1
|
Iskusnykh IY, Fattakhov N, Li Y, Bihannic L, Kirchner MK, Steshina EY, Northcott PA, Chizhikov VV. Lmx1a is a master regulator of the cortical hem. eLife 2023; 12:e84095. [PMID: 37725078 PMCID: PMC10508884 DOI: 10.7554/elife.84095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Matthew K Kirchner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Ekaterina Y Steshina
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
2
|
Consalez GG, Goldowitz D, Casoni F, Hawkes R. Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Front Neural Circuits 2021; 14:611841. [PMID: 33519389 PMCID: PMC7843939 DOI: 10.3389/fncir.2020.611841] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Hatami M, Conrad S, Naghsh P, Alvarez-Bolado G, Skutella T. Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Front Cell Neurosci 2018; 12:402. [PMID: 30483057 PMCID: PMC6240695 DOI: 10.3389/fncel.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The dentate gyrus (DG) receives highly processed information from the associative cortices functionally integrated in the trisynaptic hippocampal circuit, which contributes to the formation of new episodic memories and the spontaneous exploration of novel environments. Remarkably, the DG is the only brain region currently known to have high rates of neurogenesis in adults (Andersen et al., 1966, 1971). The DG is involved in several neurodegenerative disorders, including clinical dementia, schizophrenia, depression, bipolar disorder and temporal lobe epilepsy. The principal neurons of the DG are the granule cells. DG granule cells generated in culture would be an ideal model to investigate their normal development and the causes of the pathologies in which they are involved and as well as possible therapies. Essential to establish such in vitro models is the precise definition of the most important cell-biological requirements for the differentiation of DG granule cells. This requires a deeper understanding of the precise molecular and functional attributes of the DG granule cells in vivo as well as the DG cells derived in vitro. In this review we outline the neuroanatomical, molecular and cell-biological components of the granule cell differentiation pathway, including some growth- and transcription factors essential for their development. We summarize the functional characteristics of DG granule neurons, including the electrophysiological features of immature and mature granule cells and the axonal pathfinding characteristics of DG neurons. Additionally, we discuss landmark studies on the generation of dorsal telencephalic precursors from pluripotent stem cells (PSCs) as well as DG neuron differentiation in culture. Finally, we provide an outlook and comment critical aspects.
Collapse
Affiliation(s)
- Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Cell fate determination, neuronal maintenance and disease state: The emerging role of transcription factors Lmx1a and Lmx1b. FEBS Lett 2015; 589:3727-38. [PMID: 26526610 DOI: 10.1016/j.febslet.2015.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/28/2023]
Abstract
LIM-homeodomain (LIM-HD) proteins are evolutionary conserved developmental transcription factors. LIM-HD Lmx1a and Lmx1b orchestrate complex temporal and spatial gene expression of the dopaminergic pathway, and evidence shows they are also involved in adult neuronal homeostasis. In this review, the multiple roles played by Lmx1a and Lmx1b will be discussed. Controlled Lmx1a and Lmx1b expression and activities ensure the proper formation of critical signaling centers, including the embryonic ventral mesencephalon floor plate and sharp boundaries between lineage-specific cells. Lmx1a and Lmx1b expression persists in mature dopaminergic neurons of the substantia nigra pars compacta and the ventral tegmental area, and their role in the adult brain is beginning to be revealed. Notably, LMX1B expression was lower in brain tissue affected by Parkinson's disease. Actual and future applications of Lmx1a and Lmx1b transcription factors in stem cell production as well as in direct conversion of fibroblast into dopaminergic neurons are also discussed. A thorough understanding of the role of LMX1A and LMX1B in a number of disease states, including developmental diseases, cancer and neurodegenerative diseases, could lead to significant benefits for human healthcare.
