1
|
Miranda M, Navas MC, Zanoni Saad MB, Piromalli Girado D, Weisstaub N, Bekinschtein P. Environmental enrichment in middle age rats improves spatial and object memory discrimination deficits. Front Behav Neurosci 2024; 18:1478656. [PMID: 39494036 PMCID: PMC11528545 DOI: 10.3389/fnbeh.2024.1478656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Changes in memory performance are one of the main symptoms of normal aging. The storage of similar experiences as different memories (ie. behavioral pattern separation), becomes less efficient as aging progresses. Studies have focused on hippocampus dependent spatial memories and their role in the aging related deficits in behavioral pattern separation (BPS) by targeting high similarity interference conditions. However, parahippocampal cortices such as the perirhinal cortex are also particularly vulnerable to aging. Middle age is thought to be the stage where mild mnemonic deficits begin to emerge. Therefore, a better understanding of the timing of the spatial and object domain memory impairment could shed light over how plasticity changes in the parahipocampal-hippocampal system affects mnemonic function in early aging. In the present work, we compared the performance of young and middle-aged rats in both spatial (spontaneous location recognition) and non-spatial (spontaneous object recognition) behavioral pattern separation tasks to understand the comparative progression of these deficits from early stages of aging. Moreover, we explored the impact of environmental enrichment (EE) as an intervention with important translational value. Although a bulk of studies have examined the contribution of EE for preventing age related memory decline in diverse cognitive domains, there is limited knowledge of how this intervention could specifically impact on BPS function in middle-aged animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to revert the deficits caused by normal aging at early stages. We reveal a domain-dependent impairment in behavioral pattern separation in middle-aged rats, with spatial memories affected independently of the similarity of the experiences and object memories only affected when the stimuli are similar, an effect that could be linked to the higher interference seen in this group. Moreover, we found that EE significantly enhanced behavioral performance in middle-aged rats in the spatial and object domain, and this improvement is specific of the high similarity load condition. In conclusion, these results suggest that memory is differentially affected by aging in the object and spatial domains, but that BPS function is responsive to an EE intervention in a multidomain manner.
Collapse
|
2
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
3
|
Chen Y, Branch A, Shuai C, Gallagher M, Knierim JJ. Object-place-context learning impairment correlates with spatial learning impairment in aged Long-Evans rats. Hippocampus 2024; 34:88-99. [PMID: 38073523 PMCID: PMC10843702 DOI: 10.1002/hipo.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/28/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024]
Abstract
The hippocampal formation is vulnerable to the process of normal aging. In humans, the extent of this age-related deterioration varies among individuals. Long-Evans rats replicate these individual differences as they age, and therefore they serve as a valuable model system to study aging in the absence of neurodegenerative diseases. In the Morris water maze, aged memory-unimpaired (AU) rats navigate to remembered goal locations as effectively as young rats and demonstrate minimal alterations in physiological markers of synaptic plasticity, whereas aged memory-impaired (AI) rats show impairments in both spatial navigation skills and cellular and molecular markers of plasticity. The present study investigates whether another cognitive domain is affected similarly to navigation in aged Long-Evans rats. We tested the ability of young, AU, and AI animals to recognize novel object-place-context (OPC) configurations and found that performance on the novel OPC recognition paradigm was significantly correlated with performance on the Morris water maze. In the first OPC test, young and AU rats, but not AI rats, successfully recognized and preferentially explored objects in novel OPC configurations. In a second test with new OPC configurations, all age groups showed similar OPC associative recognition memory. The results demonstrated similarities in the behavioral expression of associative, episodic-like memory between young and AU rats and revealed age-related, individual differences in functional decline in both navigation and episodic-like memory abilities.
