1
|
Newell AJ, Lalitsasivimol D, Willing J, Gonzales K, Waters EM, Milner TA, McEwen BS, Wagner CK. Progesterone receptor expression in cajal-retzius cells of the developing rat dentate gyrus: Potential role in hippocampus-dependent memory. J Comp Neurol 2018; 526:2285-2300. [PMID: 30069875 PMCID: PMC6193812 DOI: 10.1002/cne.24485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal-Retzius cells of the molecular layer of the dentate gyrus of rats. PR was transiently expressed from the day of birth through postnatal day 21, but was absent thereafter. Although PR immunoreactive (PR-ir) cells did not clearly express typical markers of mature neurons, they possessed an ultrastructural morphology consistent with neurons. PRir cells did not express markers for GABAergic neurons, neuronal precursor cells, nor radial glia. However, virtually all PR cells co-expressed the calcium binding protein, calretinin, and the glycoprotein, reelin, both reliable markers for Cajal-Retzius neurons, a transient population of developmentally critical pioneer neurons that guide synaptogenesis of perforant path afferents and histogenesis of the dentate gyrus. Indeed, inhibition of PR activity during the first two weeks of life impaired adult performance on both the novel object recognition and object placement memory tasks, two behavioral tasks hypothesized to describe facets of episodic-like memory in rodents. These findings suggest that PR plays an unexplored and important role in the development of hippocampal circuitry and adult memory function.
Collapse
Affiliation(s)
- Andrew J. Newell
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Diana Lalitsasivimol
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Jari Willing
- Department of Psychology, Behavioral Neuroscience Program, 603 E Daniel St., University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Keith Gonzales
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61, St New York, NY 1006521
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Christine K. Wagner
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| |
Collapse
|
2
|
d'Amore A, Caiola S, Maroccia E, Loizzo A. Postnatal Stress in Mice: Effects on Body Fat, Plasma Lipids, Glucose and Insulin. Nutr Neurosci 2016; 3:207-14. [PMID: 27414054 DOI: 10.1080/1028415x.2000.11747317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mice pups were exposed to stressful stimuli everyday during the first 3 weeks of life. Body weight, food intake and spontaneous locomotor activity, triglycerides, cholesterol, phospholipids, glucose and insulin basal levels, as well as epididymal fat pad weight and its cell volume were measured in stressed and control animals. Results indicated that postnatal stressful manipulations induced an increase in body weight, epididymal fat pad weight and its cell volume, as well as in insulin, glucose, cholesterol and triglycerides plasma levels, at 4 months of age. No significant changes in food consumption, locomotor activity and phospholipids plasma levels were found. Present data suggest that early stressful manipulations may induce residual effects on lipid and glucid metabolism.
Collapse
Affiliation(s)
- A d'Amore
- a Laboratorio di Alimenti , Istituto Superiore di Sanità , Viale Regina Elena 299, 00161 Rome , Italy
| | - S Caiola
- b Laboratorio di Biochimica Clinica , Istituto Superiore di Sanità , Viale Regina Elena 299, 00161 Rome , Italy
| | - E Maroccia
- b Laboratorio di Biochimica Clinica , Istituto Superiore di Sanità , Viale Regina Elena 299, 00161 Rome , Italy
| | - A Loizzo
- c Laboratorio di Farmacologia , Istituto Superiore di Sanità , Viale Regina Elena 299, 00161 Rome , Italy
| |
Collapse
|
3
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
4
|
Catalani A, Alemà GS, Cinque C, Zuena AR, Casolini P. Maternal corticosterone effects on hypothalamus–pituitary–adrenal axis regulation and behavior of the offspring in rodents. Neurosci Biobehav Rev 2011; 35:1502-17. [DOI: 10.1016/j.neubiorev.2010.10.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 12/28/2022]
|
5
|
Galeeva A, Pelto-Huikko M, Pivina S, Ordyan N. Postnatal ontogeny of the glucocorticoid receptor in the hippocampus. VITAMINS AND HORMONES 2010; 82:367-89. [PMID: 20472148 DOI: 10.1016/s0083-6729(10)82019-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corticosteroid hormones are important intrinsic factors that not only mediate the response to stress but also largely contribute to the main physiological processes. The biological actions of these steroids involve, first of all, the activation of specific receptors, namely mineralocorticoid (MR) and glucocorticoid (GR) receptors. These two receptor types govern a flexible and well-balanced mechanism that leads to the often opposing changes in the cell. The hippocampus is the central part of the extrahypothalamic feedback loop in the control of the hypothalamic-pituitary-adrenal (HPA) axis activity. The coexpression of both MR and GR in the hippocampus serves a coordinated response to corticosteroids in the hippocampal neurons, thereby mediating the neuronal excitability, stress response, and behavioral adaptation. Each receptor type reveals distinct ontogenetic pattern over the postnatal period. This review addresses the issues relating to postnatal development of the HPA axis and especially the hippocampal expression of the GR proteins in intact and prenatally stressed rats.
