1
|
Eymann J, Di-Poï N. Glia-Mediated Regenerative Response Following Acute Excitotoxic Damage in the Postnatal Squamate Retina. Front Cell Dev Biol 2020; 8:406. [PMID: 32548121 PMCID: PMC7270358 DOI: 10.3389/fcell.2020.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023] Open
Abstract
The retina is a complex tissue responsible for both detection and primary processing of visual stimuli. Although all vertebrate retinas share a similar, multi-layered organization, the ability to regenerate individual retinal cells varies tremendously, being extremely limited in mammals and birds when compared to anamniotes such as fish and amphibians. However, little is yet known about damage response and regeneration of retinal tissues in "non-classical" squamate reptiles (lizards, snakes), which occupy a key phylogenetic position within amniotes and exhibit unique regenerative features in many tissues. Here, we address this gap by establishing and characterizing a model of excitotoxic retinal damage in bearded dragon lizard (Pogona vitticeps). We particularly focus on identifying, at the cellular and molecular level, a putative endogenous cellular source for retinal regeneration, as diverse self-repair strategies have been characterized in vertebrates using a variety of retinal injury and transgenic models. Our findings reveal for the first time that squamates hold the potential for postnatal retinal regeneration following acute injury. Although no changes occur in the activity of physiologically active progenitors recently identified at the peripheral retinal margin of bearded dragon, two distinct successive populations of proliferating cells at central retina respond to neurotoxin treatment. Following an initial microglia response, a second source of proliferating cells exhibit common hallmarks of vertebrate Müller glia (MG) activation, including cell cycle re-entry, dedifferentiation into a progenitor-like phenotype, and re-expression of proneural markers. The observed lizard glial responses, although not as substantial as in anamniotes, appear more robust than the absent or neonatal-limited regeneration reported without exogenous stimulation in other amniotes. Altogether, these results help to complete our evolutionary understanding of regenerative potential of the vertebrate retina, and further highlight the major importance of glial cells in retinal regeneration. Furthermore, our work offers a new powerful vertebrate model to elucidate the developmental and evolutionary bases of retinal regeneration within amniotes. Such new understanding of self-repair mechanisms in non-classical species endowed with regenerative properties may help designing therapeutic strategies for vertebrate retinal diseases.
Collapse
Affiliation(s)
- Julia Eymann
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Chiba C. The retinal pigment epithelium: An important player of retinal disorders and regeneration. Exp Eye Res 2014; 123:107-14. [DOI: 10.1016/j.exer.2013.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
|
3
|
Hematological- and Neurological-Expressed Sequence 1 Gene Products in Progenitor Cells during Newt Retinal Development. Stem Cells Int 2012; 2012:436042. [PMID: 22719773 PMCID: PMC3375142 DOI: 10.1155/2012/436042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 04/01/2012] [Indexed: 12/16/2022] Open
Abstract
Urodele amphibians such as Japanese common newts have a remarkable ability to regenerate their injured neural retina, even as adults. We found that hematological- and neurological-expressed sequence 1 (Hn1) gene was induced in depigmented retinal pigment epithelial (RPE) cells, and its expression was maintained at later stages of newt retinal regeneration. In this study, we investigated the distribution of the HN1 protein, the product of the Hn1 gene, in the developing retinas. Our immunohistochemical analyses suggested that the HN1 protein was highly expressed in an immature retina, and the subcellular localization changed during this retinogenesis as observed in newt retinal regeneration. We also found that the expression of Hn1 gene was not induced in mouse after retinal removal. Our results showed that Hn1 gene can be useful for detection of undifferentiated and dedifferentiated cells during both newt retinal development and regeneration.
Collapse
|
4
|
Yoshikawa T, Mizuno A, Yasumuro H, Inami W, Vergara MN, Del Rio-Tsonis K, Chiba C. MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt. Pigment Cell Melanoma Res 2011; 25:66-82. [PMID: 22026648 DOI: 10.1111/j.1755-148x.2011.00935.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The onset mechanism of proliferation in mitotically quiescent retinal pigment epithelium (RPE) cells is still obscure in humans and newts, although it can be a clinical target for manipulating both retinal diseases and regeneration. To address this issue, we investigated factors or signaling pathways involved in the first cell-cycle entry of RPE cells upon retinal injury using a newt retina-less eye-cup culture system in which the cells around the wound edge of the RPE exclusively enter the cell cycle. We found that MEK-ERK signaling is necessary for their cell-cycle entry, and signaling pathways whose activities can be modulated by heparin, such as Wnt-, Shh-, and thrombin-mediated pathways, are capable of regulating the cell-cycle entry. Furthermore, we found that the cells inside the RPE have low proliferation competence even in the presence of serum, suggesting inversely that a loss of cell-to-cell contact would allow the cells to enter the cell cycle.
Collapse
Affiliation(s)
- Taro Yoshikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Expression of Ca-binding protein recoverin in normal, surviving, and regenerating retina of Pleurodeles waltl adult triton. Bull Exp Biol Med 2010; 148:155-62. [PMID: 19902119 DOI: 10.1007/s10517-009-0654-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Immunohistochemical study of the expression of recoverin (photoreceptor protein) in the retina of Pleurodeles waltl adult triton was carried out in health, during regeneration after removal, and under conditions of long-lasting detachment. Studies with polyclonal (monospecific) antibodies to recoverin showed that normally it is present in the internal segment, connective cilium, in distal portions of the external segments of cones and rods, and in Landolt clubs of displaced bipolar cells. Detachment of the retina is associated with translocation of recoverin from the photoreceptor processes to perikaryons, and the content of recoverin-positive displaced bipolar cells increases. During regeneration of the retina after its excision via conversion of the pigmented epithelial cells, recoverin is synthesized in the prospective photoreceptor perikaryons and then accumulates in the forming inner segments. Hence, recoverin can serve as a reliable marker in studies of photoreceptor differentiation and functioning during regeneration or survival of the retina.