Collapse
|
5
|
Mangaru Z, Salem E, Sherman M, Van Dine SE, Bhambri A, Brumberg JC, Richfield EK, Gabel LA, Ramos RL. Neuronal migration defect of the developing cerebellar vermis in substrains of C57BL/6 mice: cytoarchitecture and prevalence of molecular layer heterotopia. Dev Neurosci 2013; 35:28-39. [PMID: 23428637 DOI: 10.1159/000346368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
Abnormal development of the cerebellum is often associated with disorders of movement, postural control, and motor learning. Rodent models are widely used to study normal and abnormal cerebellar development and have revealed the roles of many important genetic and environmental factors. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia, a malformation of neuronal migration, in the cerebellar vermis of C57BL/6 mice and closely-related strains. In particular, we found a diverse number of cell-types affected by these malformations including Purkinje cells, granule cells, inhibitory interneurons (GABAergic and glycinergic), and glia. Heterotopia were not observed in a sample of wild-derived mice, outbred mice, or inbred mice not closely related to C57BL/6 mice. These data are relevant to the use of C57BL/6 mice as models in the study of brain and behavior relationships and provide greater understanding of human cerebellar dysplasia.
Collapse
Affiliation(s)
- Zareema Mangaru
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, N.Y., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One 2012; 7:e51065. [PMID: 23226461 PMCID: PMC3511360 DOI: 10.1371/journal.pone.0051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system.
Collapse
|
7
|
Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Struct Funct 2012; 219:35-47. [PMID: 23160833 DOI: 10.1007/s00429-012-0482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022]
Abstract
The cerebellar morphological phenotype of the spontaneous neurological mutant mouse dreher (Lmx1a(dr-J)) results from cell fate changes in dorsal midline patterning involving the roof plate and rhombic lip. Positional cloning revealed that the gene Lmx1a, which encodes a LIM homeodomain protein, is mutated in dreher, and is expressed in the developing roof plate and rhombic lip. Loss of Lmx1a causes reduction of the roof plate, an important embryonic signaling center, and abnormal cell fate specification within the embryonic cerebellar rhombic lip. In adult animals, these defects result in variable, medial fusion of the cerebellar vermis and posterior cerebellar vermis hypoplasia. It is unknown whether deleting Lmx1a results in displacement or loss of specific lobules in the vermis. To distinguish between an ectopic and absent vermis, the expression patterns of two Purkinje cell-specific compartmentation antigens, zebrin II/aldolase C and the small heat shock protein HSP25 were analyzed in dreher cerebella. The data reveal that despite the reduction in volume and abnormal foliation of the cerebellum, the transverse zones and parasagittal stripe arrays characteristic of the normal vermis are present in dreher, but may be highly distorted. In dreher mutants with a severe phenotype, zebrin II stripes are fragmented and distributed non-symmetrically about the cerebellar midline. We conclude that although Purkinje cell agenesis or selective Purkinje cell death may contribute to the dreher phenotype, our data suggest that aberrant anlage patterning and granule cell development lead to Purkinje cell ectopia, which ultimately causes abnormal cerebellar architecture in dreher.
Collapse
|
8
|
Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, McCaffery P. Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 2012; 22:2171-83. [PMID: 22689466 PMCID: PMC3505796 DOI: 10.1002/hipo.22037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 12/23/2022]
Abstract
The nuclear receptor ligand retinoic acid (RA) has been identified as an endogenous regulatory factor in the hippocampus, acting on pyramidal neurons and granule neuron progenitors, but almost nothing is known about the distribution of RA itself in the hippocampus. This study describes the source of RA for the rodent hippocampus in the meninges via the key RA synthetic enzyme retinaldehyde dehydrogenase 2 (RALDH2). Diffusion of RA from the meninges potentially creates a gradient of RA across the infrapyramidal and suprapyramidal blades of the dentate gyrus, enhanced by the expression of the RA catabolic enzyme Cyp26B1 between the blades, and an infrapyramidal and suprapyramidal blade difference is evident in RA-regulated transcription. This asymmetry may contribute to some of the physiological and molecular differences between the blades, including a disparity in the rates of cell proliferation in the subgranular zone of the two blades through RA inhibition of cell proliferation. Such differences can be altered by either the application of excess RA, its effect dependent on the relative position along the septotemporal axis, or change in RA signaling through mutation of retinol binding protein, while the capacity of RA to inhibit proliferation of cells in the dentate gyrus is demonstrated using in vitro slice culture. Use of synthetic and catabolic enzymes in the hippocampus to create differing zones of RA concentration parallels the mechanisms used in the developing brain to generate patterns of RA-regulated transcription. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy Goodman
- Institute of Medical Sciences, University of Aberdeen, Aberdeenshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct Funct 2011; 216:301-17. [PMID: 21597968 PMCID: PMC3197924 DOI: 10.1007/s00429-011-0322-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function.
