1
|
Khazipov R, Minlebaev M, Valeeva G. Early gamma oscillations. Neuroscience 2013; 250:240-52. [PMID: 23872391 DOI: 10.1016/j.neuroscience.2013.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Gamma oscillations have long been considered to emerge late in development. However, recent studies have revealed that gamma oscillations are transiently expressed in the rat barrel cortex during the first postnatal week, a "critical" period of sensory-dependent barrel map formation. The mechanisms underlying the generation and physiological roles of early gamma oscillations (EGOs) in the development of thalamocortical circuits will be discussed in this review. In contrast to adult gamma oscillations, synchronized through gamma-rhythmic perisomatic inhibition, EGOs are primarily driven through feedforward gamma-rhythmic excitatory input from the thalamus. The recruitment of cortical interneurons to EGOs and the emergence of feedforward inhibition are observed by the end of the first postnatal week. EGOs facilitate the precise synchronization of topographically aligned thalamic and cortical neurons. The multiple replay of sensory input during EGOs supports long-term potentiation at thalamocortical synapses. We suggest that this early form of gamma oscillations, which is mechanistically different from adult gamma oscillations, guides barrel map formation during the critical developmental period.
Collapse
Affiliation(s)
- R Khazipov
- INMED - INSERM U901, University Aix-Marseille II, Marseille, France; Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | | | | |
Collapse
|
2
|
Braisted JE, Ringstedt T, O'Leary DDM. Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon. Cereb Cortex 2009; 19 Suppl 1:i144-51. [PMID: 19435711 PMCID: PMC2693534 DOI: 10.1093/cercor/bhp035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into ventral telencephalon. During TCA pathfinding, Slit1 and Slit2 are expressed in hypothalamus and ventral thalamus and Robo1 and Robo2 are expressed in dorsal thalamus. In collagen gel cocultures of dorsal thalamus and Slit2-expressing cells, axon number and length are decreased on the explant side facing Slit2-expressing cells, overall axon outgrowth is diminished, and axons turn away from the Slit2-expressing cells. Thus, Slit2 is an inhibitor and chemorepellent for dorsal thalamic axons. Collagen gel cocultures of dorsal thalamus with sections of live diencephalon, with and without the hypothalamus portion overlaid with Robo2-fc-expressing cells to block Slit function, identify Slits as the hypothalamic chemorepellent. Thus, Slits are chemorepellents for TCAs endogenous to hypothalamus and steer TCAs from diencephalon into ventral telencephalon, a critical pathfinding event defective in Slit and Robo2 mutant mice.
Collapse
Affiliation(s)
- Janet E Braisted
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
3
|
Cohen J, Zimmerman G, Melamed-Book N, Friedman A, Dori A, Soreq H. Transgenic inactivation of acetylcholinesterase impairs homeostasis in mouse hippocampal granule cells. Hippocampus 2008; 18:182-92. [DOI: 10.1002/hipo.20381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
O'Leary DD, Borngasser DJ, Fox K, Schlaggar BL. Plasticity in the development of neocortical areas. CIBA FOUNDATION SYMPOSIUM 2007; 193:214-30; discussion 251-7. [PMID: 8727494 DOI: 10.1002/9780470514795.ch11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Heterotopic transplantation analysis suggests that individual areas of the developing neocortex have the capacity to differentiate many of the architectural and connectional features normally characteristic of other neocortical areas. Many studies indicate a pivotal role for thalamocortical afferents in the differentiation of the area-specific features that distinguish neocortical areas. Both activity-dependent and activity-independent mechanisms contribute to the patterning of thalamocortical afferent terminations. The available evidence suggests that positional information is established in the cortical subplate and that this information controls the precise targeting of developing thalamocortical axons. In this way appropriate thalamocortical relationships can be established that allow these afferents to promote the differentiation of the functionally specialized and anatomically distinct areas of the adult neocortex.