Collapse
|
6
|
Susaki K, Kaneko J, Yamano Y, Nakamura K, Inami W, Yoshikawa T, Ozawa Y, Shibata S, Matsuzaki O, Okano H, Chiba C. Musashi-1, an RNA-binding protein, is indispensable for survival of photoreceptors. Exp Eye Res 2008; 88:347-55. [PMID: 18662689 DOI: 10.1016/j.exer.2008.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/29/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
Abstract
Musashi-1 (Msi1), an RNA-binding protein (RBP), has been postulated to play important roles in the maintenance of the stem-cell state, differentiation, and tumorigenesis. However, the expression and function of Msi1 in differentiated cells remain obscure. Here we show that Msi1 is expressed in mature photoreceptors and retinal pigment epithelium (RPE) cells, and is indispensable for the survival of photoreceptors. We found in the adult newt eye that Msi1 is expressed in all photoreceptors and RPE cells as well as in the retinal stem/progenitor cells in the ciliary marginal zone (CMZ). We found in the analyses of the newt normal and regenerating retinas that the expression profiles of the Msi1 transcripts and protein isoforms in the photoreceptors are different from those in the retinal stem/progenitor cells. Furthermore, we found that all photoreceptors and RPE cells of the adult mice also express Msi1, and that Msi1 knockout (Msi1-KO) results in degeneration of photoreceptors and a lack of a visual cycle protein RPE65 in the microvilli of RPE cells. Taken together, our current results demonstrate that the expression of Msi1 in mature photoreceptors and RPE cells is evolutionarily conserved, and that Msi1 bears essential functions for vision. Considering such an Msi1-KO phenotype in the retina, it is now reasonable to address whether defects of the Msi1 functions are responsible for inherited retinal diseases. Studying the regulation of Msi1 and the target RNAs of Msi1 in photoreceptors and RPE cells might contribute to fundamental and clinical studies of retinal degeneration.
Collapse
Affiliation(s)
- Kanako Susaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Susaki K, Chiba C. MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: Is FGF2 an induction factor? ACTA ACUST UNITED AC 2007; 20:364-79. [PMID: 17850510 DOI: 10.1111/j.1600-0749.2007.00407.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult newts can regenerate their entire retinas through transdifferentiation of the retinal pigment epithelium (RPE) cells. As yet, however, underlying molecular mechanisms remain virtually unknown. On the other hand, in embryonic/larval vertebrates, an MEK [mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase] pathway activated by fibroblast growth factor-2 (FGF2) is suggested to be involved in the induction of transdifferentiation of the RPE into a neural retina. Therefore, we examined using culture systems whether the FGF2/MEK pathway is also involved in the adult newt RPE transdifferentiation. Here we show that the adult newt RPE cells can switch to neural cells expressing pan-retinal-neuron (PRN) markers such as acetylated tubulin, and that an MEK pathway is essential for the induction of this process, whereas FGF2 seems an unlikely primary induction factor. In addition, we show by immunohistochemistry that the PRN markers are not expressed until the 1-3 cells thick regenerating retina, which contains retinal progenitor cells, appears. Our current results suggest that the activation of an MEK pathway in RPE cells might be involved in the induction process of retinal regeneration in the adult newt, however if this is the case, we must assume complementary mechanisms that repress the MEK-mediated misexpression of PRN markers in the initial process of transdifferentiation.
Collapse
Affiliation(s)
- Kanako Susaki
- Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
8
|
Hasegawa A, Hisatomi O, Yamamoto S, Ono E, Tokunaga F. Stathmin expression during newt retina regeneration. Exp Eye Res 2007; 85:518-27. [PMID: 17707372 DOI: 10.1016/j.exer.2007.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 11/17/2022]
Abstract
Japanese common newts (Cynops pyrrhogaster) have high ability to regenerate their injured organs including neural tissues, for example, the neural retina belonging to central nervous system. We attempted to clarify the molecular mechanism underlying the formation of a neural network during newt retina regeneration, and focused on the microtubule dynamics controlled by stathmin family proteins. Stathmin is a small cytoplasmic phosphoprotein known to be a microtubule regulator. We isolated a clone encoding stathmin from the newt. The expression level of stathmin is higher in lung and spleen than in the adult intact retina where stathmin was localized on plexiform layers, the ganglion layer and in photoreceptor inner segments. However, in a regenerating process of the retina, stathmin was upregulated from an early regenerating stage until the retinal layered structure was formed. Immunohistochemical analyses revealed that stathmin existed all around the regenerating retina consisting of retinal progenitor cells. These results suggest that stathmin plays important roles in the construction and maintenance of retinal structure and its neural network, by controlling the proliferation of retinal progenitor cells and the microtubule dynamics of retinal neurons. Moreover, stathmin may function in the dedifferentiating process of retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Akiyuki Hasegawa
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
9
|
Goto T, Hisatomi O, Kotoura M, Tokunaga F. Induced expression of hematopoietic- and neurologic-expressed sequence 1 in retinal pigment epithelial cells during newt retina regeneration. Exp Eye Res 2006; 83:972-80. [PMID: 16797532 DOI: 10.1016/j.exer.2006.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/26/2006] [Accepted: 05/08/2006] [Indexed: 02/06/2023]
Abstract
Newts can regenerate their organs even as adults. For instance, when their neural retinas are completely removed by operation, the remaining retinal pigment epithelial (RPE) cells dedifferentiate to reconstruct neural retinas. To elucidate the molecular mechanisms of newt retina regeneration, we investigated genes upregulated in dedifferentiating RPE cells using differential display methods. We observed that a cDNA fragment of hematopoietic- and neurologic-expressed sequence 1 (Hn1) appeared to be induced within a few days of surgical removal of newt neural retina. Using an anti-HN1 antiserum against the recombinant HN1 protein, we carried out immunohistochemical analyses. The anti-HN1 antiserum recognized the plexiform layers and ganglion cell layer (GCL) but not the RPE cell layer in unoperated (normal) newt retinas. Using a glial fibrillary acidic protein antibody, Hn1 was shown to be possibly expressed in glial cells in normal neural retina. During retina regeneration, immunoreactivity for HN1 appeared in dedifferentiating RPE cells 10 days post-operation, and in retinal progenitor cells 18 days post-operation. Twenty seven days post-operation, HN1 immunoreactivity was localized in the plexiform layers and GCL as in the normal retina. Therefore, HN1 possibly plays an undefined role in dedifferentiating RPE cells and retinal progenitor cells during newt retina regeneration.