Collapse
Affiliation(s)
- Yuxi Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Audrey Branch
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cecelia Shuai
- Undergraduate Studies, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Rothwell ES, Carp SB, Bliss-Moreau E. The importance of social behavior in nonhuman primate studies of aging: A mini-review. Neurosci Biobehav Rev 2023; 154:105422. [PMID: 37806369 PMCID: PMC10716830 DOI: 10.1016/j.neubiorev.2023.105422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Social behavior plays an important role in supporting both psychological and physical health across the lifespan. People's social lives change as they age, and the nature of these changes differ based on whether people are on healthy aging trajectories or are experiencing neurodegenerative diseases that cause dementia, such as Alzheimer's disease and Parkinson's disease. Nonhuman primate models of aging have provided a base of knowledge comparing aging trajectories in health and disease, but these studies rarely emphasize social behavior changes as a consequence of the aging process. What data exist hold particular value, as negative effects of disease and aging on social behavior are likely to have disproportionate impacts on quality of life. In this mini review, we examine the literature on nonhuman primate models of aging with a focus on social behavior, in the context of both health and disease. We propose that adopting a greater focus on social behavior outcomes in nonhuman primates will improve our understanding of the intersection of health, aging and sociality in humans.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, School of Medicine University of Pittsburgh, 3501 Fifth Avenue, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Sarah B Carp
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| | - Eliza Bliss-Moreau
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA; Department of Psychology, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| |
Collapse
|
5
|
Brosnan M, Pearce DJ, O'Neill MH, Loughnane GM, Fleming B, Zhou SH, Chong T, Nobre AC, O Connell RG, Bellgrove MA. Evidence Accumulation Rate Moderates the Relationship between Enriched Environment Exposure and Age-Related Response Speed Declines. J Neurosci 2023; 43:6401-6414. [PMID: 37507230 PMCID: PMC10500991 DOI: 10.1523/jneurosci.2260-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Older adults exposed to enriched environments (EEs) maintain relatively higher levels of cognitive function, even in the face of compromised markers of brain health. Response speed (RS) is often used as a simple proxy to measure the preservation of global cognitive function in older adults. However, it is unknown which specific selection, decision, and/or motor processes provide the most specific indices of neurocognitive health. Here, using a simple decision task with electroencephalography (EEG), we found that the efficiency with which an individual accumulates sensory evidence was a critical determinant of the extent to which RS was preserved in older adults (63% female, 37% male). Moreover, the mitigating influence of EE on age-related RS declines was most pronounced when evidence accumulation rates were shallowest. These results suggest that the phenomenon of cognitive reserve, whereby high EE individuals can better tolerate suboptimal brain health to facilitate the preservation of cognitive function, is not just applicable to neuroanatomical indicators of brain aging but can be observed in markers of neurophysiology. Our results suggest that EEG metrics of evidence accumulation may index neurocognitive vulnerability of the aging brain.Significance Statement Response speed in older adults is closely linked with trajectories of cognitive aging. Here, by recording brain activity while individuals perform a simple computer task, we identify a neural metric that is a critical determinant of response speed. Older adults exposed to greater cognitive and social stimulation throughout a lifetime could maintain faster responding, even when this neural metric was impaired. This work suggests EEG is a useful technique for interrogating how a lifetime of stimulation benefits brain health in aging.
Collapse
Affiliation(s)
- Méadhbh Brosnan
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX3 7JX, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, United Kingdom
- School of Psychology, University College Dublin, Dublin 2, Ireland
| | - Daniel J Pearce
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Megan H O'Neill
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Gerard M Loughnane
- School of Business, National College of Ireland, Dublin 1, Ireland
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Bryce Fleming
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Shou-Han Zhou
- Department of Psychology, James Cook University, Brisbane, Queensland 4000, Australia
| | - Trevor Chong
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX3 7JX, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Redmond G O Connell
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- School of Business, National College of Ireland, Dublin 1, Ireland
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
6
|
Hopkins WD, Li X, Roberts N, Mulholland MM, Sherwood CC, Edler MK, Raghanti MA, Schapiro SJ. Age differences in cortical thickness and their association with cognition in chimpanzee (Pan troglodytes). Neurobiol Aging 2023; 126:91-102. [PMID: 36958104 PMCID: PMC10106435 DOI: 10.1016/j.neurobiolaging.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Humans and chimpanzees are genetically similar and share a number of life history, behavioral, cognitive and neuroanatomical similarities. Notwithstanding, our understanding of age-related changes in cognitive and motor functions in chimpanzees remains largely unstudied despite recent evident demonstrating that chimpanzees exhibit many of the same neuropathological features of Alzheimer's disease observed in human postmortem brains. Here, we examined age-related differences in cognition and cortical thickness measured from magnetic resonance images in a sample of 215 chimpanzees ranging in age between 9 and 54 years. We found that chimpanzees showed global and region-specific thinning of cortex with increasing age. Further, within the elderly cohort, chimpanzees that performed better than average had thicker cortex in frontal, temporal and parietal regions compared to chimpanzees that performed worse than average. Independent of age, we also found sex differences in cortical thickness in 4 brain regions. Males had higher adjusted cortical thickness scores for the caudal anterior cingulate, rostral anterior cingulate, and medial orbital frontal while females had higher values for the inferior parietal cortex. We found no evidence that increasing age nor sex was associated with asymmetries in cortical thickness. Moreover, age-related differences in cognitive function were only weakly associated with asymmetries in cortical thickness. In summary, as has been reported in humans and other primates, elderly chimpanzees show thinner cortex and variation in cortical thickness is associated with general cognitive functions.