Collapse
Affiliation(s)
- D D O'Leary
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
5
|
Mooney SM, Miller MW. Postnatal generation of neurons in the ventrobasal nucleus of the rat thalamus. J Neurosci 2007; 27:5023-32. [PMID: 17494688 PMCID: PMC6672360 DOI: 10.1523/jneurosci.1194-07.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 03/22/2007] [Indexed: 01/18/2023] Open
Abstract
Most CNS systems, including the trigeminal-somatosensory system, develop via a hierarchical order (from the periphery and up the neuraxis). We tested the hypothesis that development of the trigeminal system can proceed via a nonhierarchical mechanism (i.e., that neuronogenesis can occur postnatally). Preweanling rats were perfused, and brain sections were stained with cresyl violet or immunolabeled with NeuN (for neuronal counts), or processed for acetylcholinesterase (AChE) activity or p75 immunoreactivity [to identify boundaries of the ventrobasal nucleus (VB)]. Neuronal number decreased during the first postnatal week but increased 2.5-fold over the next 3 weeks. To determine whether this remarkable rise resulted from the generation of new neurons, preweanlings were given injections of bromodeoxyuridine (BrdU) on postnatal day 6 (P6) or P21. BrdU-positive VB cells were apparent on both days. Cumulative BrdU labeling showed that the cell cycle was 17.3 h on P6. Moreover, Ki-67, a protein elaborated throughout the cell cycle, was expressed by 25.8-29.3% of all VB cells on P6-P15, falling to 7.7% by P21. BrdU-positive VB cells coexpressed neuronal markers: NeuN, HuC/D, microtubule-associated protein 2, and a dextran placed in the somatosensory cortex. Note that postnatal neuronal generation was also evident in other thalamic nuclei (e.g., the lateral geniculate nucleus). Thus, the developing VB experiences two periods of neuronal generation. Prenatal neuronogenesis is part of hierarchical trigeminal-somatosensory development. Postnatal nonhierarchical neuronogenesis is intrathalamic and matches changes in neuromodulatory systems (exemplified by AChE activity and p75) and the arrival of corticothalamic afferents.
Collapse
Affiliation(s)
- Sandra M Mooney
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, New York 13210, USA.
| | | |
Collapse
|
6
|
Dong H, Xiang YY, Farchi N, Ju W, Wu Y, Chen L, Wang Y, Hochner B, Yang B, Soreq H, Lu WY. Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 2005; 24:8950-60. [PMID: 15483114 PMCID: PMC6730061 DOI: 10.1523/jneurosci.2106-04.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acetylcholinesterase (AChE) exerts noncatalytic activities on neural cell differentiation, adhesion, and neuritogenesis independently of its catalytic function. The noncatalytic functions of AChE have been attributed to its peripheral anionic site (PAS)-mediated protein-protein interactions. Structurally, AChE is highly homologous to the extracellular domain of neuroligin, a postsynaptic transmembrane molecule that interacts with presynaptic beta-neurexins, thus facilitating synaptic formation and maturation. Potential effects of AChE expression on synaptic transmission, however, remain unknown. Using electrophysiology, immunocytochemistry, and molecular biological approaches, this study investigated the role of AChE in the regulation of synaptic formation and functions. We found that AChE was highly expressed in cultured embryonic hippocampal neurons at early culture days, particularly in dendritic compartments including the growth cone. Subsequently, the expression level of AChE declined, whereas synaptic activity and synaptic proteins progressively increased. Chronic blockade of the PAS of AChE with specific inhibitors selectively impaired glutamatergic functions and excitatory synaptic structures independently of cholinergic activation, while inducing AChE overexpression. Moreover, the PAS blockade-induced glutamatergic impairments were associated with a depressed expression of beta-neurexins and an accumulation of other synaptic proteins, including neuroligins, and were mostly preventable by antisense suppression of AChE expression. Our findings demonstrate that interference with the nonenzymatic features of AChE alters AChE expression, which impairs excitatory synaptic structure and functions.
