Moreover, while estrogen binding was relatively low in naive PC12 cells, long-term exposure to NGF enhanced estrogen binding in these cells by sixfold. Furthermore, concurrent exposure to estrogen and NGF differentially regulated the expression of the two NGF receptor mRNAs. The expression of trkA mRNA was up-regulated, while p75NGFR mRNA was down-regulated transiently. The present data indicate that NGF may increase neuronal sensitivity to estrogen, and that estrogen, by differentially regulating p75NGFR and trkA mRNA, may alter the ratio of the two NGF receptors, and, consequently, neurotrophin responsivity. In view of the widespread co-localization of estrogen and neurotrophin receptor systems in the developing CNS, the reciprocal regulation of these receptor systems by NGF and estrogen may have important implications for processes governing neural maturation and the maintainance of neural function.
Collapse
Affiliation(s)
- F Sohrabji
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032
| | | | | | | |
Collapse
|
9
|
Rocamora N, García-Ladona FJ, Palacios JM, Mengod G. Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 17:1-8. [PMID: 8381892 DOI: 10.1016/0169-328x(93)90065-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The spatio-temporal pattern of expression of neurotrophin-3 (NT3), brain-derived neurotrophic factor (BDNF) and low-affinity nerve growth factor receptor (LNGFR) genes was analyzed in the postnatal developing cerebellar system of the rat by in situ hybridization histochemistry. Different ontogenetic patterns of expression were observed for these three genes. In agreement with previously published results (Neuron, 5 (1990) 501-509; Dev. Brain Res., 55 (1990) 288-292) we found that NT3 and LNGFR mRNA peaked early, during the first 2 postnatal weeks, whereas BDNF mRNA peaked later, around postnatal day 20, in the cerebellar cortex. High levels of NT3 mRNA were found in the internal granule cell layer as early as postnatal day 5. NT3 mRNA was also present in the external-premigratory granule cell layer at postnatal day 10. From postnatal day 5 on, LNGFR mRNA was present in the proliferative area of the external granule cell layer and in the Purkinje cells. NT3 mRNA level decreased and BDNF mRNA increased in granule cells concomitantly with their migration and maturation, suggesting a sequential stimulation of these two genes during this developmental process. LNGFR mRNA levels decreased along the same period. Although practically undetectable in the cerebellar granule cell layer in the first two postnatal weeks, BDNF mRNA was transiently expressed in the deep cerebellar nuclei during this time and it was very abundant in the inferior olivary system from postnatal day 5 on. LNGFR mRNA was transiently expressed in the inferior olivary system, in the first postnatal week. These data are discussed in relation to the coordinated postnatal maturation of the different cells of the cerebellar system.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Rocamora
- Preclinical Research Sandoz Pharma Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
10
|
Kenigsberg RL, Mazzoni IE, Collier B, Cuello AC. Epidermal growth factor affects both glia and cholinergic neurons in septal cell cultures. Neuroscience 1992; 50:85-97. [PMID: 1407562 DOI: 10.1016/0306-4522(92)90383-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of epidermal growth factor on high density primary cultures of fetal (embryonic day 17) rat septal cells were examined. Under serum-free conditions, the continuous exposure of these cultures to epidermal growth factor for seven days significantly decreased choline acetyltransferase (EC 2.3.1.6) activity in a dose-dependent manner. Maximal decreases were observed from 1 to 10 ng/ml epidermal growth factor. This effect was completely abolished by the addition of anti-epidermal growth factor antibodies. The epidermal growth factor-mediated decrease in choline acetyltransferase activity was culture-time dependent, being first detectable after five days of factor application and may likely represent an inhibition of the spontaneous increase in enzyme activity that occurs with time in culture. Concomitant with changes in enzyme activity, epidermal growth factor produced a significant and proportional decrease in the number of acetylcholinesterase-positive neurons. This decrease in acetylcholinesterase-positive cells did not reflect a decrease in cholinergic cell survival as nerve growth factor could restore the number of acetylcholinesterase-positive neurons in epidermal growth factor-treated cultures to control levels. Furthermore, in these high-density cultures, epidermal growth factor did not affect general neuronal survival, while it did produce an increase in the number and intensity of glial fibrillary acidic protein-immunoreactive astroglia as well as in the number of macrophage-like cells. The proliferative response of these non-neuronal cells to epidermal growth factor, as assessed by [3H]thymidine incorporation, was evident after three days of epidermal growth factor application, persisted thereafter, and could be antagonized by the inclusion of the antimitotic 5-fluorodeoxyuridine. Furthermore, 5-fluorodeoxyuridine completely blocked the epidermal growth factor-mediated decrease in choline acetyltransferase activity. However, when epidermal growth factor was tested in pure glial cultures, it only directly induced proliferation of astrocytes. These results suggest that the proliferative response of either one or both of these glial cell types in the mixed cultures may be indirectly affecting cholinergic cell expression.