Collapse
Affiliation(s)
- Anastasia Galeeva
- Pavlov Institute of Physiology, Russian Academy of Science, Makarova 6, Saint-Petersburg, Russia
| | | | | | | |
Collapse
|
6
|
Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia. Glia 2008; 56:659-74. [DOI: 10.1002/glia.20644] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Ronald de Kloet E, Schmidt M, Meijer OC. Corticosteroid receptors and HPA-axis regulation. HANDBOOK OF STRESS AND THE BRAIN - PART 1: THE NEUROBIOLOGY OF STRESS 2005. [DOI: 10.1016/s0921-0709(05)80016-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Marlier LN, Patacchioli FR, Porzio O, Chiusaroli R, Borboni P, Lauro R, Angelucci L. Distribution of adrenocorticoid receptors in the rat CNS measured by competitive PCR and cytosolic binding. J Mol Neurosci 1997; 9:1-12. [PMID: 9356922 DOI: 10.1007/bf02789390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Combined quantitative polymerase chain reaction (PCR) and cytosolic binding assay techniques are used to measure mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA, Kd, and Bmax in various rat central nervous system (CNS) regions, namely amygdala, hypothalamus, hippocampus, cortex, pituitary, and cervical, thoracic, and lumbar spinal cord. Two internal standards (i.s.) cDNA were cloned for quantitative PCR purposes. The i.s. templates differed from the respective wild-type (wt) templates for a single base-pair mutation introduced by PCR that generated a unique restriction site, thus allowing amplification products arising from coamplification of wt and i.s. to be distinguished. Results show that cerebellum, which displayed average Bmax values for both receptors, contained the highest level of MR and GR mRNA. Hippocampus also had a high level of MR mRNA. Low mRNA content was found in the hypothalamus for MR and GR as well as in the cortex for GR. High Bmax values for both MR and GR were found in the lumbar spinal cord, despite a modest mRNA content. The lowest Bmax values were found in the cortex for both receptors. It is, therefore, concluded that mRNA content and Bmax are not closely correlated in the rat CNS. These data suggest a differential regulation of various adrenocorticoid receptor isoforms. Moreover, this quantitative PCR method is very sensitive and can be used to assay small amounts of material in order to obtain absolute measurements of mRNA expression.