Collapse
Affiliation(s)
- Lutz Slomianka
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Guidi S, Ciani E, Bonasoni P, Santini D, Bartesaghi R. Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with down syndrome. Brain Pathol 2010; 21:361-73. [PMID: 21040072 DOI: 10.1111/j.1750-3639.2010.00459.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Evidence in mouse models for Down syndrome (DS) and human fetuses with DS clearly shows severe neurogenesis impairment in various telencephalic regions, suggesting that this defect may underlie the cognitive abnormalities of DS. As cerebellar hypotrophy and motor disturbances are part of the clinical features of DS, the goal of our study was to establish whether these defects may be related to neurogenesis impairment during cerebellar development. We found that in fetuses with DS (17-21 weeks of gestation) the cerebellum had an immature pattern, a reduced volume and notably fewer cells (-25%/-50%) in all cerebellar layers. Immunohistochemistry for Ki-67, a marker of cycling cells, showed impaired proliferation (-17%/-50%) of precursors from both cerebellar neurogenic regions (external granular layer and ventricular zone). No differences in apoptotic cell death were found in DS vs. control fetuses. The current study provides novel evidence that in the cerebellum of DS fetuses there is a generalized hypocellularity and that this defect is due to proliferation impairment, rather than to an increased cell death. The reduced proliferation potency found in the DS fetal cerebellum, in conjunction with previous evidence, strengthens the idea that the trisomic brain is characterized by widespread neurogenesis disruption.
Collapse
Affiliation(s)
- Sandra Guidi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
11
|
Andrade-Valença LPA, Valença MM, Velasco TR, Carlotti CG, Assirati JA, Galvis-Alonso OY, Neder L, Cendes F, Leite JP. Mesial temporal lobe epilepsy: clinical and neuropathologic findings of familial and sporadic forms. Epilepsia 2008; 49:1046-54. [PMID: 18294201 DOI: 10.1111/j.1528-1167.2008.01551.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate the clinical and hippocampal histological features of patients with mesial temporal lobe epilepsy (MTLE) in both familial (FMTLE) and sporadic (SMTLE) forms. METHODS Patients with FMTLE (n = 20) and SMTLE (n = 39) who underwent surgical treatment for refractory seizures were studied at the University of São Paulo School of Medicine at Ribeirão Preto. FMTLE was defined when at least two individuals in a family had clinical diagnosis of MTLE. Hippocampi from all patients were processed for Nissl/HE and Timm's stainings. Both groups were compared for clinical variables, hippocampal cell densities, and intensity of supragranular mossy fiber staining. RESULTS There were no significant differences between FMTLE and SMTLE groups in the following: age at the surgery, age of first usual epileptic seizure, history of initial precipitating injury (IPI), age of IPI, latent period, ictal and interictal video-EEG patterns, presence of hippocampal atrophy and signal changes at MRI, and postoperative outcome. In addition, no differences were found in cell densities in hippocampal cornu ammonis subfields (CA1, CA2, CA3, CA4), fascia dentata, polymorphic region, subiculum, prosubiculum, and presubiculum. However, patients with SMTLE had greater intensity of mossy fiber Timm's staining in the fascia dentata-inner molecular layer (p< 0.05). DISCUSSION Patients with intractable FMTLE present a clinical profile and most histological findings comparable to patients with SMTLE. Interestingly, mossy fiber sprouting was less pronounced in patients with FMTLE, suggesting that, when compared to SMTLE, patients with FMTLE respond differently to plastic changes plausibly induced by cell loss, neuronal deafferentation, or epileptic seizures.
