1
|
Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate. Neural Plast 2016; 2016:3497901. [PMID: 27274874 PMCID: PMC4870373 DOI: 10.1155/2016/3497901] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022] Open
Abstract
Several important discoveries in growth cone cell biology were made possible by the use of growth cones derived from cultured Aplysia bag cell neurons, including the characterization of the organization and dynamics of the cytoskeleton. The majority of these Aplysia studies focused on large growth cones induced by poly-L-lysine substrates at early stages in cell culture. Under these conditions, the growth cones are in a steady state with very little net advancement. Here, we offer a comprehensive cellular analysis of the motile behavior of Aplysia growth cones in culture beyond this pausing state. We found that average growth cone size decreased with cell culture time whereas average growth rate increased. This inverse correlation of growth rate and growth cone size was due to the occurrence of large growth cones with a peripheral domain larger than 100 μm(2). The large pausing growth cones had central domains that were less consistently aligned with the direction of growth and could be converted into smaller, faster-growing growth cones by addition of a three-dimensional collagen gel. We conclude that the significant lateral expansion of lamellipodia and filopodia as observed during these culture conditions has a negative effect on neurite growth.
Collapse
|
2
|
Torreano PJ, Waterman-Storer CM, Cohan CS. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones. ACTA ACUST UNITED AC 2005; 60:166-79. [PMID: 15700278 DOI: 10.1002/cm.20051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.
Collapse
Affiliation(s)
- Paul J Torreano
- Division of Anatomy and Cell Biology, University at Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
3
|
Alfei L, Soares S, Alunni A, Ravaille-Veron M, Von Boxberg Y, Nothias F. Expression of MAP1B protein and its phosphorylated form MAP1B-P in the CNS of a continuously growing fish, the rainbow trout. Brain Res 2004; 1009:54-66. [PMID: 15120583 DOI: 10.1016/j.brainres.2004.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/28/2022]
Abstract
Microtubule-associated protein-1B (MAP1B), and particularly its phosphorylated isoform MAP1B-P, play an important role in axonal outgrowth during development of the mammalian nervous system and have also been shown to be associated with axonal plasticity in the adult. Here, we used antibodies and mRNA probes directed against mammalian MAP1B to extend our analysis to fish species, trout (Oncorhynchus mykiss), at different stages of development. The specificity of the cross-reaction of our anti-total-MAP1B/MAP1B-P antibodies was confirmed by Western blotting. Trout MAP1B-like proteins exhibited about the same apparent molecular weight (320 kDa) as rat-MAP1B. Immunohistochemistry and in situ hybridization analysis performed on hindbrain and spinal cord revealed the presence of MAP1B in neurons and some glial subpopulations. Primary sensory neurons and motoneurons maintain high levels of MAP1B expression from early stages throughout adulthood, as has been shown for mammals. Unlike mammals, however, MAP1B and axon-specific MAP1B-P continue to be strongly expressed by hindbrain neurons projecting into spinal cord, with the important exception of Mauthner cells. MAP1B/MAP1B-P immunostaining were also detected elsewhere within the brain, including axons of the retino-tectal projection. This obvious difference between adult fish and mammals is likely to reflect the capacity of fish for continued growth and regeneration. Our results suggest that MAP1B/MAP1B-P expression is generally maintained in neurons known to regenerate after axotomy. The regenerative potential of the adult nervous system may in fact depend on continued expression of neuron-intrinsic growth related proteins, a feature of MAP1B that appears phylogenetically conserved.
Collapse
Affiliation(s)
- Laura Alfei
- Department of Animal Biology, University of Rome La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
The large neurons of the freshwater snail Helisoma trivolvis provide a unique preparation to study cytoskeletal mechanisms involved in neuronal growth and axon guidance. When placed into culture, these neurons form large growth cones in which cytoskeletal components and their dynamics can be analyzed with high-spatial resolution. Moreover, these growth cones display all of the dynamic features characteristic of growing axons, including advance, pause, collapse, and turning, allowing the correlation of cell biological mechanisms with growth cone motility. This chapter describes complete procedures for culturing Helisoma neurons, including snail dissection, enzymatic treatments, removal of neurons, and necessary solutions, equipment, and supplies. Techniques are presented to culture Helisoma neurons by the extraction and transfer of individual neurons to culture dishes. A newer technique to dissociate neurons from whole ganglia is also described. In addition, methods to culture neurons on two substrates are presented. Culturing on polylysine in defined medium produces large, but nonmotile growth cones for cytoskeletal analysis, whereas culturing on polylysine in conditioned medium allows growth and motility for behavioral analysis. Recent tests suggest a new, simpler formulation for the medium used to culture Helisoma neurons that does not require the special-order medium that was previously used for cultures. These procedures make it feasible for someone inexperienced to successfully culture Helisoma neurons for use in a variety of experiments.