Collapse
Affiliation(s)
- L N Marlier
- Institute of Experimental Medicine, National Research Council (CNR), Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Nyakas C, Felszeghy K, Bohus B, Luiten PG. Permanent upregulation of hippocampal mineralocorticoid receptors after neonatal administration of ACTH-(4-9) analog ORG 2766 in rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:142-7. [PMID: 9125467 DOI: 10.1016/s0165-3806(96)00207-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of brain corticosteroid receptors may be permanently modified by perinatal hormone treatments, in particular by hormones of the hypothalamic-pituitary-adrenal axis. Changes in binding characteristics of corticosteroid receptors were investigated in rats treated subcutaneously with 1 microg/g body wt of the ACTH-(4-9) analog peptide ORG 2766 once daily at postnatal days 1, 3 and 5. [3H]Corticosterone (CORT) binding capacity (Bmax) and affinity (Kd) were determined at 1-, 2- and 3-weeks old and adult ages in the hippocampal cytosol by using saturation analysis. Mineralocorticoid type receptor (MR) and glucocorticoid receptor (GR) sites were measured separately with single-point analysis applying a selective glucocorticoid ligand RU 28362 saturating GR. An increase in [3H]CORT binding capacity was found during postnatal development which remained permanently high up to adult age. Separate analysis of MR and GR expression indicated that the increment in the number of corticoid receptor sites was due to an increase in number of MRs in both the young and adult rats. It was concluded that neonatal injections of ACTH-(4-9) peptide resulted in a permanent and selective upregulation of hippocampal MRs, which may underlie the previously observed increased vigilance and novelty-induced behavioral reactivity of the peptide-treated adult rats (Felszeghy, K., Sasvari, M. and Nyakas, C., Horm. Behav., 27 (1993) 380-396).
Collapse
Affiliation(s)
- C Nyakas
- Central Research Division, Haynal University of Health Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
10
|
Takahashi LK. Glucocorticoids and the hippocampus. Developmental interactions facilitating the expression of behavioral inhibition. Mol Neurobiol 1996; 13:213-26. [PMID: 8989771 DOI: 10.1007/bf02740624] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When threatened, the rapid induction of fear and anxiety responses is adaptive. This article summarizes the current knowledge of the neurobiological development of behavioral inhibition, a prominent response occurring in fear and anxiety-provoking situations. In the rat, behavioral inhibition as exemplified by freezing first appears near the end of the second postnatal week. This emergence of freezing coincides with the developmental period marked by the rapid increase in plasma concentrations of glucocorticoids. Studies show that removal of glucocorticoids at this time severely impairs the age-dependent appearance of freezing. This behavioral impairment produced by adrenalectomy, however, is prevented by exogenous glucocorticoid administration. The effectiveness of glucocorticoids in facilitating the development of freezing appears to be caused by its actions in the hippocampus. In particular, glucocorticoids appear to play a vital role in the postnatal cellular development of the hippocampal dentate gyrus. Doses of glucocorticoids shown to reverse the behavioral inhibitory deficits occurring after adrenalectomy are ineffective when hippocampal dentate granule neurons are destroyed by neurotoxins. Notably, site-specific administration of glucocorticoids to the dorsal hippocampus is successful in promoting the occurrence of freezing in the adrenalectomized rat pup. It is hypothesized that glucocorticoids exert their behavioral inhibitory effects by influencing the development of the septohippocampal cholinergic system. Support for this hypothesis is derived from work demonstrating the importance of glucocorticoids on nerve growth factor systems that play a critical role in septohippocampal cholinergic survival.
Collapse
Affiliation(s)
- L K Takahashi
- Department of Psychiatry, University of Wisconsin Medical School, Madison 53719-1179, USA
| |
Collapse
|
11
|
Marlier LN, Patacchioli FR, Porzio O, Bottone A, Di Grezia R, Borboni P, Lauro R, Angelucci L. Differential regulation of adrenocorticoid receptors in the hippocampus and spinal cord of adrenalectomized rats. J Neurosci Res 1996; 43:526-34. [PMID: 8833087 DOI: 10.1002/(sici)1097-4547(19960301)43:5<526::aid-jnr2>3.0.co;2-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using multiple polymerase chain reaction assay and cytosolic receptor binding assay we studied type I, mineralocorticoid receptor (MR), and type II, glucocorticoid receptor (GR), adrenocorticoid receptors expression in rat hippocampus and spinal cord, at various times after adrenalectomy: 12 hr, 24 hr, 3 days, and 1 week. Analysis of the data demonstrates that in hippocampus the expression of MR and GR mRNA was not significantly affected by adrenalectomy. On the contrary, Bmax of MR was significantly increased at each time post-surgery, with only slight modifications of Kd. Bmax and Kd for GR showed a significant increase after 3 days and 1 week. In the spinal cord, MR mRNA was increased 12 hr after adrenalectomy, reaching a maximum at 3 days. Bmax of MR was also significantly increased after 3 days, whereas its Kd remained unchanged for the entire duration of the the study. Both GR mRNA and binding parameters were poorly affected by adrenalectomy. The results of the present experiments demonstrate that the absence of adrenocortical hormones influences differentially MR and GR expression in hippocampus and spinal cord, suggesting the existence of various and independent mechanisms of regulation of adrenocorticoid receptor.