Collapse
Affiliation(s)
- William D Hopkins
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX.
| | - Xiang Li
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Michele M Mulholland
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Melissa K Edler
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Steven J Schapiro
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX; Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 2022; 25:1237-1246. [PMID: 35995877 PMCID: PMC10068908 DOI: 10.1038/s41593-022-01132-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory-verbal working memory and long-term memory in 65-88-year-old people. Modulation of synchronous low-frequency, but not high-frequency, activity in parietal cortex preferentially improved working memory on day 3 and day 4 and 1 month after intervention, whereas modulation of synchronous high-frequency, but not low-frequency, activity in prefrontal cortex preferentially improved long-term memory on days 2-4 and 1 month after intervention. The rate of memory improvements over 4 days predicted the size of memory benefits 1 month later. Individuals with lower baseline cognitive function experienced larger, more enduring memory improvements. Our findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation grounded in spatiospectral parameters of memory-specific cortical circuitry.
Collapse
|
8
|
Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A Neuroscience Primer for Integrating Geroscience With the Neurobiology of Aging. J Gerontol A Biol Sci Med Sci 2022; 77:e19-e33. [PMID: 34623396 PMCID: PMC8751809 DOI: 10.1093/gerona/glab301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M Hoffman
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Lori L McMahon
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Christy Carter
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
9
|
Tesic V, Ciric J, Jovanovic Macura I, Zogovic N, Milanovic D, Kanazir S, Perovic M. Corticosterone and Glucocorticoid Receptor in the Cortex of Rats during Aging-The Effects of Long-Term Food Restriction. Nutrients 2021; 13:nu13124526. [PMID: 34960078 PMCID: PMC8703853 DOI: 10.3390/nu13124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Irena Jovanovic Macura
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia;
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
- Correspondence:
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| |
Collapse
|
10
|
Li N, Chen G, Xie Y, Chen Z. Aging Effect on Visuomotor Adaptation: Mediated by Cognitive Decline. Front Aging Neurosci 2021; 13:742928. [PMID: 34776929 PMCID: PMC8580951 DOI: 10.3389/fnagi.2021.742928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The question of whether and how aging affects humans’ visuomotor adaptation remains controversial. This study investigates how the effect of aging on visuomotor adaptation is related to age-related cognitive declines. We compared the performance of 100 older people (age: 55–82 years) and 20 young adults (age: 18–27 years) on a visuomotor adaptation task and three cognition tasks. A decline in visuomotor adaptation of older people was well observed. However, this decline was not strongly correlated with chronological age increase but was associated to the age-related declines of cognitive functions and speed of motor planning. We then constructed a structural mediation model in which the declined cognitive resources mediated the effect of age increase on the decline in visuomotor adaptation. The data from the present study was well-explained by the mediation model. These findings indicate that the aging effect on visuomotor adaptation mainly reflects the age-related decline of cognitive functions, which results in insufficient explicit processing on visual perturbation during visuomotor control.
