1
|
Bak A, Schmied K, Jakob ML, Bedogni F, Squire OA, Gittel B, Jesinghausen M, Schünemann KD, Weber Y, Kampa B, van Loo KMJ, Koch H. Temporal dynamics of neocortical development in organotypic mouse brain cultures: a comprehensive analysis. J Neurophysiol 2024; 132:1038-1055. [PMID: 39140591 DOI: 10.1152/jn.00178.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Murine organotypic brain slice cultures have been widely used in neuroscientific research and are offering the opportunity to study neuronal function under normal and disease conditions. Despite the broad application, the mechanisms governing the maturation of immature cortical circuits in vitro are not well understood. In this study, we present a detailed investigation into the development of the neocortex in vitro. Using a holistic approach, we studied organotypic whole hemisphere brain slice cultures from postnatal mice and tracked the development of the somatosensory area over a 5-wk period. Our analysis revealed the maturation of passive and active intrinsic properties of pyramidal cells together with their morphology, closely resembling in vivo development. Detailed multielectrode array (MEA) electrophysiological assessments and RNA expression profiling demonstrated stable network properties by 2 wk in culture, followed by the transition of spontaneous activity toward more complex patterns including high-frequency oscillations. However, culturing weeks 4 and 5 exhibited increased variability and initial signs of neuronal loss, highlighting the importance of considering developmental stages in experimental design. This comprehensive characterization is vital for understanding the temporal dynamics of the neocortical development in vitro, with implications for neuroscientific research methodologies, particularly in the investigation of diseases such as epilepsy and other neurodevelopmental disorders.NEW & NOTEWORTHY The development of the mouse neocortex in vitro mimics the in vivo development. Mouse brain cultures can serve as a model system for cortical development for the first 2 wk in vitro and as a model system for the adult cortex from 2 to 4 wk in vitro. Mouse organotypic brain slice cultures develop high-frequency network oscillations at γ frequency after 2 wk in vitro. Mouse brain cultures exhibit increased heterogeneity and variability after 4 wk in culture.
Collapse
Affiliation(s)
- Aniella Bak
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Katharina Schmied
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Morten L Jakob
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Francesco Bedogni
- School of Medicine, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Olivia A Squire
- School of Medicine, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Birgit Gittel
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Maik Jesinghausen
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Kerstin D Schünemann
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Yvonne Weber
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Björn Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Henner Koch
- Department of Epileptology, Neurology, RWTH Aachen University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
De Simone R, Ajmone-Cat MA, Tartaglione AM, Calamandrei G, Minghetti L. Maternal suboptimal selenium intake and low-level lead exposure affect offspring's microglial immune profile and its reactivity to a subsequent inflammatory hit. Sci Rep 2023; 13:21448. [PMID: 38052845 PMCID: PMC10698039 DOI: 10.1038/s41598-023-45613-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023] Open
Abstract
Micronutrients such as selenium (Se) are essentials since prenatal life to support brain and cognitive development. Se deficiency, which affects up to 1 billion people worldwide, can interact with common adverse environmental challenges including (Pb), exacerbating their toxic effects. Exploiting our recently validated rat model of maternal Se restriction and developmental low Pb exposure, our aims were to investigate: (i) the early consequences of suboptimal Se intake and low-Pb exposure on neuroinflammation in neonates' whole brains; (ii) the potential priming effect of suboptimal Se and low-Pb exposure on offspring's glial reactivity to a further inflammatory hit. To these aims female rats were fed with suboptimal (0.04 mg/kg; Subopt) and optimal (0.15 mg/kg; Opt) Se dietary levels throughout pregnancy and lactation and exposed or not to environmentally relevant Pb dose in drinking water (12.5 µg/mL) since 4 weeks pre-mating. We found an overall higher basal expression of inflammatory markers in neonatal brains, as well as in purified microglia and organotypic hippocampal slice cultures, from the Subopt Se offspring. Subopt/Pb cultures were highly activated than Subopt cultures and showed a higher susceptibility to the inflammatory challenge lipopolysaccharide than cultures from the Opt groups. We demonstrate that even a mild Se deficiency and low-Pb exposure during brain development can influence the neuroinflammatory tone of microglia, exacerbate the toxic effects of Pb and prime microglial reactivity to subsequent inflammatory stimuli. These neuroinflammatory changes may be responsible, at least in part, for adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- R De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - M A Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - A M Tartaglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - G Calamandrei
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - L Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
3
|
Vivi E, Seeholzer LR, Nagumanova A, Di Benedetto B. Early Age- and Sex-Dependent Regulation of Astrocyte-Mediated Glutamatergic Synapse Elimination in the Rat Prefrontal Cortex: Establishing an Organotypic Brain Slice Culture Investigating Tool. Cells 2023; 12:2761. [PMID: 38067189 PMCID: PMC10705965 DOI: 10.3390/cells12232761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Clinical and pre-clinical studies of neuropsychiatric (NP) disorders show altered astrocyte properties and synaptic networks. These are refined during early postnatal developmental (PND) stages. Thus, investigating early brain maturational trajectories is essential to understand NP disorders. However, animal experiments are highly time-/resource-consuming, thereby calling for alternative methodological approaches. The function of MEGF10 in astrocyte-mediated synapse elimination (pruning) is crucial to refine neuronal networks during development and adulthood. To investigate the impact of MEGF10 during PND in the rat prefrontal cortex (PFC) and its putative role in brain disorders, we established and validated an organotypic brain slice culture (OBSC) system. Using Western blot, we characterized the expression of MEGF10 and the synaptic markers synaptophysin and PSD95 in the cortex of developing pups. We then combined immunofluorescent-immunohistochemistry with Imaris-supported 3D analysis to compare age- and sex-dependent astrocyte-mediated pruning within the PFC in pups and OBSCs. We thereby validated this system to investigate age-dependent astrocyte-mediated changes in pruning during PND. However, further optimizations are required to use OBSCs for revealing sex-dependent differences. In conclusion, OBSCs offer a valid alternative to study physiological astrocyte-mediated synaptic remodeling during PND and might be exploited to investigate the pathomechanisms of brain disorders with aberrant synaptic development.
Collapse
Affiliation(s)
- Eugenia Vivi
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Lea R. Seeholzer
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Anastasiia Nagumanova
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Barbara Di Benedetto
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
- Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Landry CR, Yip MC, Zhou Y, Niu W, Wang Y, Yang B, Wen Z, Forest CR. Electrophysiological and morphological characterization of single neurons in intact human brain organoids. J Neurosci Methods 2023; 394:109898. [PMID: 37236404 PMCID: PMC10483933 DOI: 10.1016/j.jneumeth.2023.109898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Brain organoids represent a new model system for studying developmental human neurophysiology. Methods for studying the electrophysiology and morphology of single neurons in organoids require acute slices or dissociated cultures. While these methods have advantages (e.g., visual access, ease of experimentation), they risk damaging cells and circuits present in the intact organoid. To access single cells within intact organoid circuits, we have demonstrated a method for fixturing and performing whole cell patch clamp recording from intact brain organoids using both manual and automated tools. We demonstrate applied electrophysiology methods development followed by an integration of electrophysiology with reconstructing the morphology of the neurons within the brain organoid using dye filling and tissue clearing. We found that whole cell patch clamp recordings could be achieved both on the surface and within the interior of intact human brain organoids using both manual and automated methods. Manual experiments were higher yield (53 % whole cell success rate manual, 9 % whole cell success rate automated), but automated experiments were more efficient (30 patch attempts per day automated, 10 patch attempts per day manual). Using these methods, we performed an unbiased survey of cells within human brain organoids between 90 and 120 days in vitro (DIV) and present preliminary data on morphological and electrical diversity in human brain organoids. The further development of intact brain organoid patch clamp methods could be broadly applicable to studies of cellular, synaptic, and circuit-level function in the developing human brain.