Collapse
Affiliation(s)
- L N Marlier
- Department of Internal Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Viau V, Sharma S, Meaney MJ. Changes in plasma adrenocorticotropin, corticosterone, corticosteroid-binding globulin, and hippocampal glucocorticoid receptor occupancy/translocation in rat pups in response to stress. J Neuroendocrinol 1996; 8:1-8. [PMID: 8932731 DOI: 10.1111/j.1365-2826.1996.tb00680.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pituitary-adrenal responses to stress in the neonatal rat have been reported to be substantially reduced compared to older animals (i.e. a stress hyporesponsive period). This supposed period of endocrine quiescence is characterized by reduced stress-induced increases in both plasma ACTH and corticosterone. At the same time a number of authors have noted the decreased plasma corticosteroid-binding globulin (CBG) levels of the neonate, and there is evidence for an increased percentage of free corticosterone as well as age-related changes in the volume of distribution for corticosterone. These findings suggest that the reduced CBG levels might enhance the biological significance of existing glucocorticoid levels, beyond that assumed on the basis of plasma total corticosterone levels. We examined this question by estimating hippocampal glucocorticoid receptor occupancy and 'translocation' in Day 6, Day 15, and adult animals under basal and stressful conditions. The results showed that: 1) plasma ACTH levels were elevated in Day 6 animals in response to acute exposure to ether, maternal separation, and maternal separation + ether, however, ACTH responses were substantially lower than in Day 15 or adult animals; 2) Plasma total corticosterone levels followed a similar pattern; most noteworthy was the potent glucocorticoid response in Day 15 animals to the combination of maternal separation + ether; 3) Plasma CBG levels in Day 6 animals were extremely low (< 3% adult values); by Day 15 CBG levels were about 25% of adult levels. Interestingly, maternal separation was associated with a substantial decrease in plasma CBG levels; 4) Hippocampal glucocorticoid receptor occupancy/translocation was similar at all ages under both basal and stress conditions. The only notable exception occurred during maternal separation in Day 15 animals, where the percentage of hippocampal glucocorticoid receptor occupancy/translocation was higher than that observed at any time in either Day 6 or adult animals. This finding is likely related to the decrease in plasma CBG that occurs following separation of Day 15 pups from the dam. Thus, despite the higher corticosterone level in the adult, the increase in glucocorticoid receptor occupancy/translocation was generally comparable across all ages either under basal conditions, or following stress. These receptor data underscore the importance of developmental changes in plasma CBG levels.
Collapse
Affiliation(s)
- V Viau
- Developmental Neuroendocrinology Laboratory, Douglas Hospital Research Center, Montreal, Canada
| | | | | |
Collapse
|
13
|
Tuor UI. Dexamethasone and the prevention of neonatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 1995; 765:179-95; discussion 196-7. [PMID: 7486605 DOI: 10.1111/j.1749-6632.1995.tb16574.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- U I Tuor
- Institute for Biodiagnostics, National Research Council of Canada (NRC), Winnipeg, Manitoba
| |
Collapse
|
14
|
Takahashi LK, Kim H. Intracranial action of corticosterone facilitates the development of behavioral inhibition in the adrenalectomized preweanling rat. Neurosci Lett 1994; 176:272-6. [PMID: 7830963 DOI: 10.1016/0304-3940(94)90099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We tested the hypothesis that in preweanling rats central administration of exogenous corticosterone (CORT) is sufficient to facilitate the development of behavioral inhibition. 28-gauge cannulae containing varying concentrations of CORT (0, 25, 50 and 100%) were implanted unilaterally into the lateral ventricles of 9-day-old rat pups. After a 24-h postoperative recovery period, pups were adrenalectomized. At 14 days of age, pups were tested for behavioral inhibition which consisted of removing the pup from the nest and exposing it to an unfamiliar adult male rat. Pups implanted with cannulae containing 0, 25 and 50% concentrations of CORT spent significantly less time in freezing postures than pups implanted with cannulae containing 100% CORT. These freezing pups also tended to emit fewer ultrasonic vocalizations than pups in the other three implant conditions, albeit the level obtained was not statistically significant. RIAs indicated that, in general, hormone-filled cannulae produced no detectable concentrations of plasma CORT on the day of the test or on days preceding testing. Results suggest that in the early postnatal period endogenous CORT acts centrally to facilitate the development of neural pathways involved in the ontogenetic expression of behavioral inhibition.