Collapse
|
12
|
Chizhikov V, Steshina E, Roberts R, Ilkin Y, Washburn L, Millen KJ. Molecular definition of an allelic series of mutations disrupting the mouse Lmx1a (dreher) gene. Mamm Genome 2006; 17:1025-32. [PMID: 17019651 DOI: 10.1007/s00335-006-0033-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Mice homozygous for the dreher (dr) mutation are characterized by pigmentation and skeletal abnormalities and striking behavioral phenotypes, including ataxia, vestibular deficits, and hyperactivity. The ataxia is associated with a cerebellar malformation that is remarkably similar to human Dandy-Walker malformation. Previously, positional cloning identified mutations in LIM homeobox transcription factor 1 alpha gene (Lmx1a) in three dr alleles. Two of these alleles, however, are extinct and unavailable for further analysis. In this article we report a new spontaneous dr allele and describe the Lmx1a mutations in this and six additional dr alleles. Strikingly, deletion null, missense, and frameshift mutations in these alleles all cause similar cerebellar malformations, suggesting that all dr mutations analyzed to date are null alleles.
Collapse
Affiliation(s)
- Victor Chizhikov
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, CLSC 319, Chicago, Illinois, 60637, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The roof plate is an embryonic organizing centre that occupies the dorsal midline of the vertebrate neural tube. During early CNS development, the roof plate produces secreted factors, which control the specification and differentiation of dorsal neuronal cell types. An appreciation of the signalling properties of the roof plate has prompted an enhanced interest in this important organizing centre, and several recent studies have begun to illuminate the molecular mechanisms of roof plate development.
Collapse
Affiliation(s)
- Victor V Chizhikov
- Department of Human Genetics, University of Chicago, 920 East 58th Street, CLSC 319, Chicago, Illinois 60637, USA
| | | |
Collapse
|
14
|
Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture. J Neurosci 2001. [PMID: 11438585 DOI: 10.1523/jneurosci.21-14-05099.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To discover genes influencing cerebellum development, we conducted a complex trait analysis of variation in the size of the adult mouse cerebellum. We analyzed two sets of recombinant inbred BXD strains and an F2 intercross of the common inbred strains, C57BL/6J and DBA/2J. We measured cerebellar size as the weight or volume of fixed or histologically processed tissue. Among BXD recombinant inbred strains, the cerebellum averages 52 mg (12.4% of the brain) and ranges 18 mg in size. In F2 mice, the cerebellum averages 62 mg (12.9% of the brain) and ranges approximately 20 mg in size. Five quantitative trait loci (QTLs) that significantly control variation in cerebellar size were mapped to chromosomes 1 (Cbs1a), 8 (Cbs8a), 14 (Cbs14a), and 19 (Cbs19a, Cbs19b). In combination, these QTLs can shift cerebellar size an appreciable 35% of the observed range. To assess regional genetic control of the cerebellum, we also measured the volume of the cell-rich, internal granule layer (IGL) in a set of BXD strains. The IGL ranges from 34 to 43% of total cerebellar volume. The QTL Cbs8a is significantly linked to variation in IGL volume and is suggestively linked to variation in the number of cerebellar folia. The QTLs we have discovered are among the first loci shown to modulate the size and architecture of the adult mouse cerebellum.
Collapse
|
15
|
Harding B, Thom M. Bilateral hippocampal granule cell dispersion: autopsy study of 3 infants. Neuropathol Appl Neurobiol 2001; 27:245-51. [PMID: 11489144 DOI: 10.1046/j.0305-1846.2001.00325.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent morphologic studies of Ammon's horn sclerosis (AHS) have recorded granule cell dispersion (GCD) in a significant proportion of temporal lobes surgically resected for temporal lobe epilepsy (TLE). We report the first post-mortem descriptions of GCD in three unrelated infants. GCD was bilateral in all three and there were also migrational defects, heterotopias or polymicrogyria. Only one child, a 2.5-year-old boy, presented with a severe seizural disorder and exhibited bilateral AHS. But in the two younger children, deceased at 12 weeks and 5 months, respectively, no seizures were observed and hippocampal neuronal populations were intact. To date, GCD has only been reported in association with epilepsy and has not been observed bilaterally or in neurologically normal individuals. The present observations bring into question the hypothesis that GCD is causally related to seizure activity in early life, suggesting an opposing view that it is an independent developmental disorder.