Collapse
Affiliation(s)
- Tatsushi Goto
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
10
|
Chiba C, Hoshino A, Nakamura K, Susaki K, Yamano Y, Kaneko Y, Kuwata O, Maruo F, Saito T. Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt. J Comp Neurol 2006; 495:391-407. [PMID: 16485283 DOI: 10.1002/cne.20880] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult newts can regenerate their entire retina through transdifferentiation of the retinal pigment epithelium (RPE). The objective of this study was to redescribe the retina regeneration process by means of modern biological techniques. We report two different antibodies (RPE-No.112 and MAB5428) that recognize the newt homolog of RPE65, which is involved in the visual cycle and exclusively label the RPE cell-layer in the adult newt eye. We analyzed the process of retinal regeneration by immunohistochemistry and immunoblotting and propose that this process should be divided into nine stages. We found that the RPE65 protein is present in the RPE-derived new retinal rudiment at 14 days postoperative (po) and in the regenerating retinas at the 3-4 cell stage (19 days po). These observations suggest that certain characteristics of RPE cells overlap with those of retinal stem/progenitor cells during the period of transdifferentiation. However, RPE65 protein was not detected in either retinal stem/progenitor cells in the ciliary marginal zone (CMZ) of adult eyes or in neuroepithelium present during retina development, where it was first detected in differentiated RPE. Moreover, the gene expression of RPE65 was drastically downregulated in the early phase of transdifferentiation (by 10 days po), while those of Connexin43 and Pax-6, both expressed in regenerating retinas, were differently upregulated. These observations suggest that the RPE65 protein in the RPE-derived retinal rudiment may represent the remainder after protein degradation or discharge rather than newly synthesized protein.
Collapse
Affiliation(s)
- Chikafumi Chiba
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sakami S, Hisatomi O, Sakakibara S, Liu J, Reh TA, Tokunaga F. Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:49-59. [PMID: 15763275 DOI: 10.1016/j.devbrainres.2004.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/03/2004] [Accepted: 11/07/2004] [Indexed: 11/28/2022]
Abstract
Cynops pyrrhogaster (the Japanese common newt) regenerates neural retina from retinal pigmented epithelium (RPE) cells. Otx2 is a transcription factor that is involved in RPE cell differentiation. To understand the role of Otx2 during transdifferentiation of RPE cells, we cloned a Cynops Otx2 cDNA, and explored its expression by RT-PCR, immunohistochemistry and in situ hybridization. The expression of Otx2 was compared with the localization of a proliferating cell marker (PCNA), RPE cell markers (RPE65, CRBP) and an RPE and Muller glial cell marker (CRALBP). At the early stage of regeneration, 2 to 3 cell layered regenerating retina consisting of pigmented cells uniformly expressed Otx2 and other markers. Following this stage, 4-cell layered regenerating retina consisted of two distinct layers, pigmented monolayer (the outer layer) attached to Bruch's membrane and presumptive neural retina (the inner layers). In the outer layer, Otx2 and CRBP expression was maintained and majority of cells lost PCNA expression. Some of cells maintained RPE65. In the inner layers, expression of Otx2, CRBP and RPE65 was downregulated, but a majority of those cells maintained PCNA expression. These results indicate that spatiotemporal regulation of Otx2 expression is consistent with those of RPE markers. Otx2 may play a pivotal role in maintenance and specification of RPE cells during neural retina regeneration. In contrast to RPE cell markers, CRALBP was expressed in both the pigmented and the de-pigmented layers. This observation implicates the appearance of Muller glial cells in an early phase of regenerating retina.