Collapse
Affiliation(s)
- Corey R Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, United States.
| | - Mighten C Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States
| | - Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States
| | - Yunmiao Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States; Department of Biology, Emory University, United States
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States; Department of Cell Biology, Emory University School of Medicine, United States
| | - Craig R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States
| |
Collapse
|
5
|
Kamikubo Y, Jin H, Zhou Y, Niisato K, Hashimoto Y, Takasugi N, Sakurai T. Ex vivo analysis platforms for monitoring amyloid precursor protein cleavage. Front Mol Neurosci 2023; 15:1068990. [PMID: 36683852 PMCID: PMC9852844 DOI: 10.3389/fnmol.2022.1068990] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common cause of dementia in the elderly. The presence of large numbers of senile plaques, neurofibrillary tangles, and cerebral atrophy is the characteristic feature of AD. Amyloid β peptide (Aβ), derived from the amyloid precursor protein (APP), is the main component of senile plaques. AD has been extensively studied using methods involving cell lines, primary cultures of neural cells, and animal models; however, discrepancies have been observed between these methods. Dissociated cultures lose the brain's tissue architecture, including neural circuits, glial cells, and extracellular matrix. Experiments with animal models are lengthy and require laborious monitoring of multiple parameters. Therefore, it is necessary to combine these experimental models to understand the pathology of AD. An experimental platform amenable to continuous observation and experimental manipulation is required to analyze long-term neuronal development, plasticity, and progressive neurodegenerative diseases. In the current study, we provide a practical method to slice and cultivate rodent hippocampus to investigate the cleavage of APP and secretion of Aβ in an ex vivo model. Furthermore, we provide basic information on Aβ secretion using slice cultures. Using our optimized method, dozens to hundreds of long-term stable slice cultures can be coordinated simultaneously. Our findings are valuable for analyses of AD mouse models and senile plaque formation culture models.
Collapse
|
6
|
Falconieri A, De Vincentiis S, Cappello V, Convertino D, Das R, Ghignoli S, Figoli S, Luin S, Català-Castro F, Marchetti L, Borello U, Krieg M, Raffa V. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Rep 2022; 42:111912. [PMID: 36640304 PMCID: PMC9902337 DOI: 10.1016/j.celrep.2022.111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is crucial in guiding axon outgrowth before and after synapse formation. This process is referred to as "stretch growth." However, how neurons transduce mechanical input into signaling pathways remains poorly understood. Another open question is how stretch growth is coupled in time with the intercalated addition of new mass along the entire axon. Here, we demonstrate that active mechanical force generated by magnetic nano-pulling induces remodeling of the axonal cytoskeleton. Specifically, the increase in the axonal density of microtubules induced by nano-pulling leads to an accumulation of organelles and signaling vesicles, which, in turn, promotes local translation by increasing the probability of assembly of the "translation factories." Modulation of axonal transport and local translation sustains enhanced axon outgrowth and synapse maturation.
Collapse
Affiliation(s)
| | - Sara De Vincentiis
- Department of Biology, Università di Pisa, 56127 Pisa, Italy,The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Ravi Das
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | | | - Sofia Figoli
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Stefano Luin
- National Enterprise for NanoScience and NanoTechnology (NEST) Laboratory, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Frederic Català-Castro
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy,Department of Pharmacy, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Michael Krieg
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127 Pisa, Italy.
| |
Collapse
|
7
|
Ruiter M, Lützkendorf C, Liang J, Wierenga CJ. Amyloid-β Oligomers Induce Only Mild Changes to Inhibitory Bouton Dynamics. J Alzheimers Dis Rep 2021; 5:153-160. [PMID: 33981952 PMCID: PMC8075564 DOI: 10.3233/adr-200291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amyloid-β protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-β (Aβ)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult AppNL - F - G-mice, in which Aβ levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aβ-induced hyperexcitability.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Christine Lützkendorf
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jian Liang
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method. Methods Mol Biol 2021; 2188:243-257. [PMID: 33119855 DOI: 10.1007/978-1-0716-0818-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cultured hippocampal slices from rodents, in which the architecture and functional properties of the hippocampal network are largely preserved, have proved to be a powerful substrate for studying healthy and pathological neuronal mechanisms. Here, we delineate the membrane-interface method for maintaining organotypic slices in culture for several weeks. The protocol includes procedures for dissecting hippocampus from rat brain, and collecting slices using a vibratome. This method provides the experimenter with easy access to both the brain tissue and culture medium, which facilitates genetic and pharmacological manipulations and enables experiments that incorporate imaging and electrophysiology. The method is generally applicable to rats of different ages, and to different brain regions, and can be modified for culture of slices from other species including mice.
Collapse
|
9
|
Salmon CK, Pribiag H, Gizowski C, Farmer WT, Cameron S, Jones EV, Mahadevan V, Bourque CW, Stellwagen D, Woodin MA, Murai KK. Depolarizing GABA Transmission Restrains Activity-Dependent Glutamatergic Synapse Formation in the Developing Hippocampal Circuit. Front Cell Neurosci 2020; 14:36. [PMID: 32161521 PMCID: PMC7053538 DOI: 10.3389/fncel.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+−Cl− co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Horia Pribiag
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Claire Gizowski
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Scott Cameron
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - David Stellwagen
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Melanie A Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
10
|
He Z, Guo Q, Yang Y, Wang L, Zhang S, Yuan W, Li L, Zhang J, Hou W, Yang J, Jia R, Tai F. Pre-weaning paternal deprivation impairs social recognition and alters hippocampal neurogenesis and spine density in adult mandarin voles. Neurobiol Learn Mem 2018; 155:452-462. [DOI: 10.1016/j.nlm.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
|
11
|
Kamikubo Y, Takasugi N, Niisato K, Hashimoto Y, Sakurai T. Consecutive Analysis of BACE1 Function on Developing and Developed Neuronal Cells. J Alzheimers Dis 2018; 56:641-653. [PMID: 28035928 DOI: 10.3233/jad-160806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amyloid-β protein precursor (AβPP) is cleaved by a transmembrane protease termed β-site AβPP cleavage enzyme (BACE1), which is being explored as a target for therapy and prevention of Alzheimer's disease (AD). Although genetic deletion of BACE1 results in abolished amyloid pathology in AD model mice, it also results in neurodevelopmental phenotypes such as hypomyelination and synaptic loss, observed in schizophrenia and autism-like phenotype. These lines of evidence indicate that the inhibition of BACE1 causes adverse side effects during the neurodevelopmental stage. However, the effects of the inhibition of BACE1 activity on already developed neurons remain unclear. Here, we utilized hippocampal slice cultures as an ex vivo model that enabled continuous and long-term analysis for the effect of BACE1 inhibition on neuronal circuits and synapses. Temporal changes in synaptic proteins in hippocampal slices indicated acute synaptic loss, followed by synapse formation and maintenance phases. Long-term BACE1 inhibition in the neurodevelopmental stage caused the loss of synaptic proteins but failed to alter synaptic proteins in the already developed maintenance stage. These data indicate that BACE1 function on synapses is dependent on synaptic developmental stages, and our study provides a useful model to observe the long-term effect of BACE1 activity in the brain, and to evaluate adverse effects of BACE inhibitors.