Collapse
Affiliation(s)
- L K Takahashi
- Department of Psychiatry, University of Wisconsin Medical School, Madison 53792-2475
| | | |
Collapse
|
15
|
Joëls M, de Kloet ER. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol 1994; 43:1-36. [PMID: 7526416 DOI: 10.1016/0301-0082(94)90014-0] [Citation(s) in RCA: 288] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this review we have argued that corticosteroid hormones represent an endocrine signal that can influence neuronal communication. The steroids bind to intracellular receptors in the brain, resulting in slow effects that involve gene transcription, but they may also evoke rapid effects via membrane receptors. The signal carried by the corticosteroids is therefore divergent with respect to the dimension of space and time. Within the rat brain, at least two intracellular receptor subtypes, i.e. MRs and GRs, bind corticosterone. The affinity, density and localization of the MRs is different from the GRs, although the actual properties may vary somewhat depending on the condition of the animal. In general, due to the difference in affinity, low corticosteroid levels result in a predominant MR occupation, while higher steroid levels additionally occupy GRs. Recent studies indicate that predominant MR occupation is important for the maintenance of ongoing transmission in certain brain regions and for neuroprotection. By contrast, additional GR occupation (for a limited period of time) results in an attenuation of local excitability; yet, prolonged exposure to high steroid levels may become an endangering condition for neurons. Since predominant MR occupation on the one hand and additional GR occupation on the other hand induce different cellular actions, the ratio of MR/GR occupation is an important factor determining the net effect of corticosteroid hormones in the brain. How coordinated MR- and GR-mediated effects control neuronal communication under various physiological and pathological conditions will be a challenge for future research.
Collapse
Affiliation(s)
- M Joëls
- Institute of Neurobiology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Bohn MC, Dean D, Hussain S, Giuliano R. Development of mRNAs for glucocorticoid and mineralocorticoid receptors in rat hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 77:157-62. [PMID: 8174225 DOI: 10.1016/0165-3806(94)90192-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The hippocampus plays an important role in mediating glucocorticoid effects on the brain. Glucocorticoids are also implicated in neurogenesis and age-related neuronal death in the hippocampus. The effects of glucocorticoids in the hippocampus are elicited through two receptors with high-affinity for corticosterone, the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). In this study, we used a sensitive RNase protection assay to quantify the ontogeny of GR mRNA and MR mRNA in hippocampus from embryonic day 18 (E18) to postnatal day 60 (P60). GR mRNA and MR mRNA are expressed at approximately equal levels in the E18 hippocampus. However, by birth, the level of MR mRNA is three-fold that of GR mRNA and remains elevated up to P60. The levels of both mRNAs increase gradually during the period of postnatal neurogenesis after which they markedly increase to adult levels. In addition, the levels of hippocampal MR mRNA are the same in male and female rats, whereas the levels of GR mRNA are significantly higher in the P60 female rat hippocampus, but not in younger female rats. Our data on the development of mRNA levels do not parallel the levels of glucocorticoid and mineralocorticoid receptors as reported in a number of binding studies. Therefore, our studies, when considered together with previous reports, suggest that posttranscriptional mechanisms play a major role in regulating the levels of glucocorticoid-binding sites in the hippocampus.