Collapse
Affiliation(s)
- Sanae Sakami
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Machikaneyama-chyo 1-1, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Chiba C, Oi H, Saito T. Changes in somatic sodium currents of ganglion cells during retinal regeneration in the adult newt. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:25-34. [PMID: 15617752 DOI: 10.1016/j.devbrainres.2004.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2004] [Indexed: 11/19/2022]
Abstract
Adult newts can regenerate their entire retinas following a complete removal of the original tissues. During retinal regeneration, ganglion cells differentiate first from the progenitor cells, and develop their capability of spike firing. In the present study, to understand the process of functional differentiation of ganglion cells, we investigated alterations of their voltage-gated sodium currents during retinal regeneration by a whole-cell patch-clamp technique. To minimize space clamp errors, sodium currents were recorded from neurite-free somata of presumptive ganglion cells that were mechanically isolated from living slices of regenerating retinas at different morphological stages. During retinal regeneration, the somatic sodium current density was increased 2.6-fold (48 to 123 pF/pA) and the half-activating voltage was shifted slightly to more hyperpolarizing membrane potentials (-10 to -13 mV), while steady-state inactivation was not changed obviously. Curve fitting analysis of currents revealed that the sodium current consists of two components with different inactivation time constants. During retinal regeneration, the ratio of slow to fast inactivating current component was increased 2.6-fold (0.11 to 0.29). These results suggest that the somatic sodium currents of ganglion cells may undergo modifications of their voltage dependence and kinetic properties during retinal regeneration. A small number of the presumptive ganglion cells in regenerating retinas with a segregating inner plexiform layer exhibited sodium currents comparable to those in the normal retina. This might suggest that maturational regulation of sodium channel function starts during a period of synaptic layer formation within the retina.
Collapse
Affiliation(s)
- Chikafumi Chiba
- Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
13
|
Chiba C, Nakamura K, Unno S, Saito T. Intraocular implantation of DNA-transfected retinal pigment epithelium cells: a new approach for analyzing molecular functions in the newt retinal regeneration. Neurosci Lett 2004; 368:171-5. [PMID: 15351443 DOI: 10.1016/j.neulet.2004.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 06/21/2004] [Accepted: 07/02/2004] [Indexed: 11/19/2022]
Abstract
Adult newts can regenerate their entire retinas, even after surgical removal of the neural retina (retinectomy), through transdifferentiation of the retinal pigment epithelium (RPE) cells. To develop a new experimental system for analyzing molecular functions during retinal regeneration of adult newts, we attempted to deliver a foreign gene into RPE cells of retina-less eye-cups in vitro. Here we used pCS2mt-GFP as a reporter construct, and selected Polyfect as a transfection reagent. DNA-transfection appeared to be restricted to the RPE cells of retina-less eye-cups and its efficiency was 0.1-0.2%. We tried to implant RPE-choroid tissue containing DNA-transfected RPE cells into the eye of a host animal. The tissue was placed into the posterior eye-chamber immediately after retinectomy so that the implanted RPE tissue was facing the cornea (i.e., normal orientation). The implant and host RPE regenerated one continuous hybrid neural retina. Ocular sections after 60 days of implantation showed that a small number of cells in the regenerating retina were intensely stained with an anti-GFP antibody. Some of those cells were believed to be retinal cells such as ganglion cells, amacrine cells and photoreceptors. The GFP-positive cells in the hybrid regenerating retina could represent clones derived from a single RPE cell. These results indicate that this experimental system could become useful in the study of adult newt retinal regeneration.
Collapse
Affiliation(s)
- Chikafumi Chiba
- Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | |
Collapse
|
14
|
Ohmasa M, Saito T. GABAA-receptor-mediated increase in intracellular Ca2+ concentration in the regenerating retina of adult newt. Neurosci Res 2004; 49:219-27. [PMID: 15140564 DOI: 10.1016/j.neures.2004.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 02/26/2004] [Indexed: 11/22/2022]
Abstract
We used optical recording with the Ca(2+)-sensitive dye, fura-2, in living slice preparations from the newt retina at different stages of regeneration. gamma-Aminobutyric acid (GABA) induced pronounced [Ca(2+)](i) rise in progenitor cells and differentiating ganglion cells in the 'intermediate' stage of retinal regeneration. This [Ca(2+)](i) rise became less pronounced at the beginning of synapse formation in the late regenerating retina. At the late period of the late regenerating retina with the IPL thickness comparable to that of the control retina, GABA-induced [Ca(2+)](i) rise became undetectable or sometimes a small decrease in [Ca(2+)](i) was observed in regenerated ganglion cells. In contrast, N-methyl-d-aspartate (NMDA)-induced [Ca(2+)](i) rise appeared in premature ganglion cells and became prominent gradually as the regeneration proceeded. The [Ca(2+)](i) rise to GABA was mediated by GABA(A) receptors. This was shown by inhibition of GABA-induced Ca(2+) response with the preincubation of the GABA(A) receptor antagonist, bicuculline. The [Ca(2+)](i) rise due to GABA was suppressed in the absence of extracellular Ca(2+) or in the presence of the L-type voltage-gated Ca(2+) channel blocker, verapamil, suggesting that Ca(2+) may be entered through L-type Ca(2+) channels. Transient appearance of [Ca(2+)](i) rise to GABA during regeneration and origin of GABA-induced [Ca(2+)](i) rise were similar to those in the developing retina [J. Neurobiol. 24 (1993) 1600]. These similarities may suggest that common mechanisms may control neurogenesis and/or synaptogenesis during development and regeneration.
Collapse
Affiliation(s)
- Motoko Ohmasa
- Institute of Biological Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
15
|
Oi H, Chiba C, Saito T. A decay of gap junctions associated with ganglion cell differentiation during retinal regeneration of the adult newt. Vision Res 2003; 43:2847-59. [PMID: 14568373 DOI: 10.1016/j.visres.2003.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.