Collapse
Affiliation(s)
- Christopher S Cohan
- Division of Anatomy and Cell Biology, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
5
|
Geddis MS, Rehder V. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury. J Neurosci Res 2003; 74:210-20. [PMID: 14515350 DOI: 10.1002/jnr.10741] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Growth cones are essential for neuronal pathfinding during embryonic development and again after injury, when they aid in neuronal regeneration. This study was aimed at investigating the role of kinases in the earliest events in neuronal regeneration, namely, the formation of new growth cones from injured neuronal processes. Neurites of identified snail neurons grown in vitro were severed, and the formation of growth cones was observed from the ends of such transected processes. Under control conditions, all neurites formed a new growth cone within 45 min of transection. In contrast, growth cone formation in the presence of a general kinase inhibitor, K252a, was significantly inhibited. Moreover, decreasing the phosphorylation state of neurites by activating protein phosphatases with C2-ceramide also reduced growth cone formation. Pharmacological analysis with specific kinase inhibitors suggested that targets of protein kinase C (PKC) and tyrosine kinase (PTK) phosphorylation control growth cone formation. Inhibition of PKC with calphostin C and cerebroside completely blocked growth cone formation, whereas the inhibition of PTK with erbstatin analog significantly reduced growth cone formation. In contrast, inhibitors of protein kinase A, protein kinase G, CaM-kinase II, myosin light-chain kinase, Rho kinase, and PI-3 kinase had little or no effect 45 min after transection. These results suggest that the transformation underlying the formation of a growth cone from an injured (transected) neurite stump is highly sensitive to the phosphorylation state of key target proteins. Therefore, injury-induced signaling events will determine the outcome of neuronal regeneration through their action on kinase and phosphatase activities.
Collapse
Affiliation(s)
- Matthew S Geddis
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | |
Collapse
|
6
|
Vecino E, Avila J. Distribution of the phosphorylated form of microtubule associated protein 1B in the fish visual system during optic nerve regeneration. Brain Res Bull 2001; 56:131-7. [PMID: 11704350 DOI: 10.1016/s0361-9230(01)00618-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microtubule associated proteins are a heterogeneous group of proteins that have been implicated in regulating microtubule stability. They play an important role in the organisation of the neuronal cytoskeleton during neurite outgrowth, plasticity and regeneration. The fish visual system presents a considerable degree of plasticity. Thus, the retina grows continually throughout life and the optic nerve regenerates after crush. In the present study, we compared the distribution of the microtubule associated protein 1B in its phosphorylated form (MAP1B-phos) in the normal adult fish visual system with that observed during optic nerve regeneration after adult optic nerve crush using a specific monoclonal antibody mAb-150. Expression of MAP1B-phos was observed in some ganglion cell somata and in developing, growing axons within the control optic nerve. Few immunoreactive terminals were seen in the control optic tectum. After optic nerve crush, we found additional MAP1B-phos expression in regenerating axons throughout the visual system. Our results demonstrate that MAP1B-phos is present in growing and regenerating axons of fish retinal ganglion cells, which suggests that the phosphorylated form of MAP1B may play an important role in developmental and regeneration processes within the fish central nervous system.
Collapse
Affiliation(s)
- E Vecino
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad del País Vasco, Leioa, Vizcaya, Spain.
| | | |
Collapse
|
7
|
Zhou FQ, Cohan CS. Growth cone collapse through coincident loss of actin bundles and leading edge actin without actin depolymerization. J Cell Biol 2001; 153:1071-84. [PMID: 11381091 PMCID: PMC2174321 DOI: 10.1083/jcb.153.5.1071] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repulsive guidance cues can either collapse the whole growth cone to arrest neurite outgrowth or cause asymmetric collapse leading to growth cone turning. How signals from repulsive cues are translated by growth cones into this morphological change through rearranging the cytoskeleton is unclear. We examined three factors that are able to induce the collapse of extending Helisoma growth cones in conditioned medium, including serotonin, myosin light chain kinase inhibitor, and phorbol ester. To study the cytoskeletal events contributing to collapse, we cultured Helisoma growth cones on polylysine in which lamellipodial collapse was prevented by substrate adhesion. We found that all three factors that induced collapse of extending growth cones also caused actin bundle loss in polylysine-attached growth cones without loss of actin meshwork. In addition, actin bundle loss correlated with specific filamentous actin redistribution away from the leading edge that is characteristic of repulsive factors. Finally, we provide direct evidence using time-lapse studies of extending growth cones that actin bundle loss paralleled collapse. Taken together, these results suggest that actin bundles could be a common cytoskeletal target of various collapsing factors, which may use different signaling pathways that converge to induce growth cone collapse.