Collapse
Affiliation(s)
- Haiheng Dong
- Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Williams BP, Milligan CJ, Street M, Hornby FM, Deuchars J, Buckley NJ. Transcription of the M1 muscarinic receptor gene in neurons and neuronal progenitors of the embryonic rat forebrain. J Neurochem 2003; 88:70-7. [PMID: 14675151 DOI: 10.1111/j.1471-4159.2004.02117.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of the nervous system is accompanied by expansion and differentiation of the neuronal progenitors within the embryonic neuroepithelium. Although the role of growth factors in this process is well documented, there is increasing evidence for a role of neurotransmitters. Acetylcholine is known to exert many actions on developing neural cells, but its potential role in neurogenesis is unclear. Here, we show that the M1 muscarinic acetylcholine receptor is expressed in the neuroepithelium of the rat forebrain, where it is found on both nestin+ progenitor cells and TuJ1+ newly differentiated neurons. Furthermore, transcription is governed, at least in part, by regulatory cis elements that are also responsible for driving transcription in neuroblastoma cells. This represents the first demonstration of M1 receptors on neuronal progenitor cells and supports the notion that M1 muscarinic receptors may play a role in development of the nervous system prior to the onset of synaptogenesis and their subsequent role in neurotransmission.
Collapse
Affiliation(s)
- Brenda P Williams
- Department of Psychological Medicine, Section of Experimental Neuropathology and Psychiatry, Institute of Psychiatry, London, UK
| | | | | | | | | | | |
Collapse
|
8
|
Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 2002; 12:37-53. [PMID: 11734531 PMCID: PMC1931430 DOI: 10.1093/cercor/12.1.37] [Citation(s) in RCA: 488] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examined the development of the occipital lobe in fetal monkeys between embryonic day 37 (E37) and E108 in Nissl-stained and acetylcholine esterase (AChE)-reacted sections. We paid particular attention to features that distinguish the development of presumptive area 17. At E46 the neuroepithelium consists of a ventricular zone and a monolayer cortical plate sandwiched between a thin marginal zone and a minimal presubplate. Between E55 and E65 an augmented subplate emerges and continues to expand up to E94 to become a major compartment of the developing cortex. A mitotic subventricular zone is established by E55. Peaking in depth at E72, it constitutes the principal germinal zone. By E78 an invading fibre tract divides it into an outer radially organized zone and a more conventional inner zone. AChE staining reveals the future area 17/18 border from E86 onwards. Proceeding from presumptive area 17 to area 18 there is a progressive thinning of the radially structured subventricular zone. Comparison of these results with corticogenesis in rodents suggests a number of potentially unique primate features: (i) a minimal preplate stage; (ii) a radially augmented germinal zone not previously described in non-primates; (iii) a fibre tract dividing the subventricular zone into two laminae; (iv) late generation and expansion of the subplate.
Collapse
Affiliation(s)
| | | | | | | | - Henry Kennedy
- * Correspondence should be adressed to: Henry Kennedy
| |
Collapse
|
9
|
Vanderhaeghen P, Lu Q, Prakash N, Frisén J, Walsh CA, Frostig RD, Flanagan JG. A mapping label required for normal scale of body representation in the cortex. Nat Neurosci 2000; 3:358-65. [PMID: 10725925 DOI: 10.1038/73929] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neocortical primary somatosensory area (S1) consists of a map of the body surface. The cortical area devoted to different regions, such as parts of the face or hands, reflects their functional importance. Here we investigated the role of genetically determined positional labels in neocortical mapping. Ephrin-A5 was expressed in a medial > lateral gradient across S1, whereas its receptor EphA4 was in a matching gradient across the thalamic ventrobasal (VB) complex, which provides S1 input. Ephrin-A5 had topographically specific effects on VB axon guidance in vitro. Ephrin-A5 gene disruption caused graded, topographically specific distortion in the S1 body map, with medial regions contracted and lateral regions expanded, changing relative areas up to 50% in developing and adult mice. These results provide evidence for within-area thalamocortical mapping labels and show that a genetic difference can cause a lasting change in relative scale of different regions within a topographic map.