Collapse
Affiliation(s)
- Hanako Oi
- Institute of Biological Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
16
|
Ohmasa M, Saito T. Muscarinic calcium mobilization in the regenerating retina of adult newt. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:61-9. [PMID: 14519494 DOI: 10.1016/s0165-3806(03)00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used optical recording with a Ca(2+)-sensitive dye, fura2, in living slice preparations from the newt retina at different stages of regeneration. ACh produced the most pronounced [Ca2+]i rise in progenitor cells and premature ganglion cells of the earlier stage of retinal regeneration, but less pronounced Ca2+ response in ganglion cells just before, or at the beginning of, synaptogenesis. The [Ca2+]i rise to ACh was mediated by mAChRs. This was shown by inhibition of the ACh-induced Ca2+ response with a preincubation of the mAChR antagonist atropine as well as with direct stimulation of the [Ca2+]i rise by the mAChR agonist muscarine. This muscarine-induced [Ca2+]i rise was more greatly suppressed by the M1 and/or M3 preferring mAChR antagonists than by the M2 preferring mAChR antagonist. The [Ca2+]i rise due to muscarine was not suppressed in the absence of extracellular Ca2+, but suppressed in part in the presence of the L-type voltage-gated Ca2+ channel blockers, verapamil or nicardipine. Furthermore, thapsigargin (TG), a Ca-ATPase inhibitor, abolished the muscarine-induced [Ca2+]i rise in the absence of extracellular Ca2+. These results suggest that the mAChR-mediated [Ca2+]i rise is mainly a result of a release of Ca2+ from intracellular stores. TG produced a slow rise in the resting level of [Ca2+]i. This [Ca2+]i raise was suppressed as extracellular Ca2+ was omitted, whereas a rapid rise in [Ca2+]i occurred when extracellular Ca2+ was reintroduced, suggesting the occurrence of the capacitative Ca2+ influx in the progenitor cells and premature ganglion cells of the regenerating newt retina.
Collapse
Affiliation(s)
- Motoko Ohmasa
- Institute of Biological Sciences, The University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
17
|
Umino Y, Niino M, Saito T. Morphological and functional organization of ON and OFF pathways in the adult newt retina. Zoolog Sci 2003; 20:291-301. [PMID: 12692388 DOI: 10.2108/zsj.20.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Morphological and functional organization of ON and OFF pathways in the adult newt retina were examined by intracellular recording and staining techniques and immunohistochemistry. Synaptotagmin immunoreactivity discriminated three broad bands within the IPL: the distal band (sublamina I), the middle band (sublamina II) consisting of two dense punctate bands (sublaminae II(a) and II(b)), and proximal band (sublamina III). The Lucifer-yellow labeled OFF amacrine and ganglion cells send their processes mainly in sublamina I and/or II(a) where OFF bipolar cells extend their axon terminals, while ON amacrine and ganglion cells send their processes in sublamina III and/or II(b) where ON bipolar cells extend their axon terminals. Processes of ON-OFF amacrine and ganglion cells ramify broadly in the whole thickness of the IPL. Many bipolar cells responded to light spot with a transient hyperpolarization at both light onset and offset. They are probably subtypes of ON bipolar cells, because their axon terminals branch mainly in sublaminae III and/or II(b), although a few cells ramified the axon at both sublaminae II(a) and III. Two immunohistochemical markers for bipolar cells, PKC and RB-1, identified axon terminals in sublaminae III and/or II(b). From the ramification pattern of axon terminal, they are probably subtypes of ON bipolar cells. ChAT-ir amacrine cells ramified their dendrites in either sublamina I or II(b). Altogether, present studies support the general idea of segregation of ON and OFF pathways in sublaminae a and b of the IPL.
Collapse
Affiliation(s)
- Yumiko Umino
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 300-2635, Japan
| | | | | |
Collapse
|
18
|
Abstract
Eye tissues such as the lens and the retina possess remarkable regenerative abilities. In amphibians, a complete lens can be regenerated after lentectomy. The process is a classic example of transdifferentiation of one cell type to another. Likewise, retina can be regenerated, but the strategy used to replace the damaged retina differs, depending on the animal system and the age of the animal. Retina can be regenerated by transdifferentiation or by the use of stem cells. In this review, we present a synthesis on the regenerative capacity of eye tissues in different animals with emphasis on the strategy and the molecules involved. In addition, we stress the place of this field at the molecular age and the importance of the recent technologic advances.
Collapse
|
19
|
Umino Y, Saito T. Spatial and temporal patterns of distribution of the gap junctional protein connexin43 during retinal regeneration of adult newt. J Comp Neurol 2002; 454:255-62. [PMID: 12442316 DOI: 10.1002/cne.10429] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Newts possess the ability to regenerate a functional retina after complete removal of the original retina. We performed immunoblot and immunohistochemical analyses of newt retinas at different stages of regeneration by using an antibody against a gap junction channel protein, connexin43 (Cx43). The specificity of the antibody was shown on immunoblots as well as immunohistochemical staining pattern in the normal retina. Punctate Cx43 immunolabeling was detected intensely between proliferating cell nuclear antigen-immunoreactive progenitor cells in the regenerating retinas, and the amount of this labeling tended to be prominent along both scleral and vitreal sides. The amount of Cx43 became less abundant as regeneration proceeded. This temporal loss of Cx43 during regeneration was also shown on the immunoblot analysis. Furthermore, the loss of Cx43 was observed in a spatial manner in the peripheral retina, where progenitor cells clustered at the ciliary marginal zone (CMZ) are adding new cells of all types in order toward the central retina. Immunolabeling often extended longitudinally throughout the retina when regenerating retinas became thick. Double immunolabeling with Cx43 and glial fibrillary acidic protein indicated the overlapping between the Cx43 and Müller cell processes. At the beginning of the synaptic formation, immunolabeling almost disappeared in the entire retina. However, in the completely regenerated retina, Cx43 reappeared in the distal end of Müller cells and pigment epithelial cells in the same pattern as in the normal retina. The above observations lead us to speculate that Cx43-mediated gap junctions may play an important role in regenerating events. Possible roles of Cx43 during regeneration are discussed.