Collapse
Affiliation(s)
- Feng-quan Zhou
- Department of Anatomy and Cell Biology, State University of New York at Buffalo, Buffalo, New York 14214
| | - Christopher S. Cohan
- Department of Anatomy and Cell Biology, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
8
|
Cohan CS, Welnhofer EA, Zhao L, Matsumura F, Yamashiro S. Role of the actin bundling protein fascin in growth cone morphogenesis: localization in filopodia and lamellipodia. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:109-20. [PMID: 11169763 DOI: 10.1002/1097-0169(200102)48:2<109::aid-cm1002>3.0.co;2-g] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growth cones at the distal tips of growing nerve axons contain bundles of actin filaments distributed throughout the lamellipodium and that project into filopodia. The regulation of actin bundling by specific actin binding proteins is likely to play an important role in many growth cone behaviors. Although the actin binding protein, fascin, has been localized in growth cones, little information is available on its functional significance. We used the large growth cones of the snail Helisoma to determine whether fascin was involved in temporal changes in actin filaments during growth cone morphogenesis. Fascin localized to radially oriented actin bundles in lamellipodia (ribs) and filopodia. Using a fascin antibody and a GFP fascin construct, we found that fascin incorporated into actin bundles from the beginning of growth cone formation at the cut end of axons. Fascin associated with most of the actin bundle except the proximal 6--12% adjacent to the central domain, which is the region associated with actin disassembly. Later, during growth cone morphogenesis when actin ribs shortened, the proximal fascin-free zone of bundles increased, but fascin was retained in the distal, filopodial portion of bundles. Treatment with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which phosphorylates fascin and decreases its affinity for actin, resulted in loss of all actin bundles from growth cones. Our findings suggest that fascin may be particularly important for the linear structure and dynamics of filopodia and for lamellipodial rib dynamics by regulating filament organization in bundles.
Collapse
Affiliation(s)
- C S Cohan
- Department of Anatomy and Cell Biology, University at Buffalo, SUNY, Buffalo, New York 14214, USA.
| | | | | | | | | |
Collapse
|
9
|
Welnhofer EA, Zhao L, Cohan CS. Actin dynamics and organization during growth cone morphogenesis in Helisoma neurons. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:54-71. [PMID: 9142439 DOI: 10.1002/(sici)1097-0169(1997)37:1<54::aid-cm6>3.0.co;2-h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growth cone formation at the terminal region of severed axons is a fundamental step in neuronal regeneration. To understand the cytoskeletal events underlying this process, we have followed actin organization and dynamics as the severed, axonal stumps of Helisoma neurons transformed into mature growth cones. We identified three stages in growth cone morphogenesis: (1) formation, (2) expansion, and (3) maturation. The formation stage involved cytochalasin B-insensitive terminal swelling formation, followed by cytochalasin B-inhibited filopodial and lamellipodial formation. Time-lapse images of neurons injected with labeled actin showed actin ribs in nascent growth cones formed both by incorporation of filopodial actin bundles and de novo assembly at the leading edge. Phallacidin-stained growth cones revealed F-actin to be organized into bundles (ribs) and a meshwork throughout morphogenesis. Actin ribs represented the dominant F-actin population during the expansion stage and the early phase of maturation, whereas a meshwork organization dominated the late phase of maturation. During the expansion stage, growth cones exhibited a rapid retrograde flow (4.8 microns/min), as assessed with flow-coupled latex beads, and comparatively slow lamellipodial protrusion (0.3 micron/min). During the maturation stage, no net lamellipodial advancement occurred; however, the rate of retrograde flow was significantly faster in the early phase (5.0 microns/min) than the late phase (2.3 microns/min). This decrease in retrograde flow corresponded with a change in actin organization. Lateral movements of actin ribs (2.1 microns/min) also occurred throughout growth cone morphogenesis, but were most prominent during the expansion stage. These experiments provide evidence for de novo actin assembly during growth cone formation and demonstrate that temporal changes in actin organization and dynamics accompany growth cone morphogenesis.