Collapse
Affiliation(s)
- P Vanderhaeghen
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Anderson RB, Key B. Role of acetylcholinesterase in the development of axon tracts within the embryonic vertebrate brain. Int J Dev Neurosci 1999; 17:787-93. [PMID: 10593614 DOI: 10.1016/s0736-5748(99)00064-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the developing vertebrate brain, acetylcholinesterase (AChE) expression coincides temporally with axon tract formation. Although AChE promotes neurite outgrowth in vitro, the role of this molecule in the development of axon tracts in vivo is unknown. To address this question, we examined the effects of the AChE inhibitor, BW284C51, on the formation of the early scaffold of axon tracts in the embryonic Xenopus brain. In exposed Xenopus brain preparations, axons elongate and establish a normal topography of axon tracts. However, when brains were exposed to BW284C51, the thickness of the major longitudinal axon tract, the tract of the post-optic commissure decreased in a dose-dependent manner. When BW284C51 was removed from the culture media axon tract development returned to normal within 5 h. These findings provide the first evidence for a non-classical role of AChE in the initial formation of axon tracts within the developing vertebrate brain.
Collapse
Affiliation(s)
- R B Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
11
|
López-Mascaraque L, García C, Valverde F, de Carlos JA. Central olfactory structures in Pax-6 mutant mice. Ann N Y Acad Sci 1998; 855:83-94. [PMID: 9929589 DOI: 10.1111/j.1749-6632.1998.tb10549.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the development of the olfactory system, cells located in the olfactory placode/olfactory pit send their axons toward the rostral part of the telencephalic vesicles (TVs). Some of these enter the TV inducing the formation of the olfactory bulbs (OBs), whereas, mitral and tufted cell axons form the lateral olfactory tract (LOT). Our recent studies have shown that the beginning of the central olfactory projections is independent of the arrival of olfactory receptor neuron (ORN) axons to the TV. Here we have used the mouse carrying a mutation in the Pax-6 gene to study whether the nasal olfactory structures intervene in the formation of central olfactory structures. This mutant as well as lacking a nose and eyes, is reported to lack olfactory epithelium and OB. However, we have found an ovoid cellular structure localized in the rostral part of the brain, and some cells in this structure project axons toward the piriform cortex forming a presumptive LOT. We conclude that the referred structure is an OB, which fails to develop because the mutation in the Pax-6 gene affects the formation of nasal structures. As such, fibers of the ORNs are necessary for the protrusion and layered formation of the OB, but these inputs are not necessary for the establishment of the central olfactory projections.
Collapse
|
12
|
Wu CC, Gonzalez MF. Functional development of the vibrissae somatosensory system of the rat: (14C) 2-deoxyglucose metabolic mapping study. J Comp Neurol 1997; 384:323-36. [PMID: 9254030 DOI: 10.1002/(sici)1096-9861(19970804)384:3<323::aid-cne1>3.0.co;2-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functional development of the rat whisker somatosensory system was studied by using the (14C) 2-deoxyglucose (2DG) metabolic mapping technique. Restrained rat pups had their left mystacial vibrissae stroked for 30 minutes and their brains harvested, sectioned, and autoradiographed from the level of the lower medulla to the frontal cortex. Subjects were tested at postnatal days (PNDs) 0-9 and 21. At birth, all subjects exhibited a significant increase of 2DG uptake in the left spinal trigeminal nuclei, the principal trigeminal sensory nucleus, and a portion of the right ventral posteromedial thalamic nucleus. The primary somatosensory cortex exhibited significant 2DG uptake contralateral to stimulation by PND 6, followed by the secondary somatosensory cortex at PND 7. The pattern of 2DG uptake in the somatosensory cortices became more intense and well defined by PND 9. Given that the somatosensory system develops in an orderly fashion from the periphery to higher brain structures, the present results show that brain structures mediating whisker sensory input are not metabolically active until projections from lower somatosensory centers are established. Neurons become responsive to whisker stimulation in the subcortical structures at birth and in the somatosensory cortex a few days later. This cortical activity follows the organization of the upper tier of thalamocortical fibers into a "barrelfield." Moreover, there is a gradual enhancement in functional activity of the vibrissa neurons at different somatosensory nuclei as rats mature. The present study elucidates the time course of functional development in the rat somatosensory system.