Collapse
|
12
|
Paci P, Gabriele S, Ris L. A new method allowing long-term potentiation recordings in hippocampal organotypic slices. Brain Behav 2017; 7:e00692. [PMID: 28523233 PMCID: PMC5434196 DOI: 10.1002/brb3.692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hippocampal organotypic slices are used to improve the understanding of synaptic plasticity mechanisms because they allow longer term studies compared to acute slices. However, it is more delicate to keep cultures alive in the recording system outside in vitro conditions. Experiments from the organotypic cultures are common but the handling of slices is rarely described in the literature, even though tissue preservation is crucial. Instruments are sometimes required to extract the slices from the culture inserts but this approach is delicate and can lead to damage, given how strongly the slices are attached to the insert. METHODS A new configuration is proposed to secure the transfer of slices from the incubator to the recording chamber through an adaptor piece that can be designed for any model of chamber and/or insert. The adaptor is a Plexiglas ring in which a culture insert containing the slice can be easily introduced and stabilized. This system allows slices to be placed in the interface for electrophysiological investigations without having to detach them from the insert. That way, no damage is caused and the recording system can safely hold the slices, maintaining them close to culture conditions. RESULTS In addition to the description of the adaptation system, slices were characterized. Their viability was validated and microglial expression was observed. According to the experimental conditions, neuroprotective ramified microgliocytes are present. Dendritic spines studies were also performed to determine neuronal network maturity in culture. Moreover, SKF 83822 hydrobromide and three trains of 100 pulses at 100 Hz with a 10-min inter-train interval are suggested to induce long-term potentiation and to record an increase of fEPSP amplitude and slope. CONCLUSION This paper provides detailed information on the preparation and characterization of hippocampal organotypic slices, a new recording configuration more suitable for cultures, and a long-term potentiation protocol combining SKF and trains.
Collapse
Affiliation(s)
- Paula Paci
- Neuroscience Unit Research Institute for Health Sciences and Technology University of Mons - UMONS Mons Belgium
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group Interfaces and Complex Fluids Laboratory Research Institute for Biosciences University of Mons - UMONS Mons Belgium
| | - Laurence Ris
- Neuroscience Unit Research Institute for Health Sciences and Technology University of Mons - UMONS Mons Belgium
| |
Collapse
|
13
|
Levy JM, Nicoll RA. Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol 2017; 595:1699-1709. [PMID: 27861918 DOI: 10.1113/jp273147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins anchor glutamate receptors at CNS synapses. MAGUK removal via RNAi-mediated knockdown in the CA1 hippocampal region in immature animals causes rapid and lasting reductions in glutamatergic transmission. In mature animals, the same manipulation has little acute effect. The hippocampal dentate gyrus, a region with ongoing adult neurogenesis, is sensitive to MAGUK loss in mature animals, behaving like an immature CA1. Over long time courses, removal of MAGUKs in CA1 causes reductions in glutamatergic transmission, indicating that synapses in mature animals require MAGUKs for anchoring glutamate receptors, but are much more stable. These results demonstrate regional and developmental control of synapse stability and suggest the existence of a sensitive period of heightened hippocampal plasticity in CA1 of pre-adolescent rodents, and in dentate gyrus throughout maturity. ABSTRACT Fast excitatory transmission in the brain requires localization of glutamate receptors to synapses. The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins is critical for localization of glutamate receptors to synapses. Although the MAGUKs are well-studied in reduced preparations and young animals, few data exist on their role in adult animals. Here, we present a detailed developmental study of the role of the MAGUKs during rat development. We first confirmed by knockdown experiments that MAGUKs are essential for glutamatergic transmission in young animals and cultured slices, and an increase in postsynaptic density protein 95 (PSD-95) by overexpression caused correlated increases in glutamatergic transmission. We found that CA1 synapses in adults, in contrast, were largely unaffected by overexpression of MAGUKs, and although adult CA1 synapses required MAGUKs to the same degree as synapses in young animals, this was only apparent over long time scales of knockdown. We additionally showed that overexpression of MAGUKs is likely to function to accelerate the developmental strengthening of excitatory transmission. Finally, we showed that adult dentate gyrus appears similar to immature CA1, demonstrating regional and developmental control of MAGUK dynamics. Together, these results demonstrate a period of juvenile instability at CA1 synapses, followed by a period of adult stability in which synapses are acutely unaffected by changes in MAGUK abundance.
Collapse
Affiliation(s)
- Jonathan M Levy
- Neuroscience Graduate Program, University of California San Francisco, CA, 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, 94158, USA
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
14
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microcopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2017; 1538:185-214. [PMID: 27943192 DOI: 10.1007/978-1-4939-6688-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Ogura A, Saito S, Kimura S, Tominaga-Yoshino K. [An in vitro model system for studying the stress-induced memory disorder]. Nihon Yakurigaku Zasshi 2017; 150:223-227. [PMID: 29118284 DOI: 10.1254/fpj.150.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
16
|
Smith M, Piehler T, Benjamin R, Farizatto KL, Pait MC, Almeida MF, Ghukasyan VV, Bahr BA. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures. Exp Neurol 2016; 286:107-115. [PMID: 27720798 DOI: 10.1016/j.expneurol.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022]
Abstract
Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology.
Collapse
Affiliation(s)
- Marquitta Smith
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Richard Benjamin
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Karen L Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Morgan C Pait
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Vladimir V Ghukasyan
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
17
|
Harwell CS, Coleman MP. Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegener 2016; 11:44. [PMID: 27287430 PMCID: PMC4903008 DOI: 10.1186/s13024-016-0110-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background To date, there are no effective disease-modifying treatments for Alzheimer’s disease (AD). In order to develop new therapeutics for stages where they are most likely to be effective, it is important to identify the first pathological alterations in the disease cascade. Changes in Aβ concentration have long been reported as one of the first steps, but understanding the source, and earliest consequences, of pathology requires a model system that represents all major CNS cell types, is amenable to repeated observation and sampling, and can be readily manipulated. In this regard, long term organotypic hippocampal slice cultures (OHSCs) from neonatal amyloid mice offer an excellent compromise between in vivo and primary culture studies, largely retaining the cellular composition and neuronal architecture of the in vivo hippocampus, but with the in vitro advantages of accessibility to live imaging, sampling and intervention. Results Here, we report the development and characterisation of progressive pathological changes in an organotypic model from TgCRND8 mice. Aβ1-40 and Aβ1-42 rise progressively in transgenic slice culture medium and stabilise when regular feeding balances continued production. In contrast, intraneuronal Aβ continues to accumulate in close correlation with a specific decline in presynaptic proteins and puncta. Plaque pathology is not evident even when Aβ1-42 is increased by pharmacological manipulation (using calpain inhibitor 1), indicating that soluble Aβ species, or other APP processing products, are sufficient to cause the initial synaptic changes. Conclusions Organotypic brain slices from TgCRND8 mice represent an important new system for understanding mechanisms of Aβ generation, release and progressive toxicity. The pathology observed in these cultures will allow for rapid assessment of disease modifying compounds in a system amenable to manipulation and observation. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0110-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire S Harwell
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Michael P Coleman
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK. .,Present Address: John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
18
|
Madill M, Fitzgerald D, O'Connell KE, Dev KK, Shen S, FitzGerald U. In vitro and ex vivo models of multiple sclerosis. Drug Discov Today 2016; 21:1504-1511. [PMID: 27265771 DOI: 10.1016/j.drudis.2016.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 01/25/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS). Current therapies suppress a misdirected myelin-destructive immune response. To combat the progressive, neurodestructive phase of MS, the therapeutic research focus is currently on compounds that might boost the endogenous potential of the brain to remyelinate axons, thereby achieving lesion repair. Here, we describe the testing of fingolimod on cultures of oligodendrocytes (OLs) and organotypic brain slices. We detail the protocols, pros, and cons of these in vitro and ex vivo approaches, along with the potential benefit of exploiting skin-punch biopsies from patients with MS, before concluding with a summary of future developments.