Collapse
Affiliation(s)
- E A Welnhofer
- Department of Anatomy and Cell Biology, School of Medicine, SUNY at Buffalo 14214, USA
| | | | | |
Collapse
|
10
|
Abstract
The ability of calcium (Ca(2+)) to effect changes in growth cone motility requires remodeling of the actin cytoskeleton. To understand the mechanisms involved, we evaluated the effect of elevated intracellular calcium ([Ca(2+)](i)) on actin bundle dynamics, organization, and retrograde flow in the large growth cones of identified Helisoma neurons. Depolarization with 15 mM KCl (high K(+)) for 30 min caused a rapid and sustained increase in [Ca(2+)](i) and resulted in longer filopodia, shorter actin ribs, and a decrease in lamellipodia width. Time-lapse microscopy revealed that increasing [Ca(2+)](i) affected actin bundle dynamics differently at the proximal and distal ends. Filopodial lengthening resulted from assembly-driven elongation of actin bundles whereas actin rib shortening resulted from a distal shift in the location of breakage. Buckling of ribs occurred before breakage, suggesting nonuniform forces were applied to ribs before shortening. Calcium (Ca(2+)) influx also resulted in a decrease in density of F-actin in bundles, as determined by contrast changes in ribs imaged by differential interference contrast microscopy and fluorescent intensity changes in rhodamine-labeled ribs. The velocity of retrograde flow decreased by 50% after elevation of [Ca(2+)](i). However, no significant change in retrograde flow occurred when the majority of changes in actin bundles were blocked by phalloidin. This suggests that inhibition of retrograde flow resulted from Ca(2+)-induced changes in the actin cytoskeleton. These results implicate Ca(2+) as a regulator of actin dynamics and, as such, provide a mechanism by which Ca(2+) can influence growth cone motility and behavior.
Collapse
|
11
|
Abstract
Neurons undergo extensive changes in growth and electrophysiological properties in response to axon injury. Efforts to understand the molecular mechanisms that initiate these changes have focused almost exclusively on the role of extrinsic signals, primarily neurotrophic factors released from target and glial cells. The objective of the present investigation was to determine whether the response to axonal injury also involves intrinsic axoplasmic signals. Aplysia neurons were removed from their ganglia and placed in vitro on a substratum permissive for growth, but in the absence of glia and soluble growth factors. Under these conditions, neurites emerged and grew for approximately 4 d. Once growth had ceased, the neurites were transected. In all, 46 of 50 cells regenerated, either by resorbing the remaining neurites and elaborating a new neuritic arbor or by merely replacing the neurites that had been severed. Cut cells also exhibited enhanced excitability and, paradoxically, prolonged survival, when compared with uninjured neurons. These findings indicate that axons contain intrinsic molecular signals that are directly activated by injury to trigger changes underlying regeneration and compensatory plasticity.
Collapse
|
12
|
Hadley RD, Miller JD. The regulation of acetylated microtubules during outgrowth from cultured neurons of the snail, Helisoma. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:129-38. [PMID: 8575086 DOI: 10.1016/0165-3806(95)00115-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Axonal stumps of cultured Helisoma trivolvis neurons express abundant acetylated microtubules, as a subset of total microtubules. Label completely disappears from the axonal remnants within approximately 1 day, and reappears in newly extended neurites over the course of the next 3-4 days, first in the proximal neurite as short, isolated segments. Acetylated microtubules occur in the neuritic shaft, but never in growth cones or membranous veils. Thus, acetylated microtubules are very labile to the signals generated by axotomy, and their proximodistal re-expression occurs at well separated sites within the neurite as it matures.
Collapse
Affiliation(s)
- R D Hadley
- Department of Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
13
|
Williams DK, Cohan CS. Calcium transients in growth cones and axons of cultured Helisoma neurons in response to conditioning factors. JOURNAL OF NEUROBIOLOGY 1995; 27:60-75. [PMID: 7643076 DOI: 10.1002/neu.480270107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accumulating evidence indicates that cytosolic calcium levels regulate growth cone motility and neurite extension. The purpose of this study was to determine if intracellular calcium levels also influence the initiation of neurite extension induced by growth-promoting factors. An in vitro preparation of axotomized neurons that can be maintained in the absence of growth-promoting factors was utilized. The distal axons of cultured Helisoma neurons plated into defined medium do not extend neurites until they are exposed to Helisoma brain-conditioned medium. This provided the opportunity to study the intracellular changes associated with neurite extension. Cytosolic calcium levels were monitored with the calcium-sensitive dye fura 2 at the distal axon. In control medium calcium levels in the distal axon were constant. However, transient elevations in cytosolic calcium in the axonal growth cone occurred after addition of conditioned medium and coincident with the initiation of neurite extension. Application of calcium channel blockers showed that the transients resulted from calcium influx across the neuronal membrane. The transients, however, were not required for neurite extension, although they did influence the rate and extent of neurite outgrowth. Simultaneous extracellular patch recordings demonstrated that the calcium transients were correlated temporally with an increase in rhythmic spontaneous electrical activity of cells, suggesting that conditioned medium influences ionic membrane properties of these neurons.
Collapse
Affiliation(s)
- D K Williams
- Department of Anatomy and Cell Biology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| | | |
Collapse
|