Collapse
Affiliation(s)
- B Harding
- Great Ormond Street Hospital for Children and National Hospital for Neurology and Neurosurgery, London, UK.
| | | |
Collapse
|
16
|
Millonig JH, Millen KJ, Hatten ME. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 2000; 403:764-9. [PMID: 10693804 DOI: 10.1038/35001573] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the vertebrate central nervous system (CNS), a cascade of signals that originates in the ectoderm adjacent to the neural tube is propagated by the roof plate to dorsalize the neural tube. Here we report that the phenotype of the spontaneous neurological mutant mouse dreher (dr) results from a failure of the roof plate to develop. Dorsalization of the neural tube is consequently affected: dorsal interneurons in the spinal cord and granule neurons in the cerebellar cortex are lost, and the dorsal vertebral neural arches fail to form. Positional cloning of dreher indicates that the LIM homeodomain protein, Lmx1a, is affected in three different alleles of dreher. Lmx1a is expressed in the roof plate along the neuraxis during development of the CNS. Thus, Lmx1a is required for development of the roof plate and, in turn, for specification of dorsal cell fates in the CNS and developing vertebrae.
Collapse
Affiliation(s)
- J H Millonig
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
17
|
Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME. Neurogenetics of the cerebellar system. J Child Neurol 1999; 14:574-81; discussion 581-2. [PMID: 10488902 DOI: 10.1177/088307389901400905] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of the cerebellum occurs in four basic steps. During the first epoch, genes that mark the cerebellar territory are expressed in a restricted pattern along the anterioposterior axis of the embryo. In the second, an embryonic region termed the rhombic lip generates precursors of the granule cell population of the cerebellar cortex, and the lateral pontine nucleus and olivary nucleus of the brain stem. In the third period, the program of neurogenesis of the granule neuron gives rise to the formation of the fundamental layers of the cerebellum and to the pattern of foliation. Concomitantly, programs of gene expression define the principal neuronal classes, the granule cell and Purkinje cell, that will establish the cerebellar circuitry in the postnatal period. Understanding the molecular mechanisms underlying these steps of development is likely to yield important insights into malformations such as Joubert syndrome.
Collapse
Affiliation(s)
- K J Millen
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | |
Collapse
|
18
|
Bergstrom DE, Gagnon LH, Eicher EM. Genetic and physical mapping of the dreher locus on mouse chromosome 1. Genomics 1999; 59:291-9. [PMID: 10444330 DOI: 10.1006/geno.1999.5873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the mouse dreher (dr) gene cause skeletal defects, hyperactivity, abnormal gait, deafness, white belly spotting, and hypoplasia of Müllerian duct derivatives. To map dr to high resolution, we utilized two crosses. Initially, we analyzed an intersubspecific intercross to construct a detailed genetic map of simple sequence length polymorphism markers within a 6.3-cM region surrounding the dr locus. Subsequently, we analyzed a second intersubspecific intercross segregating for the dr(6J) allele, which positioned dr within a 0.13-cM region between Rxrg and D1Mit370. A physical contig of BAC clones spanning the dr critical region was constructed, and eight potential dr candidate genes were excluded by genetic or physical mapping. Together these results lay the foundation for positional cloning of the dr gene.