Collapse
Affiliation(s)
- C C Wu
- Department of Psychology, University of California, San Diego, La Jolla 92093-0109, USA.
| | | |
Collapse
|
13
|
De Carlos JA, López-Mascaraque L, Valverde F. Early olfactory fiber projections and cell migration into the rat telencephalon. Int J Dev Neurosci 1996; 14:853-66. [PMID: 9010730 DOI: 10.1016/s0736-5748(96)00055-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The formation and development of primary olfactory axons was studied in the rat embryo using acetylcholinesterase histochemistry, immunocytochemistry for neuron-specific beta-tubulin (TuJ1) and growth associated protein 43 (GAP43), and a fluorescent tracer DiI. Olfactory axons extend from the olfactory receptor neurons localized in the olfactory epithelium. These fibers grow to reach and enter the olfactory bulbs, where they form the first relay and integrative synaptic station in the olfactory system: the olfactory glomerulus. In this communication we address the development of primary olfactory fibers: first from the olfactory placode and later from the olfactory epithelium. Olfactory fibers enter the olfactory bulbs apparently in a disordered manner but soon arrange themselves in hook shaped aggregates of fibers, with many boutons (immature synaptic terminals), to form the glomeruli. We detected this kind of structure for the first time at embryonic day 16. The olfactory receptor cells are usually anchored in the basal lamina of the olfactory epithelium but some of them, after reaching their targets, lose their epithelial attachment, leave the olfactory epithelium and migrate to and enter the olfactory bulbs. The traffic of cells between the olfactory epithelium and the brain lasts late into embryonic development. We describe four types of migratory mechanism used by different populations of cells to reach their targets in the telencephalic vesicle and propose the existence of migrating cells that enter the telencephalon. These data were corroborated by injections into the olfactory epithelium a of murine retrovirus carrying the Escherichia coli lac-Z gene.
Collapse
Affiliation(s)
- J A De Carlos
- Laboratorio de Neuroanatomía Comparada Instituto Cajal (CSIC), Madrid, Spain
| | | | | |
Collapse
|
14
|
Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:453-83. [PMID: 8792327 DOI: 10.1016/0197-0186(95)00099-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinesterases are members of the serine hydrolase family, which utilize a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
15
|
Leamey CA, Marotte LR, Waite PM. Timecourse of development of the wallaby trigeminal pathway. II. Brainstem to thalamus and the emergence of cellular aggregations. J Comp Neurol 1996; 364:494-514. [PMID: 8820879 DOI: 10.1002/(sici)1096-9861(19960115)364:3<494::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper is the second in a series which makes use of the protracted postnatal maturation of the wallaby to study the development of the trigeminal sensory system. Previous work has established similarities in the organisation of the trigeminal sensory system in the wallaby and in rodents. This study describes the structure and development of the ventroposteromedial nucleus in the wallaby in relationship to the arrival of afferents from the trigeminal nuclei, the formation of neuronal aggregations and naturally occurring cell death. Enzyme histochemistry, Nissl and myelin stains were used. Pathway development was followed using carbocyanine dyes. In the adult wallaby the nucleus demonstrates evidence of a parcellated organisation. Cells are arranged in dorsoventrally aligned bands resembling fingers. In the horizontal plane, these appear as circular clusters which are encircled by fine myelinated bundles. The clusters of cells are believed to correspond to the mystacial vibrissae. The first afferents from the principal trigeminal nucleus arrive between 10 and 15 days postnatal. This is more than two weeks prior to the time at which the borders of the nucleus can be discerned cytoarchitecturally. The first hints of segmentation are visible around day 50, and discrete aggregations form over the ensuing 3-4 weeks. Coincident with the aggregation of the neurons is an increase in their level of reactivity for acetylcholinesterase. A high level of acetylcholinesterase reactivity is maintained for at least 4 months, but has disappeared in adult animals. The peak of cell death occurs subsequent to the appearance of aggregations in the thalamus, but coincident with the appearance of vibrissae related patches in the cortex at day 85 (Waite et al. [1991] Dev. Brain Res. 58:35-41). The timing of the appearance of the neuronal aggregations supports the hypothesis that pattern formation occurs sequentially at successive levels of the pathway, and suggests the importance of target maturation in pattern formation.