Collapse
Affiliation(s)
- Martin Madill
- Regenerative Medicine Institute (REMEDI), School of Medicine and School of Natural Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Denise Fitzgerald
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Kara E O'Connell
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute (REMEDI), School of Medicine and School of Natural Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
19
|
Abstract
Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree) or sends out (out-degree). To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series) and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts) to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to which a neuron modifies incoming information streams depends on its topological location in the surrounding functional network. We recorded the electrical activity of hundreds of neurons simultaneously in brain tissue from mice and we analyzed these signals using state-of-the-art tools from information theory. These tools allowed us to ascertain which neurons were transmitting information to other neurons and to characterize the computations performed by neurons using the inputs they received from two or more other neurons. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to be recipients of information from neurons with a large number of outgoing connections. Interestingly, the number of incoming connections to a neuron was not related to the amount of information that neuron computed. To better understand these results, we built a network model to match the data. Unexpectedly, the model also maximized information transfer in the presence of network-wide correlations. This suggested a way that networks of cortical neurons could deal with common random background input. These results are the first to show that the amount of information computed by a neuron depends on where it is located in the surrounding network.
Collapse
|
20
|
Valenzuela RA, Micheva KD, Kiraly M, Li D, Madison DV. Array tomography of physiologically-characterized CNS synapses. J Neurosci Methods 2016; 268:43-52. [PMID: 27141856 DOI: 10.1016/j.jneumeth.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The ability to correlate plastic changes in synaptic physiology with changes in synaptic anatomy has been very limited in the central nervous system because of shortcomings in existing methods for recording the activity of specific CNS synapses and then identifying and studying the same individual synapses on an anatomical level. NEW METHOD We introduce here a novel approach that combines two existing methods: paired neuron electrophysiological recording and array tomography, allowing for the detailed molecular and anatomical study of synapses with known physiological properties. RESULTS The complete mapping of a neuronal pair allows determining the exact number of synapses in the pair and their location. We have found that the majority of close appositions between the presynaptic axon and the postsynaptic dendrite in the pair contain synaptic specializations. The average release probability of the synapses between the two neurons in the pair is low, below 0.2, consistent with previous studies of these connections. Other questions, such as receptor distribution within synapses, can be addressed more efficiently by identifying only a subset of synapses using targeted partial reconstructions. In addition, time sensitive events can be captured with fast chemical fixation. COMPARISON WITH EXISTING METHODS Compared to existing methods, the present approach is the only one that can provide detailed molecular and anatomical information of electrophysiologically-characterized individual synapses. CONCLUSIONS This method will allow for addressing specific questions about the properties of identified CNS synapses, even when they are buried within a cloud of millions of other brain circuit elements.
Collapse
Affiliation(s)
- Ricardo A Valenzuela
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Dong Li
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
21
|
An in vitro reproduction of stress-induced memory defects: Effects of corticoids on dendritic spine dynamics. Sci Rep 2016; 6:19287. [PMID: 26765339 PMCID: PMC4725889 DOI: 10.1038/srep19287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023] Open
Abstract
Previously, in organotypic slice culture of rodent hippocampus we found that three repeated inductions of LTP, but not a single induction, led to a slow-developing long-lasting enhancement of synaptic strength coupled with synapse formation. Naming this structural plasticity RISE (repetitive LTP-induced synaptic enhancement) and assuming it to be a potential in vitro reproduction of repetition-dependent memory consolidation, we are analyzing its cellular mechanisms. Here, we applied a glucocorticoid to the culture to mimic acute excess stress and demonstrated its blockade of RISE. Since excess stress interferes with behavioral memory consolidation, the parallelism between RISE in vitro and memory consolidation in vivo is supported. We recently reported that RISE developed after stochastic processes. Here we found that the glucocorticoid interfered with RISE by suppressing the increment of dendritic spine fluctuation that precedes a net increase in spine density. The present study provides clues for understanding the mechanism of stress-induced memory defects.
Collapse
|
22
|
Humpel C. Organotypic brain slice cultures: A review. Neuroscience 2015; 305:86-98. [PMID: 26254240 PMCID: PMC4699268 DOI: 10.1016/j.neuroscience.2015.07.086] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022]
Abstract
In vitro cell cultures are an important tool for obtaining insights into cellular processes in an isolated system and a supplement to in vivo animal experiments. While primary dissociated cultures permit a single homogeneous cell population to be studied, there is a clear need to explore the function of brain cells in a three-dimensional system where the main architecture of the cells is preserved. Thus, organotypic brain slice cultures have proven to be very useful in investigating cellular and molecular processes of the brain in vitro. This review summarizes (1) the historical development of organotypic brain slices focusing on the membrane technology, (2) methodological aspects regarding culturing procedures, age of donors or media, (3) whether the cholinergic neurons serve as a model of neurodegeneration in Alzheimer’s disease, (4) or the nigrostriatal dopaminergic neurons as a model of Parkinson’s disease and (5) how the vascular network can be studied, especially with regard to a synthetic blood–brain barrier. This review will also highlight some limits of the model and give an outlook on future applications.
Collapse
Affiliation(s)
- C Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Mosa AJ, Wang S, Tan YF, Wojtowicz JM. Organotypic slice cultures for studies of postnatal neurogenesis. J Vis Exp 2015:52353. [PMID: 25867138 PMCID: PMC4401176 DOI: 10.3791/52353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research.
Collapse
Affiliation(s)
- Adam J Mosa
- Department of Physiology, University of Toronto
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University; Department of Education and Research, Taipei City Hospital
| | | | | |
Collapse
|
24
|
Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD. Sci Rep 2015; 5:7707. [PMID: 25573377 PMCID: PMC4648349 DOI: 10.1038/srep07707] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/08/2014] [Indexed: 01/24/2023] Open
Abstract
Memory is fixed solidly by repetition. However, the cellular mechanism underlying this repetition-dependent memory consolidation/reconsolidation remains unclear. In our previous study using stable slice cultures of the rodent hippocampus, we found long-lasting synaptic enhancement/suppression coupled with synapse formation/elimination after repeated inductions of chemical LTP/LTD, respectively. We proposed these phenomena as useful model systems for analyzing repetition-dependent memory consolidation. Recently, we analyzed the dynamics of dendritic spines during development of the enhancement, and found that the spines increased in number following characteristic stochastic processes. The current study investigates spine dynamics during the development of the suppression. We found that the rate of spine retraction increased immediately leaving that of spine generation unaltered. Spine elimination occurred independent of the pre-existing spine density on the dendritic segment. In terms of elimination, mushroom-type spines were not necessarily more stable than stubby-type and thin-type spines.