Collapse
Affiliation(s)
- Yumiko Umino
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
20
|
Sakakibara S, Hiramatsu H, Takahashi Y, Hisatomi O, Kobayashi Y, Sakami S, Saito T, Tokunaga F. Opsin expression in adult, developing, and regenerating newt retinas. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 103:28-35. [PMID: 12106689 DOI: 10.1016/s0169-328x(02)00164-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Japanese common newts (Cynops pyrrhogaster) have an ability to regenerate their neural retina even as adults. Although extensive research has been carried out attempting to understand this retinal regeneration, the molecules characterized in newt retina are limited. We isolated cDNAs encoding three putative opsins (Cp-Rh, -LWS and -SWS1), in addition to Cp-SWS2 [Takahashi et al., FEBS Lett. 501 (2001) 151-155] from a cDNA library of adult newt retina. Our immunohistochemical and in situ hybridization studies demonstrated that Cp-Rh is selectively expressed in rods, whereas the other opsins are expressed in cones. The distribution of opsin mRNAs in normal and regenerated retinas is very similar. In both developing and regenerating retinas, Cp-Rh and its mRNA first appeared in immature rods at the beginning or just after the formation of plexiform layers. Cp-Rh was initially found isotropically in the plasma membrane, and then translocalized to the apical region along with the maturation of regenerating rods. This suggests that reorganization of the intracellular structure takes place during maturation of the regenerating newt photoreceptors.
Collapse
Affiliation(s)
- Shunsuke Sakakibara
- Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1, Machikaneyama-chyo, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ikegami Y, Mitsuda S, Araki M. Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. JOURNAL OF NEUROBIOLOGY 2002; 50:209-20. [PMID: 11810636 DOI: 10.1002/neu.10031] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented "neuron-like cells" with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU-labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron-specific proteins; HPC-1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite-like processes. Numerous lightly pigmented cells with neuron-like morphology showed HPC-1 immunoreactivity. Fibroblast growth factor-2 (FGF-2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron-like cells and HPC-1-like immunoreactive cells in a dose-dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue-intrinsic factors responsible for newt retinal regeneration.
Collapse
Affiliation(s)
- Yoko Ikegami
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | |
Collapse
|
22
|
Schultz K, Janssen-Bienhold U, Weiler R. Selective synaptic distribution of AMPA and kainate receptor subunits in the outer plexiform layer of the carp retina. J Comp Neurol 2001; 435:433-49. [PMID: 11406824 DOI: 10.1002/cne.1042] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The subunit composition of ionotropic glutamate receptors (GluRs) is extremely diverse and responsible for the diversity of postsynaptic responses to the release of glutamate, which is the major excitatory neurotransmitter in the retina. To understand the functional consequences of this diversity, it is necessary to reveal the synaptic localization and subunit composition of GluRs. We have used immuno light and electron microscopy to localize AMPA and kainate (GluR1, GluR2/3, GluR4, GluR5-7) subunits in identified carp retinal neurons contributing to the outer plexiform layer. GluR1 could not be detected within the outer plexiform layer. Rod and cone horizontal cells all express only GluR2/3 at the tips of their invaginating dendrites. These receptors are also inserted into the membrane of spinules, light-dependent protrusions of the horizontal cell dendrites, flanking the synaptic ribbon of the cone synapse. Bipolar cells express GluR2/3, GluR4, and GluR5-7 at their terminal dendrites invaginating cone pedicles and rod spherules. Colocalization data suggest that each subunit is expressed by a distinct bipolar cell type. The majority of bipolar cells expressing these receptors seem to be of the functional OFF-type; however, in a few instances, GluR2/3 could also be detected on dendrites of bipolar cells that, based on their localization within the cone synaptic complex, appeared to be of the functional ON-type. The spatial arrangement of the different subunits within the cavity of the cone pedicle appeared not to be random: GluR2/3 was found predominantly at the apex of the cavity, GluR4 at its base and GluR5-7 dispersed between the two.
Collapse
Affiliation(s)
- K Schultz
- Department of Neurobiology, University of Oldenburg, Oldenburg D-26111, Germany
| | | | | |
Collapse
|
23
|
Kaneko Y, Hirota K, Matsumoto G, Hanyu Y. Expression pattern of a newt Notch homologue in regenerating newt retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 128:53-62. [PMID: 11356262 DOI: 10.1016/s0165-3806(01)00147-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We isolated part of a newt Notch homologue, N-Notch, from regenerating newt retina. The spatio-temporal pattern of N-Notch expression was studied by in situ hybridization at different stages of newt retinal regeneration. Proliferating cells were confirmed by the injection of bromodeoxyuridine (BrdU). In the early stage of regeneration, when the retina was one to two cells thick, all proliferating retinal progenitors expressed N-Notch. As the thickness of the retina increased with regeneration, N-Notch expression decreased in BrdU-positive cells on the vitreal side of the retina. Subsequently, presumptive retinal ganglion cells that were BrdU-negative cells appeared at the vitreal edge of the regenerating retina. These differentiating cells did not express N-Notch. Later, N-Notch expression decreased in the BrdU-positive cells on the scleral surface of the retina. Subsequently, presumptive photoreceptor cells that were BrdU-negative cells appeared in this region. These differentiating cells also did not express N-Notch. The proliferating retinal progenitors ceased expressing N-Notch and then stopped dividing during the differentiation of ganglion cells and photoreceptor cells. It was found that retinal regeneration involves the expression of an important developmental signaling molecule, Notch, in retinal progenitors and the expression of Notch ceased as cell differentiation proceeded during retinal regeneration.