Collapse
Affiliation(s)
- C A Leamey
- School of Anatomy, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
16
|
De Carlos JA, López-Mascaraque L, Valverde F. The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 1995; 68:1167-78. [PMID: 8544990 DOI: 10.1016/0306-4522(95)00199-s] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During early embryonic development, the olfactory placode is the source of different cell types migrating toward the telencephalic vesicle. Among these cell types are the ensheathing cells, the luteinizing hormone-releasing hormone-producing cells and the olfactory marker protein-immunoreactive cells. We have identified a novel group of olfactory placode-derived migratory cells using an antibody against beta-tubulin to label neurons and acetylcholinesterase histochemistry to label posmitotic cells. In this paper we describe the morphology, migration and fate of this novel group of cells. The first neurons detected in the rostral prosencephalon with acetylcholinesterase and anti-beta-tubulin antibody are localized in the olfactory placodes at embryonic day 11 in the rate. At embryonic day 12, anti-beta-tubulin antibody-positive cells were observed in the mesenchymal tissue between the olfactory pit and the rostral pole of the telencephalic vesicle. Anti-beta-tubulin antibody-positive cells were seen running superficially over the pial (dorsal) side of the telencephalic vesicle at embryonic day 13. The majority of these cells have a bipolar profile with short leading and trailing processes, suggesting that they are migratory elements. However, some of these cells showed elaborate processes extending for quite long distances, overlying the pial surface of the telencephalic vesicle. A mass of cells extending over the telencephalic vesicle from the developing olfactory epithelium were observed at embryonic day 13 using acetylcholinesterase histochemistry. Some of these acetylcholinesterase-positive cells were identified as neurons with the specific neuronal marker anti-beta-tubulin antibody. On embryonic day 12, neurons from the olfactory epithelium send axonal fibers toward the telencephalic vesicles. Most of these fibers spread over the anteroventral pole of the vesicles but others entered deep into the telencephalon, reaching the germinal ventricular zone. We also show that fibers run rostrocaudally over the surface of the telencephalic vesicles. We suggest that these cells and fibers, apparently originating in the olfactory placode and migrating through non-conventional routes, might play a significant role in the earliest stages of telencephalic vesicle development.
Collapse
|
17
|
Schlaggar BL, O'Leary DD. Early development of the somatotopic map and barrel patterning in rat somatosensory cortex. J Comp Neurol 1994; 346:80-96. [PMID: 7962713 DOI: 10.1002/cne.903460106] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several lines of evidence implicate a crucial role for thalamic afferents from the ventroposterior nucleus (VP) in the development of barrels and their characteristic pattern in the primary somatosensory cortex (S1) of rodents. We sought to determine the stage in development when VP thalamocortical afferents are first distributed in a periphery-related pattern and the sequence of events that culminate in a mature pattern. Using acetylcholinesterase (AChE) histochemistry, an early marker for VP thalamocortical afferents, and the anterograde axon tracer DiI, we show that VP thalamocortical afferents become distributed into a periphery-related pattern earlier than was previously reported, including their parcellation into a barrel-related pattern that mirrors the distribution of sensory hairs on the face. The earliest periphery-related patterning observed is transiently present in the deep cortical layers prior to the emergence of layer 4, the layer in which barrels later develop. AChE histochemistry reveals a clear sequence of maturation of the barrel pattern in the distribution of VP afferents: An initially patternless distribution of AChE-reactive afferents is followed by their distribution in a nascent trigeminal representation, from which rows subsequently emerge; barrel-related clusters of afferents then emerge from the rows. This process begins before birth, and the transition from row-related to barrel-related distributions of VP afferents is evident during the first postnatal day (P0). This demonstration of a periphery-related pattern in developing rat S1 precedes by about 2 days that revealed by any other marker reported to delineate barrels. These findings confirm that VP thalamocortical afferents are the first barrel component to have a periphery-related pattern and support the hypothesis that thalamocortical afferents provide to immature S1 the patterning information that initiates the formation of barrels and their characteristic array. Furthermore because these findings show an earlier onset for barrel formation than was previously realized, they necessitate a reevaluation of conclusions drawn from experiments examining developmental plasticity in barrel patterning.
Collapse
Affiliation(s)
- B L Schlaggar
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, California 92037
| | | |
Collapse
|