Collapse
|
25
|
Lefort R. Reversing synapse loss in Alzheimer's disease: Rho-guanosine triphosphatases and insights from other brain disorders. Neurotherapeutics 2015; 12:19-28. [PMID: 25588580 PMCID: PMC4322073 DOI: 10.1007/s13311-014-0328-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Alzheimer's disease (AD) is a monumental public health crisis with no effective cure or treatment. To date, therapeutic strategies have focused almost exclusively on upstream signaling events in the disease, namely on β-amyloid and amyloid precursor protein processing, and have, unfortunately, yielded few, if any, promising results. An alternative approach may be to target signaling events downstream of β-amyloid and even tau. However, with so many pathways already linked to the disease, understanding which ones are "drivers" versus "passengers" in the pathogenesis of the disease remains a tremendous challenge. Given the critical roles of Rho-guanosine triphosphatases (GTPases) in regulating the actin cytoskeleton and spine dynamics, and the strong association between spine abnormalities and cognition, it is not surprising that mutations in a number of genes involved in Rho-GTPase signaling have been implicated in several brain disorders, including schizophrenia and autism. And now, there is mounting literature implicating Rho-GTPase signaling in AD pathogenesis as well. Here, I review this evidence, with a particular emphasis on the regulators of Rho-GTPase signaling, namely guanine nucleotide exchange factors and GTPase-activating proteins. Several of these have been linked to various aspects of AD, and each offers a novel potential therapeutic target for AD.
Collapse
Affiliation(s)
- Roger Lefort
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA,
| |
Collapse
|
26
|
Timme N, Ito S, Myroshnychenko M, Yeh FC, Hiolski E, Hottowy P, Beggs JM. Multiplex networks of cortical and hippocampal neurons revealed at different timescales. PLoS One 2014; 9:e115764. [PMID: 25536059 PMCID: PMC4275261 DOI: 10.1371/journal.pone.0115764] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
Recent studies have emphasized the importance of multiplex networks--interdependent networks with shared nodes and different types of connections--in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy--an information theoretic quantity that can be used to measure linear and nonlinear interactions--to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons ("hubs") were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons.
Collapse
Affiliation(s)
- Nicholas Timme
- Department of Physics, Indiana University, Bloomington, Indiana, 47405, United States of America
| | - Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, 95064, United States of America
| | - Maxym Myroshnychenko
- Program in Neuroscience, Indiana University, Bloomington, Indiana, 47405, United States of America
| | - Fang-Chin Yeh
- Department of Physics, Indiana University, Bloomington, Indiana, 47405, United States of America
| | - Emma Hiolski
- Department of Microbiology & Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, 95064, United States of America
| | - Pawel Hottowy
- Physics and Applied Computer Science, AGH University of Science and Technology, 30–059, Krakow, Poland
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, 47405, United States of America
| |
Collapse
|
27
|
Okamoto K, Ishikawa T, Abe R, Ishikawa D, Kobayashi C, Mizunuma M, Norimoto H, Matsuki N, Ikegaya Y. Ex vivo cultured neuronal networks emit in vivo-like spontaneous activity. J Physiol Sci 2014; 64:421-31. [PMID: 25208897 PMCID: PMC10717955 DOI: 10.1007/s12576-014-0337-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022]
Abstract
Spontaneous neuronal activity is present in virtually all brain regions, but neither its function nor spatiotemporal patterns are fully understood. Ex vivo organotypic slice cultures may offer an opportunity to investigate some aspects of spontaneous activity, because they self-restore their networks that collapsed during slicing procedures. In hippocampal networks, we compared the levels and patterns of in vivo spontaneous activity to those in acute and cultured slices. We found that the firing rates and excitatory synaptic activity in the in vivo hippocampus are more similar to those in slice cultures compared to acute slices. The soft confidence-weighted algorithm, a machine learning technique without human bias, also revealed that hippocampal slice cultures resemble the in vivo hippocampus in terms of the overall tendency of the parameters of spontaneous activity.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Reimi Abe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Daisuke Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Chiaki Kobayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Mika Mizunuma
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- Center for Information and Neural Networks, Suita City, Osaka 565-0871 Japan
| |
Collapse
|
28
|
Ito S, Yeh FC, Hiolski E, Rydygier P, Gunning DE, Hottowy P, Timme N, Litke AM, Beggs JM. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures. PLoS One 2014; 9:e105324. [PMID: 25126851 PMCID: PMC4134292 DOI: 10.1371/journal.pone.0105324] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz) and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Fang-Chin Yeh
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Emma Hiolski
- Microbiology and Environmental Toxicology Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Przemyslaw Rydygier
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Deborah E. Gunning
- Institute of Photonics, University of Strathclyde, Glasgow, United Kingdom
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Nicholas Timme
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Alan M. Litke
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
29
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LFB, Green CR. The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 2014; 1037:519-46. [PMID: 24029957 DOI: 10.1007/978-1-62703-505-7_31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in Connexin43 (Cx43) expression levels have been shown to play a role in inflammatory processes including skin wounding and neuroinflammation. Cx43 protein levels increase following a skin wound and can inhibit wound healing. Increased Cx43 has been observed following stroke, epilepsy, ischemia, optic nerve damage, and spinal cord injury with gap junctional communication and hemichannel opening leading to increased secondary damage via the inflammatory response. Connexin43 modulation has been identified as a potential target for protection and repair in neuroinflammation and skin wound repair. This review describes the use of a Cx43 specific antisense oligonucleotide (Cx43 AsODN) and peptide mimetics of the connexin extracellular loop domain to modulate Cx43 expression and/or function in inflammatory disorders of the skin and central nervous system. An overview of the role of connexin43 in inflammatory conditions, how antisense and peptide have allowed us to elucidate the role of Cx43 in these diseases, create models of diseases to test interventions and their potential for use clinically or in current clinical trials is presented. Antisense oligonucleotides are applied topically and have been used to improve wound healing following skin injury. They have also been used to develop ex vivo models of neuroinflammatory diseases that will allow testing of intervention strategies. The connexin mimetic peptides have shown potential in a number of neuroinflammatory disorders in ex vivo models as well as in vivo when delivered directly to the injury site or when delivered systemically.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
30
|
Dendritic spine dynamics in synaptogenesis after repeated LTP inductions: dependence on pre-existing spine density. Sci Rep 2014; 3:1957. [PMID: 23739837 PMCID: PMC3674431 DOI: 10.1038/srep01957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/17/2013] [Indexed: 11/08/2022] Open
Abstract
Not only from our daily experience but from learning experiments in animals, we know that the establishment of long-lasting memory requires repeated practice. However, cellular backgrounds underlying this repetition-dependent consolidation of memory remain largely unclear. We reported previously using organotypic slice cultures of rodent hippocampus that the repeated inductions of LTP (long-term potentiation) lead to a slowly developing long-lasting synaptic enhancement accompanied by synaptogenesis distinct from LTP itself, and proposed this phenomenon as a model system suitable for the analysis of the repetition-dependent consolidation of memory. Here we examined the dynamics of individual dendritic spines after repeated LTP-inductions and found the existence of two phases in the spines' stochastic behavior that eventually lead to the increase in spine density. This spine dynamics occurred preferentially in the dendritic segments having low pre-existing spine density. Our results may provide clues for understanding the cellular bases underlying the repetition-dependent consolidation of memory.