Collapse
Affiliation(s)
- Y Kaneko
- Laboratory for Brain-Operative Expression, Brain Science Institute (BSI), RIKEN, Wako, 351-0198, Saitama, Japan
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- P A Raymond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor 48109-0616, USA
| | | |
Collapse
|
25
|
|
26
|
Chiba C, Saito T. Gap junctional coupling between progenitor cells of regenerating retina in the adult newt. JOURNAL OF NEUROBIOLOGY 2000; 42:258-69. [PMID: 10640332 DOI: 10.1002/(sici)1097-4695(20000205)42:2<258::aid-neu9>3.0.co;2-f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gap junctional coupling between progenitor cells of regenerating retina in the adult newt was examined by a slice-patch technique. Retinal slices at the early regeneration stage comprised one to two layers of cells with mitotic activity, progenitor cells. These cells were initially voltage-clamped at a holding potential of -80 mV, near their resting potentials, and stepped to either hyperpolarizing or depolarizing test potentials under suppression of voltage-gated membrane currents. About half the cells showed passively flowing currents that reversed polarity around their resting potentials. The currents often exhibited a voltage- and time-dependent decline. As the difference between the test potential and resting potential increased, the time until the current decreased to the steady-state level became shorter and the amount of steady-state current decreased. Thus, the overall current profile was almost symmetrical about the current at the resting potential. Input resistance estimated from the initial peak of the currents was significantly smaller than that expected in isolated progenitor cells. In a high-K(+) solution, which decreased the resting potential to around 0 mV, the symmetrical current profile was also obtained, but only when the membrane potential was held at 0 mV before the voltage steps. These observations suggest that the current was driven and modulated by the junctional potential difference between the clamping cell and its neighbors. In addition, we examined effects of uncoupling agents on the currents. A gap junction channel blocker, halothane, suppressed the currents almost completely, indicating that the currents are predominantly gap junctional currents. Furthermore, injection of biocytin into the current-recorded cells revealed tracer coupling. These results demonstrate that progenitor cells of regenerating retina couple with each other via gap junctions, and suggest the presence of their cytoplasmic communication during early retinal regeneration.
Collapse
Affiliation(s)
- C Chiba
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | | |
Collapse
|
27
|
Abstract
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.
Collapse
Affiliation(s)
- Y Kaneko
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Japan
| | | | | |
Collapse
|
28
|
Kaneko Y, Matsumoto G, Hanyu Y. The occurrence of apoptosis during retinal regeneration in adult newts. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:225-8. [PMID: 10567741 DOI: 10.1016/s0165-3806(99)00124-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study examined the occurrence of apoptosis, identified by an in situ technique for detecting DNA fragmentation, in the regenerating retina of adult newts following ablation of the retina. Apoptosis occurs in the initial phase of regeneration when retinal precursor cells are actively proliferating. In the late stage of regeneration, when two synaptic layers are forming, apoptosis occurs mainly in the ganglion cell layer and inner nuclear layer. We found that apoptosis occurred with proliferation, differentiation, formation of retinal layers and retinotectal projections during retinal regeneration. Our findings suggest that apoptosis is closely related to these phenomena.
Collapse
Affiliation(s)
- Y Kaneko
- Supermolecular Division, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Japan
| | | | | |
Collapse
|
29
|
Cheon EW, Saito T. Choline acetyltransferase and acetylcholinesterase in the normal, developing and regenerating newt retinas. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:97-109. [PMID: 10446351 DOI: 10.1016/s0165-3806(99)00080-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The presence of the choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) was demonstrated in the adult newt retina using immunocytochemical and histochemical techniques. Within the inner plexiform layer (IPL), two ChAT-positive bands were detected at relative depths of 0-15% and 45-60% of the total thickness (100%) of the IPL. AChE-positive band occupied approximately 0-60% of the IPL width with an intensive AChE-positive band at a depth of 20-40% within the IPL. Localizations of maximum ChAT and AChE activity were not exactly the same in the IPL of the mature retina. To elucidate whether retinal regeneration follows the same sequence of cellular differentiation steps that occur in retinal development, we examined the time course of appearance of the cholinergic neurons and AChE activity in both developing and regenerating retinas. The ChAT-positive cells were first detected in the retina just before or at the beginning of the morphological development of the IPL in both developing and regenerating retinas. AChE activity first became detectable in somata located at the most proximal layer of the retina before the ChAT-positive cells could be detected and well before the IPL developed in both developing and regenerating retinas. During subsequent development and regeneration, the outer plexiform layer, the IPL, and somata close to either side of the IPL became AChE-positive. The fact that the time course of the appearance of ChAT and AChE molecules during regeneration was similar to that observed during development suggests that common mechanisms may control both the development and the regeneration of the newt retina.