Collapse
Affiliation(s)
- D E Bergstrom
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
19
|
Sekiguchi M, Abe H, Moriya M, Tanaka O, Nowakowski RS. Cerebellar microfolia and other abnormalities of neuronal growth, migration, and lamination in the Pit1dw-J homozygote mutant mouse. J Comp Neurol 1998; 400:363-74. [PMID: 9779941 DOI: 10.1002/(sici)1096-9861(19981026)400:3<363::aid-cne6>3.0.co;2-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Snell dwarf mouse (Pit1dw-J homozygote) has a mutation in the Pit1 gene that prevents the normal formation of the anterior pituitary. In neonates and adults there is almost complete absence of growth hormone (GH), prolactin (PRL), thyroxin (T4), and thyroid-stimulating hormone (TSH). Since these hormones have been suggested to play a role in normal development of the central nervous system (CNS), we have investigated the effects of the Pit1dw-J mutation on the cerebellum and hippocampal formation. In the cerebellum, there were abnormalities of both foliation and lamination. The major foliation anomalies were 1) changes in the relative size of specific folia and also the proportional sizes of the anterior vs posterior cerebellum; and 2) the presence of between one and three microfolia per half cerebellum. The microfolia were all in the medial portion of the hemisphere in the caudal part of the cerebellum. Each microfolium was just rostral to a normal fissure and interposed between the fissure and a normal gyrus. Lamination abnormalities included an increase in the number of single ectopic granule cells in the molecular layer in both cerebellar vermis (86%) and hemisphere (40%) in comparison with the wild-type mouse. In the hippocampus of the Pit1dw-J homozygote mouse, the number of pyramidal cells was decreased, although the width of the pyramidal cell layer throughout areas CA1-CA3 appeared to be normal, but less densely populated than in the wild-type mouse. Moreover, the number of granule cells that form the granule cell layer was decreased from the wild-type mouse and some ectopic granule cells (occurring both as single cells and as small clusters) were observed in the innermost portion of the molecular layer. The abnormalities observed in the Pit1dw-J homozygote mouse seem to be caused by both direct and indirect effects of the deficiency of TSH (or T4), PRL, or GH rather than by a direct effect of the deletion of Pit1.
Collapse
Affiliation(s)
- M Sekiguchi
- Department of Morphology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
20
|
Sekiguchi M, Abe H, Nagato Y, Tanaka O, Guo H, Nowakowski RS. The abnormal distribution of mossy fiber bundles and morphological abnormalities in hippocampal formation of dreher(J) (dr(J)/dr(J))mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 92:31-8. [PMID: 8861720 DOI: 10.1016/0165-3806(95)00195-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The organization of pyramidal cells and mossy fibers in the hippocampal formation of homozygous dreher(J) mutant mice was investigated using Timm's and Golgi methods. Five clear abnormalities were found: (1) some pyramidal cells were located below the infrapyramidal mossy fiber layer, (2) mossy fibers emerged in diffuse fashion from between the suprapyramidal and infrapyramidal mossy fiber layers, and their fibers invaded within the pyramidal cell layer, where they traveled as 3-6 small, usually quite short, bundles, (3) some normally situated pyramidal cells had unusual contacts with mossy fibers at two or three places on their apical and/or basal dendrites, (4) some normally situated pyramidal cells had abnormal dendritic trees typified by the occurrence of fine-caliber dendritic branches extending out of the apical dendrite or the apical portion of the soma, and (5) a few Timm positive fibers extending from the dentate hilus to the dentate molecular layer in both dreher(J) and control mice were observed. These abnormalities indicate that in the hippocampal formation a variety of cell populations and neuronal circuits can be indirectly modified by the dreher mutation.
Collapse
Affiliation(s)
- M Sekiguchi
- Department of Morphology, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Sekiguchi M, Nowakowski RS, Nagato Y, Tanaka O, Guo H, Madoka M, Abe H. Morphological abnormalities in the hippocampus of the weaver mutant mouse. Brain Res 1995; 696:262-7. [PMID: 8574680 DOI: 10.1016/0006-8993(95)00974-u] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The lamination of the hippocampus in the homozygous B6CBA weaver mouse (wv/wv) was compared with that in normal B6CBA littermates (+/+) and C57BL/6J mice using Nissl and Timm's staining. In Nissl-stained preparations, the normal littermates exhibit a compact, regular arrangement of pyramidal cells in area CA3 of the hippocampus. In contrast, in homozygous weaver mutant mice, the pyramidal cell layer of area CA3 frequently appears to be thicker than normal with an apparent increase of neuropil, as evidenced by the presence of cell-free spaces within the layer. Also, small ectopic clusters of pyramidal cells and sometimes the subdivision of the pyramidal cell layer into 2 or 3 layers were found throughout the dorsoventral extent of the hippocampus. In Timm's stained preparations of the normal mouse hippocampus, two clearly separated bundles of axons were seen emerging from the hilus: one bundle running above the pyramidal cell layer of area CA3 (i.e., the suprapyramidal mossy fiber layer, SPMFL), and the second bundle running below the pyramidal cell layer (i.e., the infrapyramidal mossy fiber layer, IPMFL). In contrast, in some homozygous weaver mice, the origin of the mossy fiber bundles is clearly different from normal; specifically, mossy fibers emerge in a diffuse fashion from the area between suprapyramidal and infrapyramidal mossy fiber layers. In other weaver mice, short, discontinuous bundles diverge from the infrapyramidal mossy fiber layer and invade the thickened pyramidal cell layer. In addition, ectopic pyramidal cells are situated below the IPMFL in area CA3. The morphological changes observed in hippocampus of weaver mutants are likely to be secondary to a more basic genetic defect.