Collapse
|
31
|
Soares C, Lee KFH, Cook D, Béïque JC. A cost-effective method for preparing, maintaining, and transfecting neurons in organotypic slices. Methods Mol Biol 2014; 1183:205-219. [PMID: 25023311 DOI: 10.1007/978-1-4939-1096-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cellular and molecular mechanisms that underlie brain function are challenging to study in the living brain. The development of organotypic slices has provided a welcomed addition to our arsenal of experimental brain preparations by allowing both genetic and prolonged pharmacological manipulations in a system that, much like the acute slice preparation, retains several core features of the cellular and network architecture found in situ. Neurons in organotypic slices can survive in culture for several weeks, can be molecularly manipulated by transfection procedures and their function can be interrogated by traditional cellular electrophysiological or imaging techniques. Here, we describe a cost-effective protocol for the preparation and maintenance of organotypic slices and also describe a protocol for biolistic transfection that can be used to introduce plasmids in a small subset of neurons living in an otherwise molecularly unperturbed network. The implementation of these techniques offers a flexible experimental paradigm that can be used to study a multitude of neuronal mechanisms.
Collapse
Affiliation(s)
- Cary Soares
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, RGN 3501N, Ottawa, ON, Canada,
| | | | | | | |
Collapse
|
32
|
Sakuragi S, Tominaga-Yoshino K, Ogura A. Involvement of TrkB- and p75(NTR)-signaling pathways in two contrasting forms of long-lasting synaptic plasticity. Sci Rep 2013; 3:3185. [PMID: 24212565 PMCID: PMC3822391 DOI: 10.1038/srep03185] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/25/2013] [Indexed: 12/17/2022] Open
Abstract
The repetition of experience is often necessary to establish long-lasting memory. However, the cellular mechanisms underlying this repetition-dependent consolidation of memory remain unclear. We previously observed in organotypic slice cultures of the rodent hippocampus that repeated inductions of long-term potentiation (LTP) led to a slowly developing long-lasting synaptic enhancement coupled with synaptogenesis. We also reported that repeated inductions of long-term depression (LTD) produced a long-lasting synaptic suppression coupled with synapse elimination. We proposed these phenomena as useful in vitro models for analyzing repetition-dependent consolidation. Here, we hypothesized that the enhancement and suppression are mediated by the brain-derived neurotrophic factor (BDNF)-TrkB signaling pathway and the proBDNF-p75(NTR) pathway, respectively. When we masked the respective pathways, reversals of the enhancement and suppression resulted. These results suggest the alternative activation of the p75(NTR) pathway by BDNF under TrkB-masking conditions and of the TrkB pathway by proBDNF under p75(NTR)-masking conditions, thus supporting the aforementioned hypothesis.
Collapse
Affiliation(s)
- Shigeo Sakuragi
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Suita 565-0871 Osaka, Japan
| | - Keiko Tominaga-Yoshino
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Suita 565-0871 Osaka, Japan
| | - Akihiko Ogura
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Suita 565-0871 Osaka, Japan
| |
Collapse
|
33
|
Horellou S, Pascual O, Triller A, Marty S. Adaptive and non-adaptive changes in activity-deprived presynaptic terminals. Eur J Neurosci 2013; 39:61-71. [PMID: 24164653 DOI: 10.1111/ejn.12399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Abstract
How the number of docked vesicles is regulated is still unclear. Following chronic activity blockade the number of docked vesicles increases, providing a model through which to address this issue. We tested the hypotheses that the number of docked vesicles is regulated with the size of the terminal, and by the level of Rab3-interacting molecule 1/2 (RIM1/2). We immobilized mouse hippocampal slice cultures by high-pressure freezing after 3 days of tetrodotoxin treatment and analysed them by electron microscopy. The number of docked vesicles, the size of the active zones and the amount of GluA2 were increased after activity blockade. However, there was no modification of either the total number of synaptic vesicles or the area of presynaptic profiles. Surprisingly, immunocytochemistry showed no change in the mean level of RIM1/2 per terminal but its distribution was modified. Additionally, there was no modification of the mean frequency or amplitude of miniature excitatory postsynaptic currents, but the distribution of amplitudes was modified. These results indicate a specific homeostatic regulation of the synaptic junction. The number of docked vesicles does not seem to be regulated by the amount of RIM1/2. The modification of the distribution, but not the amount, of RIM1/2 may explain the contradiction between the morphological and electrophysiological findings.
Collapse
Affiliation(s)
- Süzel Horellou
- Institute of Biology of the Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France; INSERM U1024, Paris, France; CNRS UMR8197, Paris, France
| | | | | | | |
Collapse
|
34
|
Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci 2013; 14:18284-318. [PMID: 24013377 PMCID: PMC3794781 DOI: 10.3390/ijms140918284] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 01/19/2023] Open
Abstract
This article describes current experimental models of status epilepticus (SE) and neuronal injury for use in the screening of new therapeutic agents. Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. SE is an emergency condition associated with continuous seizures lasting more than 30 min. It causes significant mortality and morbidity. SE can cause devastating damage to the brain leading to cognitive impairment and increased risk of epilepsy. Benzodiazepines are the first-line drugs for the treatment of SE, however, many people exhibit partial or complete resistance due to a breakdown of GABA inhibition. Therefore, new drugs with neuroprotective effects against the SE-induced neuronal injury and degeneration are desirable. Animal models are used to study the pathophysiology of SE and for the discovery of newer anticonvulsants. In SE paradigms, seizures are induced in rodents by chemical agents or by electrical stimulation of brain structures. Electrical stimulation includes perforant path and self-sustaining stimulation models. Pharmacological models include kainic acid, pilocarpine, flurothyl, organophosphates and other convulsants that induce SE in rodents. Neuronal injury occurs within the initial SE episode, and animals exhibit cognitive dysfunction and spontaneous seizures several weeks after this precipitating event. Current SE models have potential applications but have some limitations. In general, the experimental SE model should be analogous to the human seizure state and it should share very similar neuropathological mechanisms. The pilocarpine and diisopropylfluorophosphate models are associated with prolonged, diazepam-insensitive seizures and neurodegeneration and therefore represent paradigms of refractory SE. Novel mechanism-based or clinically relevant models are essential to identify new therapies for SE and neuroprotective interventions.
Collapse
|
35
|
Kim H, Kim E, Park M, Lee E, Namkoong K. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 2013; 41:36-43. [PMID: 23159795 DOI: 10.1016/j.pnpbp.2012.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 01/09/2023]
Abstract
One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci 2013; 32:18009-17, 18017a. [PMID: 23238717 DOI: 10.1523/jneurosci.2406-12.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early postnatal development of the CNS, neuronal networks are configured through the formation, elimination, and remodeling of dendritic spines, the sites of most excitatory synaptic connections. The closure of this critical period for plasticity correlates with the maturation of the extracellular matrix (ECM) and results in reduced dendritic spine dynamics. Chondroitin sulfate proteoglycans (CSPGs) are thought to be the active components of the mature ECM that inhibit functional plasticity in the adult CNS. These molecules are diffusely expressed in the extracellular space or aggregated as perineuronal nets around specific classes of neurons. We used organotypic hippocampal slices prepared from 6-d-old Thy1-YFP mice and maintained in culture for 4 weeks to allow ECM maturation. We performed live imaging of CA1 pyramidal cells to assess the effect of chondroitinase ABC (ChABC)-mediated digestion of CSPGs on dendritic spine dynamics. We found that CSPG digestion enhanced the motility of dendritic spines and induced the appearance of spine head protrusions in a glutamate receptor-independent manner. These changes were paralleled by the activation of β1-integrins and phosphorylation of focal adhesion kinase at synaptic sites, and were prevented by preincubation with a β1-integrin blocking antibody. Interestingly, microinjection of ChABC close to dendritic segments was sufficient to induce spine remodeling, demonstrating that CSPGs located around dendritic spines modulate their dynamics independently of perineuronal nets. This restrictive action of perisynaptic CSPGs in mature neural tissue may account for the therapeutic effects of ChABC in promoting functional recovery in impaired neural circuits.