Collapse
Affiliation(s)
- E W Cheon
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
30
|
|
31
|
Abstract
The appearance of endogenous glutamate during retinal regeneration in the newt was examined by immunohistochemistry. Glutamate-like immunoreactivity (Glu-LI) first appeared in prospective ganglion cells along the vitreal margin of retinas that were about six cells thick, in prospective photoreceptors immediately before segregation of retinal plexiform layers and then in prospective bipolar cells immediately after the initial appearance of thin plexiform layers. In retinas nearing complete regeneration, Müller cells showed immunoreactivity. The appearance of glutamatergic phenotypes during retinal regeneration seemed to follow the order of cell differentiation [T. Saito, Y. Kaneko, F. Maruo, M. Niino, Y. Sakaki, Study of the regenerating newt retina by electrophysiology and immunohistochemistry (bipolar- and cone-specific antigen localization), J. Exp. Zool. 270 (1994) 491-500]. However, changes in the amount of endogenous glutamate during retinal regeneration were more complex. On the one hand, Glu-LI at the prospective ganglion cell layer temporarily increased during the initial period of segregation of the inner plexiform layer. On the other hand, immunoreactivity in the photoreceptor layer declined during segregation of the outer plexiform layer. The transient expression of immunoreactivity may represent a function of glutamate in events such as cell survival or neurite extension during retinal regeneration.
Collapse
Affiliation(s)
- C Chiba
- University of Tsukuba, Institute of Biological Sciences, Tsukuba, Ibaraki 305, Japan.
| |
Collapse
|
32
|
Sakai H, Saito T. TTX-Insensitive Sodium Current Develops in Adult Newt Pigment Epithelial Cells in Culture. Zoolog Sci 1996. [DOI: 10.2108/zsj.13.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Chiba C, Sakai H, Kaneko Y, Saito T. Concanavalin A Promotes Regeneration of Processes of Isolated Ganglion Cells from the Adult Newt Retina. Zoolog Sci 1995. [DOI: 10.2108/zsj.12.741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Negishi K, Wagner HJ. Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher; an immunocytochemical study. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:87-102. [PMID: 8575096 DOI: 10.1016/0165-3806(95)00126-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Light-microscopic immunocytochemistry was carried out to investigate the developmental dynamics of several neurochemical markers in the retina of blue acara (Aequidens pulcher). As a rule, double-label experiments were performed in order to determine the absolute and relative timing of the appearance of these markers. The diameter of eye-ball (from 0.6 to 1.2 mm) and the body length (from 4.6 to 9.4 mm) enlarged in parallel during the observation period of 2 to 9 days after spawning (day 2-9); hatching took place usually on day 2. Immunoreactive proliferating cell nuclear antigen (ir-PCNA) was present in all neuroblasts (the embryonic homogeneous cell stage; day 1.0-2.0), but was lost progressively in a center-to-periphery and apparent proximal-to-distal sequence as the cells and layers differentiated. In late larvae and juveniles, ir-PCNA was confined to a ring of dividing neuroblasts at the retinal margin and to a population of scattered rod precursors in the outer nuclear layer. Immunoreactive structures of representative antigens progressively appeared after ir-PCNA had decayed. Around hatching, at the synaptic separation stage (day 2.0-2.5), luteinizing hormone-releasing hormone-ir centrifugal fibers, visinin-ir cones, glial fibrillary acidic protein-ir structures and gamma-aminobutyric acid-ir cell bodies appeared, which were followed by the emergence of rhodopsin-ir rods and tyrosine hydroxylase-ir interplexiform cells (on day 2.5-3.0) and serotonin-, neuropeptide Y- and substance P-ir amacrine cells (on day 3.0-4.0). The results indicate that photoreceptor cells, and especially rods start to differentiate at an earlier stage of retinogenesis than has previously been proposed. In addition, an extraretinal tissue in the brain identified as the prospective pineal organ was found to be visinin- and rhodopsin-immunoreactive on day 1.5-2.0 before these photoreceptor-specific antigens became positive in the retina.
Collapse
Affiliation(s)
- K Negishi
- Anatomisches Institut, Universität Tübingen, Germany
| | | |
Collapse
|
35
|
Saito T, Kaneko Y, Maruo F, Niino M, Sakaki Y. Study of the regenerating newt retina by electrophysiology and immunohistochemistry (bipolar- and cone-specific antigen localization). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 270:491-500. [PMID: 7798868 DOI: 10.1002/jez.1402700602] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunohistochemical and electrophysiological examinations were carried out to investigate the sequence of appearance of the retinal neurons during regeneration after a complete surgical removal of the original retina of the newt. We produced a monoclonal antibody, RB-1, specific for cone photoreceptors and a subtype of bipolar cells in adult newt retina. This antibody was used as a major tool for this analysis. Appearance of spiking activity as a possible marker of ganglion cell differentiation was examined with whole-cell patch-clamp techniques. Spiking cells, which possessed voltage-dependent Na+, K+, and Ca2+ channels similar to those of mature ganglion cells, appeared in the regenerating retina by 24 days before cone photoreceptors had been labeled by the RB-1 antibody. Cones and ganglion cells differentiated before the retina had been segregated into distinct synaptic layers. The RB-1-labeled bipolar cells as well as PKC-immunoreactive bipolar cells appeared in the regenerating retina after the segregation of the synaptic layers. Their appearance seemed to coincide with the appearance of immunoreactive amacrine cells described previously (Negishi et al. [1992] Dev. Brain Res. 68:255-264). During embryonic development of the newt retina, cone photoreceptors appeared prior to bipolar cells. Thus the process of reformation of a functional retina seems to follow the same steps as differentiation of retina during development.
Collapse
Affiliation(s)
- T Saito
- University of Tsukuba, Institute of Biological Sciences, Ibaraki, Japan
| | | | | | | | | |
Collapse
|