Collapse
Affiliation(s)
- M C Bohn
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, NY 14642
| | | | | | | |
Collapse
|
17
|
Rosenfeld P, van Eekelen JA, Levine S, de Kloet ER. Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol 1993; 13:295-319. [PMID: 8252605 DOI: 10.1007/bf00711575] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. In the brain, glucocorticoids bind to both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). These receptors show clearly distinct developmental patterns in the infant rat. 2. Low levels of GRs are present around the time of birth throughout the brain. Concentrations rise slowly, and do not achieve adult levels until the third week of life, approximately. GR affinity for corticosterone is higher perinatally than at later ages. Receptor microdistribution changes dramatically during ontogeny. In particular, certain regions, such as the suprachiasmatic nucleus of the hypothalamus, express high levels of receptor only during the first week of life. GRs may show impaired capacity to undergo transformation and/or nuclear translocation during the second postnatal week. Environmental manipulations during early ontogeny (e.g., early handling) may have permanent effects on GR capacity. 3. MRs are present at very low concentrations in the first days of life. Binding capacity rises rapidly thereafter and resembles that found in the adult by the end of 1 week. Neither binding affinity in vitro nor overall distribution changes with age. As in the adult, low doses of corticosterone, in vivo, bind mainly to the MRs. Levels of corticosterone are low and relatively unperturbable in the intact infant rat. It is likely, therefore, that most of the physiological actions of this hormone during this period are mediated by the MR.
Collapse
Affiliation(s)
- P Rosenfeld
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, California 94305
| | | | | | | |
Collapse
|
18
|
Krozowski Z, Wendell K, Ahima R, Harlan R. Type I corticosteroid receptor-like immunoreactivity in the rat salivary glands and distal colon: modulation by corticosteroids. Mol Cell Endocrinol 1992; 85:21-32. [PMID: 1326451 DOI: 10.1016/0303-7207(92)90121-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 167 amino acid fragment of the N-terminal domain of the human type I corticosteroid (mineralocorticoid) receptor was fused to the glutathione S-transferase gene using the Gex expression plasmid and the fusion protein used to raise the monospecific polyclonal antibody, MINREC4. Immunostaining experiments showed that MINREC4 specifically bound type I receptor in the distal tubule of the kidney, the ductal elements of the salivary glands and the epithelium of the distal colon in the rat. Adrenalectomy abolished staining in the parotid and colon, and reduced immunoreactivity in the submandibular gland. Administration of corticosterone or aldosterone resulted in partial restoration of immunostaining in the parotid, and a complete restoration of staining to intact levels in the submandibular gland and colon. These results suggest that adrenocorticoid binding to the type I receptor may result in tissue specific conformational changes in the binding protein and that the MINREC4 antibody may be used to study the effects.
Collapse
Affiliation(s)
- Z Krozowski
- Prince Henry's Institute of Medical Research, Prince Henry's Hospital, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
19
|
Rosenfeld P, Suchecki D, Levine S. Multifactorial regulation of the hypothalamic-pituitary-adrenal axis during development. Neurosci Biobehav Rev 1992; 16:553-68. [PMID: 1480351 DOI: 10.1016/s0149-7634(05)80196-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hypothalamic-pituitary-adrenal system shows an overall diminished responsiveness throughout ontogeny. Thus, during this period, the sensitivity of the adrenal gland to ACTH is markedly reduced. Furthermore, basal and stress-induced concentrations of corticosterone (CORT), ACTH and hypothalamic secretagogues remain at very low levels. Both structural immaturity and active inhibitory processes appear to underlie this overall hyporesponsiveness. The available data indicate that the characteristic developmental pattern of the HPA system results from multiple regulatory factors acting in conjunction at various levels of the axis. The primary rate-limiting steps, however, are probably at the brain and adrenal levels. The ultimate "goal" appears to be to keep CORT levels within the narrow range of concentrations required for normal development.
Collapse
Affiliation(s)
- P Rosenfeld
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, CA 94305
| | | | | |
Collapse
|