Collapse
|
37
|
Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S, Weis J, Coburn M. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol 2012; 12:20. [PMID: 22494498 PMCID: PMC3350422 DOI: 10.1186/1471-2377-12-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background The α2-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an in vitro model for traumatic brain injury. Methods Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined. Results Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 μM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059. Conclusion In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.
Collapse
Affiliation(s)
- Marc Schoeler
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kalirin, a key player in synapse formation, is implicated in human diseases. Neural Plast 2012; 2012:728161. [PMID: 22548195 PMCID: PMC3324156 DOI: 10.1155/2012/728161] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/13/2012] [Indexed: 12/22/2022] Open
Abstract
Synapse formation is considered to be crucial for learning and memory. Understanding the underlying molecular mechanisms of synapse formation is a key to understanding learning and memory. Kalirin-7, a major isoform of Kalirin in adult rodent brain, is an essential component of mature excitatory synapses. Kalirin-7 interacts with multiple PDZ-domain-containing proteins including PSD95, spinophilin, and GluR1 through its PDZ-binding motif. In cultured hippocampal/cortical neurons, overexpression of Kalirin-7 increases spine density and spine size whereas reduction of endogenous Kalirin-7 expression decreases synapse number, and spine density. In Kalirin-7 knockout mice, spine length, synapse number, and postsynaptic density (PSD) size are decreased in hippocampal CA1 pyramidal neurons; these morphological alterations are accompanied by a deficiency in long-term potentiation (LTP) and a decreased spontaneous excitatory postsynaptic current (sEPSC) frequency. Human Kalirin-7, also known as Duo or Huntingtin-associated protein-interacting protein (HAPIP), is equivalent to rat Kalirin-7. Recent studies show that Kalirin is relevant to many human diseases such as Huntington's Disease, Alzheimer's Disease, ischemic stroke, schizophrenia, depression, and cocaine addiction. This paper summarizes our recent understanding of Kalirin function.
Collapse
|
39
|
Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity. Nat Neurosci 2011; 15:250-7. [PMID: 22179109 PMCID: PMC3558750 DOI: 10.1038/nn.3004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/04/2011] [Indexed: 02/08/2023]
Abstract
Recurrent excitatory circuits face extreme challenges in balancing efficacy and stability. We recorded from CA3 pyramidal neuron pairs in rat hippocampal slice cultures to characterize synaptic and circuit-level changes in recurrent synapses resulting from long-term inactivity. Chronic tetrodotoxin treatment greatly reduced the percentage of connected CA3-CA3 neurons, but enhanced the strength of the remaining connections; presynaptic release probability sharply increased, whereas quantal size was unaltered. Connectivity was decreased in activity-deprived circuits by functional silencing of synapses, whereas three-dimensional anatomical analysis revealed no change in spine or bouton density or aggregate dendrite length. The silencing arose from enhanced Cdk5 activity and could be reverted by acute Cdk5 inhibition with roscovitine. Our results suggest that recurrent circuits adapt to chronic inactivity by reallocating presynaptic weights heterogeneously, strengthening certain connections while silencing others. This restricts synaptic output and input, preserving signaling efficacy among a subset of neuronal ensembles while protecting network stability.
Collapse
|
40
|
Staal JA, Alexander SR, Liu Y, Dickson TD, Vickers JC. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice. PLoS One 2011; 6:e22040. [PMID: 21789209 PMCID: PMC3137607 DOI: 10.1371/journal.pone.0022040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/14/2011] [Indexed: 01/19/2023] Open
Abstract
Background Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. Methods In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4–6), adolescent animals (P25–28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Results Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (p<0.05). Additionally, cultures from neonatal tissue had no glial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. Conclusion In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.
Collapse
Affiliation(s)
- Jerome A Staal
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | |
Collapse
|
41
|
Bailey JL, O’Connor V, Hannah M, Hewlett L, Biggs TE, Sundstrom LE, Findlay MW, Chad JE. In vitro CNS tissue analogues formed by self-organisation of reaggregated post-natal brain tissue. J Neurochem 2011; 117:1020-32. [DOI: 10.1111/j.1471-4159.2011.07276.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Oe Y, Tominaga-Yoshino K, Ogura A. Local establishment of repetitive long-term potentiation-induced synaptic enhancement in cultured hippocampal slices with divided input pathways. J Neurosci Res 2011; 89:1419-30. [PMID: 21557296 DOI: 10.1002/jnr.22668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/10/2011] [Accepted: 03/24/2011] [Indexed: 11/09/2022]
Abstract
Long-term potentiation (LTP) in the rodent hippocampus is a popular model for synaptic plasticity, which is considered the cellular basis for brain memory. Because most LTP analysis involves acutely prepared brain slices, however, the longevity of single LTP has not been well documented. Using stable hippocampal slice cultures for long-term examination, we previously found that single LTP disappeared within 1 day. In contrast, repeated induction of LTP led to the development of a distinct type of plasticity that lasted for more than 3 weeks and was accompanied by the formation of new synapses. Naming this novel plastic phenomenon repetitive LTP-induced synaptic enhancement (RISE), we proposed it as a model for the cellular processes involved in long-term memory formation. However, because in those experiments LTP was induced pharmacologically in the whole slice, it is not known whether RISE has input-pathway specificity, an essential property for memory. In this study, we divided the input pathway of CA1 pyramidal neurons by a knife cut and induced LTP three times, the third by tetanic stimulation in one of the divided pathways to express RISE specifically. Voltage-sensitive dye imaging and Golgi-staining performed 2 weeks after the three LTP inductions revealed both enhanced synaptic strength and increased dendritic spine density confined to the tetanized region. These results demonstrate that RISE is a feasible cellular model for long-term memory.
Collapse
Affiliation(s)
- Yuki Oe
- Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | | | | |
Collapse
|
43
|
Morrison B, Cullen DK, LaPlaca M. In Vitro Models for Biomechanical Studies of Neural Tissues. NEURAL TISSUE BIOMECHANICS 2011. [DOI: 10.1007/8415_2011_79] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Kawaai K, Tominaga-Yoshino K, Urakubo T, Taniguchi N, Kondoh Y, Tashiro H, Ogura A, Tashiro T. Analysis of gene expression changes associated with long-lasting synaptic enhancement in hippocampal slice cultures after repetitive exposures to glutamate. J Neurosci Res 2010; 88:2911-22. [PMID: 20568283 DOI: 10.1002/jnr.22457] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously shown that repetitive exposures to glutamate (100 muM, 3 min, three times at 24-hr intervals) induced a long-lasting synaptic enhancement accompanied by synaptogenesis in rat hippocampal slice cultures, a phenomenon termed RISE (for repetitive LTP-induced synaptic enhancement). To investigate the molecular mechanisms underlying RISE, we first analyzed the time course of gene expression changes between 4 hr and 12 days after repetitive stimulation using an original oligonucleotide microarray: "synaptoarray." The results demonstrated that changes in the expression of synapse-related genes were induced in two time phases, an early phase of 24-96 hr and a late phase of 6-12 days after the third stimulation. Comprehensive screening at 48 hr after the third stimulation using commercially available high-density microarrays provided candidate genes responsible for RISE. From real-time PCR analysis of these and related genes, two categories of genes were identified, 1) genes previously reported to be induced by physiological as well as epileptic activity (bdnf, grm5, rgs2, syt4, ania4/carp/dclk) and 2) genes involved in cofilin-based regulation of actin filament dynamics (ywhaz, ssh1l, pak4, limk1, cfl). In the first category, synaptotagmin 4 showed a third stimulation-specific up-regulation also at the protein level. Five genes in the second category were coordinately up-regulated by the second stimulation, resulting in a decrease in cofilin phosphorylation and an enhancement of actin filament dynamics. In contrast, after the third stimulation, they were differentially regulated to increase cofilin phosphorylation and enhance actin polymerization, which may be a key step leading to the establishment of RISE.