Collapse
Affiliation(s)
- R L Kenigsberg
- Centre de Recherche, Hospital Ste-Justine, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Martinic M, Lambert MP, Hua S, Klein WL. Cholinergic differentiation in neurogenic basal forebrain cultures. JOURNAL OF NEUROBIOLOGY 1992; 23:252-69. [PMID: 1624933 DOI: 10.1002/neu.480230305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To study early events in the central nervous system (CNS) cholinergic development, cells from rat basal forebrain tissue were placed in culture at an age when neurogenesis in vivo is still active [embryonic day (E) 15]. The rapid mortality of these cells in defined medium, with 50% mortality after 5-10 h, was blocked completely by soluble proteins from the olfactory bulb (a basal forebrain target), extending earlier observations (Lambert, Megerian, Garden, and Klein, 1988). Treated cultures were capable of incorporating thymidine into DNA, and most cells incorporating 3H-thymidine (greater than 90%) also stained positive for neurofilament, confirming neuronal proliferation in the supplemented cultures. A small percentage of 3H-thymidine labelled cells were glial fibrillary acidic protein (GFAP) positive, but growth factors that support astroglial proliferation [epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF-1)] were not sufficient for neuronal support. After 5 culture days with supplemented medium, almost 50% of the cells showed choline acetyltransferase (ChAT) immunofluorescence. The cholinergic neurons typically formed clusters separate from noncholinergic cells. These mature cultures did not develop if young cultures were treated with aphidicolin to block DNA synthesis. The data show that cultures of very young rat basal forebrain cells can be neurogenic, giving rise to abundant cholinergic neurons, and that early cell proliferation is essential for long-term culture survival.
Collapse
Affiliation(s)
- M Martinic
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | | | | | | |
Collapse
|
12
|
Rocamora N, Palacios JM, Mengod G. Limbic seizures induce a differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 13:27-33. [PMID: 1315916 DOI: 10.1016/0169-328x(92)90041-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small unilateral electrolytic lesions placed in the hilus of the dentate gyrus produce limbic seizures. We have investigated the effects of these hilar lesions on the levels of the mRNAs encoding for 3 neurotrophic factors (NTF): nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). 'In situ' hybridization histochemistry with synthetic oligonucleotides was used to analyze their mRNA distribution and levels. In agreement with previously published data (Science, 245 (1989) 758-761), NGF mRNA was found bilaterally, quickly and transiently increased in granule cells of the dentate gyrus. Only 2 h after the onset of limbic seizures, mRNA levels for BDNF were also found to be dramatically elevated in both sides of the hippocampus, reaching a maximum 30-fold increase in the granule cell layer of the dentate gyrus 5 h after the lesion. Moreover, increased levels of this mRNA were also been found in the pyramidal layer of the CA3 (5-fold) and CA1 (15-fold) hippocampal fields. In contrast, NT3 mRNA was found to be clearly and bilaterally decreased in dentate gyrus granule cells, reaching 5- to 6-fold decreased levels at 12 h after lesion. Taken together, these results clearly show a different regulation of neurotrophic factors genes (NGF, BDNF and NT3) expression in the different hippocampal fields, as a consequence of seizure-producing hilar lesions.
Collapse
|
13
|
Alderson RF, Alterman AL, Barde YA, Lindsay RM. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 1990; 5:297-306. [PMID: 2169269 DOI: 10.1016/0896-6273(90)90166-d] [Citation(s) in RCA: 582] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) was found to promote the survival of E17 rat embryo septal cholinergic neurons in culture, as assessed by a histochemical stain for acetylcholinesterase (AChE). A 2.4-fold increase in neuronal survival was achieved with 10 ng/ml BDNF. After initial deprivation of growth factor for 7 days, BDNF failed to bring about this increase, strongly suggesting that BDNF promotes cell survival and not just induction of AChE. BDNF was also found to increase the levels of cholinergic enzymes; choline acetyltransferase (ChAT) and AChE activities were increased by approximately 2-fold in the presence of 50 ng/ml BDNF. BDNF produced a 3-fold increase in the number of cells bearing the NGF receptor, as detected by the monoclonal antibody IgG-192. Although NGF had no additive effect with BDNF in terms of neuronal survival, suggesting that both act on a similar neuronal population, the combination of both produced an additive response, approximately a 6-fold increase, in ChAT activity.
Collapse
Affiliation(s)
- R F Alderson
- Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591
| | | | | | | |
Collapse
|
14
|
Atterwill CK, Meakin JM. Delayed treatment with nerve growth factor (NGF) reverses ECMA-induced cholinergic lesions in rat brain reaggregate cultures. Biochem Pharmacol 1990; 39:2073-6. [PMID: 2353949 DOI: 10.1016/0006-2952(90)90635-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C K Atterwill
- Smith Kline & French Research Ltd, Welwyn, Herts, U.K
| | | |
Collapse
|
15
|
Araujo DM, Chabot JG, Quirion R. Potential neurotrophic factors in the mammalian central nervous system: functional significance in the developing and aging brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1990; 32:141-74. [PMID: 1981884 DOI: 10.1016/s0074-7742(08)60582-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- D M Araujo
- Douglas Hospital Research Centre, McGill University, Verdun, Quebec, Canada
| | | | | |
Collapse
|