Collapse
Affiliation(s)
- M Sekiguchi
- Department of Morphology, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Sekiguchi M, Abe H, Shimai K, Huang G, Inoue T, Nowakowski RS. Disruption of neuronal migration in the neocortex of the dreher mutant mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 77:37-43. [PMID: 8131261 DOI: 10.1016/0165-3806(94)90211-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To analyze developmental abnormalities related to neuronal migration in the dreher mutant mouse, the neocortical cytoarchitecture of dreher and control mice were examined in Nissl-stained serial sections by light microscopy. In general, the dreher neocortex has six layers which are similar in size and thickness to those observed in normal mouse neocortex. However, in dreher neocortex, three types of abnormalities were found: (1) an increase in the number of diffusely distributed neurons in layer I, (2) small, ectopic collections of neurons in layer I, and (3) isolated disturbances of local cytoarchitecture characterized by neuron-free space distributed in areas between layer II to IV. The occurrence of small, punctate deficits in the dreher neocortex may be secondary to disruptions of the radial glial fiber system and neuronal migration. The fact that cytoarchitectonic abnormalities of several types were found in the dreher neocortex may be useful in analyzing the relationship between radial glial fibers and migrating young neurons, the synaptic connections which are formed by ectopically situated neurons, and the mechanism of formation of sporadically distributed neocortical abnormalities.
Collapse
Affiliation(s)
- M Sekiguchi
- Department of Morphology, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Sekiguchi M, Nowakowski RS, Shimai K, Huang G, Inoue T, Abe H. Abnormal distribution of acetylcholinesterase activity in the hippocampal formation of the dreher mutant mouse. Brain Res 1993; 622:203-10. [PMID: 8242357 DOI: 10.1016/0006-8993(93)90820-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of acetylcholinesterase(AChE) in the hippocampal formation of the dreher mutant mouse was studied by comparing homozygous mutant (drsst-J/drsst-J) with littermate control (+/? or +/+). In the control mice, AChE activity was most intense in the inner one-third of the stratum oriens and lacnosum of the hippocampus, and in the inner one-fifth of the molecular layer of the dentate gyrus. In contrast, in homozygous dreher mice, AChE activity in area CA3c of the hippocampus was not restricted to the stratum oriens, and extended upward into the infrapyramidal and suprapyramidal mossy fiber layers, the lower part of the stratum radiatum, the pyramidal cell layer, and downward toward the alveus. In addition, the distribution of AChE activity was modified by accompanying with ectopic pyramidal cells or with disruption of the pyramidal cell layer. AChE activity in the dentate gyrus of the dreher mouse was not confined to the inner one-fifth of the molecular layer. These findings indicated that the cholinergic input to the hippocampal formation is not normal in the dreher mutant mouse. Since the areas of AChE activity correspond to the presence of ectopic pyramidal cells in the dreher mouse, incoming cholinergic fibers may form synapses with these ectopic cells and with the dendrites of normal pyramidal cells that extend into the expanded area of AChE activity.
Collapse
Affiliation(s)
- M Sekiguchi
- Department of Morphology, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|