Collapse
Affiliation(s)
- Katsuhiro Kawaai
- Department of Chemistry and Biological Science, School of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges. Brain Res 2010; 1371:110-20. [PMID: 21111720 DOI: 10.1016/j.brainres.2010.11.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 02/01/2023]
Abstract
Stroke is the major cause of acquired epilepsy in the adult population. The mechanisms of ischemia-induced epileptogenesis are not completely understood, but glutamate is associated with both ischemia-induced injury and epileptogenesis. The objective of this study was to develop an in vitro model of epileptogenesis induced by glutamate injury in organotypic hippocampal slice cultures (OHSCs), as observed in stroke-induced acquired epilepsy. OHSCs were prepared from 1-week-old Sprague-Dawley rat pups. They were exposed to 3.5 mM glutamate for 35 minutes at 21 days in vitro. Field potential recordings and whole-cell current clamp electrophysiology were used to monitor the development of in vitro seizure events up to 19 days after injury. Propidium iodide uptake assays were used to examine acute cell death following injury. Glutamate exposure produced a subset of hippocampal neurons that died acutely and a larger population of injured but surviving neurons. These surviving neurons manifested spontaneous, recurrent epileptiform discharges in neural networks, characterized by paroxysmal depolarizing shifts and high frequency spiking in both field potential and intracellular recordings. This model also exhibited anticonvulsant sensitivity similar to in vivo models. Our study is the first demonstration of a chronic model of acquired epilepsy in OHSCs following a glutamate injury. This in vitro model of glutamate injury-induced epileptogenesis may help develop therapeutic strategies to prevent epileptogenesis after stroke and elucidate some of the mechanisms that underlie stroke-induced epilepsy in a more anatomically intact system.
Collapse
|
46
|
Legradi A, Varszegi S, Szigeti C, Gulya K. Adult rat hippocampal slices as in vitro models for neurodegeneration: Studies on cell viability and apoptotic processes. Brain Res Bull 2010; 84:39-44. [PMID: 21056637 DOI: 10.1016/j.brainresbull.2010.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Adult hippocampal slice cultures were used in the modeling of apoptotic aspects of neurodegeneration. Slice viability was determined by the use of trypan blue (TB) staining, and apoptosis was assessed by caspase-3 immunohistochemistry. A large number of pyramidal cells showed signs of degeneration 30 min after sectioning (58.4% of the total number of pyramidal cells), as they exhibited TB uptake, and about 71.6% of these neurons became stained by the third day in culture, when patches in the stratum oriens also demonstrated distinct TB staining. By the sixth day of culturing, almost all cells in the pyramidal cell layer became TB positive (88.4%). The caspase-3 immunoreactivity displayed a different pattern, as the most intense immunoreactivity, detected mainly in the pyramidal cells, peaked 6 h after culturing, and then decreased steadily. The present data show that in adult hippocampal slices a large number of pyramidal cells initiate apoptotic processes as a result of irreparable damage sustained during slice preparation and culture maintenance, and support the notion that apoptosis is an integral part of the neurodegenerative processes not only in vivo but also in vitro. Elucidation of mechanisms for the apoptotic processes in adult hippocampal slice cultures could lead to the development of new therapeutic strategies; moreover, the utilization of adult hippocampal slice cultures could be a viable alternative technique to in vivo experiments in studying the mechanisms responsible for neurodegeneration.
Collapse
Affiliation(s)
- Adam Legradi
- Department of Cell Biology and Molecular Medicine, University of Szeged, Hungary
| | | | | | | |
Collapse
|
47
|
Involvement of the p75NTR signaling pathway in persistent synaptic suppression coupled with synapse elimination following repeated long-term depression induction. J Neurosci Res 2010; 88:3433-46. [DOI: 10.1002/jnr.22505] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/17/2010] [Accepted: 07/25/2010] [Indexed: 01/10/2023]
|
48
|
Analyses of neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures. Ann Anat 2010; 192:199-204. [PMID: 20643535 DOI: 10.1016/j.aanat.2010.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 11/20/2022]
Abstract
Organotypic hippocampal slice cultures (OHSCs) are widely used to study the mechanisms of neurodegeneration and neuroprotection. However, there are still controversies about the most appropriate method for quantification of neuronal damage. The response to excitotoxic lesions can be determined by propidium iodide (PI) staining, which labels nuclei of degenerating cells. Semiquantitative measurements of PI staining are based on (1) recording of the propidium iodide (PI) fluorescence intensity or (2) counting of PI positive neuronal nuclei. Here, we investigated OHSCs lesioned by the application of increasing NMDA concentrations (10microM, 50microM and 500microM) at 6 days in vitro (div) for 4h or left untreated, respectively. After 9 div, PI staining was performed and the staining determined in the dentate gyrus and cornu ammonis (CA1) by measurement of PI-fluorescence intensity or by counting PI(+)-nuclei with a confocal laser scanning microscope. The fluorescence intensity of lesioned OHSCs did not show a NMDA concentration dependent difference. In contrast, confocal laser scanning microscopy revealed a significant and dose-dependent increase in the number of PI(+)-nuclei. Linear regression analysis showed a high correlation between NMDA concentration and the number of PI(+)-nuclei. A high correlation was also found between the mean number of PI(+)-nuclei determined in every third optical section and that determined in a single mid-stag optical section. The results show that proper analysis of neuronal damage requires counting of PI(+)-nuclei by confocal laser scanning microscopy.
Collapse
|
49
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
50
|
Law S, Raisman G, Li D. Organotypic slice co-cultures reveal that early postnatal hippocampal axons lose the ability to grow along the fimbria, while retaining the ability to invade and arborise in septal neuropil. Eur J Neurosci 2010; 31:1352-8. [PMID: 20384773 DOI: 10.1111/j.1460-9568.2010.07176.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The failure of cut axons to grow along fibre tracts in the adult CNS contrasts with their ability to do so in development. Organotypic slices culture of a number of areas enables the time of failure to be pinpointed to around the second week of postnatal life in the rat. 'Heterochronic' co-culture of slices above and below this age shows that the failure is due to the inability of the older axons to grow into either the same age or younger targets. Using hippocampo-septal slices the present experiments show that this failure is due to an inability to recognise the glial pathway of the fimbria, even when this is of a younger age. However, the older hippocampal neurons retain the ability to grow axons into septal target tissue when they are placed in direct contact with it. This exactly mirrors the inability of cut central axons to regenerate along their previous fibre pathways while they retain their ability to reinnervate neuropil.
Collapse
Affiliation(s)
- Stuart Law
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.
| | | | | |
Collapse
|