Collapse
Affiliation(s)
- Na Li
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guopeng Chen
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yong Xie
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zhongting Chen
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Freire-Cobo C, Edler MK, Varghese M, Munger E, Laffey J, Raia S, In SS, Wicinski B, Medalla M, Perez SE, Mufson EJ, Erwin JM, Guevara EE, Sherwood CC, Luebke JI, Lacreuse A, Raghanti MA, Hof PR. Comparative neuropathology in aging primates: A perspective. Am J Primatol 2021; 83:e23299. [PMID: 34255875 PMCID: PMC8551009 DOI: 10.1002/ajp.23299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jessie Laffey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Raia
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena S In
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph M Erwin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mary A Raghanti
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Chaudron Y, Pifferi F, Aujard F. Overview of age-related changes in psychomotor and cognitive functions in a prosimian primate, the gray mouse lemur (Microcebus murinus): Recent advances in risk factors and antiaging interventions. Am J Primatol 2021; 83:e23337. [PMID: 34706117 DOI: 10.1002/ajp.23337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023]
Abstract
Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
13
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Front Integr Neurosci 2021; 15:719076. [PMID: 34526882 PMCID: PMC8437396 DOI: 10.3389/fnint.2021.719076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
14
|
Rothwell ES, Freire-Cobo C, Varghese M, Edwards M, Janssen WGM, Hof PR, Lacreuse A. The marmoset as an important primate model for longitudinal studies of neurocognitive aging. Am J Primatol 2021; 83:e23271. [PMID: 34018622 DOI: 10.1002/ajp.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mélise Edwards
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Agnès Lacreuse
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Shafer AT, Beason-Held L, An Y, Williams OA, Huo Y, Landman BA, Caffo BS, Resnick SM. Default mode network connectivity and cognition in the aging brain: the effects of age, sex, and APOE genotype. Neurobiol Aging 2021; 104:10-23. [PMID: 33957555 DOI: 10.1016/j.neurobiolaging.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
The default mode network (DMN) overlaps with regions showing early Alzheimer's Disease (AD) pathology. Age, sex, and apolipoprotein E ɛ4 are the predominant risk factors for developing AD. How these risk factors interact to influence DMN connectivity and connectivity-cognition relationships before the onset of impairment remains unknown. Here, we examined these issues in 475 cognitively normal adults, targeting total DMN connectivity, its anticorrelated network (acDMN), and the DMN-hippocampal component. There were four main findings. First, in the ɛ3 homozygous group, lower DMN and acDMN connectivity was observed with age. Second, sex and ɛ4 modified the relationship between age and connectivity for the DMN and hippocampus with ɛ4 vs. ɛ3 males showing sustained or higher connectivity with age. Third, in the ɛ3 group, age and sex modified connectivity-cognition relationships with the oldest participants having the most differential patterns due to sex. Fourth, ɛ4 carriers with lower connectivity had poorer cognitive performance. Taken together, our results show the three predominant risk factors for AD interact to influence brain function and function-cognition relationships.
Collapse
Affiliation(s)
- Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD.
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Owen A Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Bennett A Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD.
| |
Collapse
|
16
|
Hopkins WD, Mareno MC, Webb SJN, Schapiro SJ, Raghanti MA, Sherwood CC. Age-related changes in chimpanzee (Pan troglodytes) cognition: Cross-sectional and longitudinal analyses. Am J Primatol 2021; 83:e23214. [PMID: 33169860 PMCID: PMC7904603 DOI: 10.1002/ajp.23214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Chimpanzees are the species most closely related to humans, yet age-related changes in brain and cognition remain poorly understood. The lack of studies on age-related changes in cognition in chimpanzees is particularly unfortunate in light of the recent evidence demonstrating that this species naturally develops Alzheimer's disease (AD) neuropathology. Here, we tested 213 young, middle-aged, and elderly captive chimpanzees on the primate cognitive test battery (PCTB), a set of 13 tasks that assess physical and social cognition in nonhuman primates. A subset of these chimpanzees (n = 146) was tested a second time on a portion of the PCTB tasks as a means of evaluating longitudinal changes in cognition. Cross-sectional analyses revealed a significant quadratic association between age and cognition with younger and older chimpanzees performing more poorly than middle-aged individuals. Longitudinal analyses showed that the oldest chimpanzees at the time of the first test showed the greatest decline in cognition, although the effect was mild. The collective data show that chimpanzees, like other nonhuman primates, show age-related decline in cognition. Further investigations into whether the observed cognitive decline is associated with AD pathologies in chimpanzees would be invaluable in understanding the comparative biology of aging and neuropathology in primates.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Mary Catherine Mareno
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah J Neal Webb
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute Kent State University, Kent, Ohio 44242, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| |
Collapse
|
17
|
Muiños M, Ballesteros S. Does dance counteract age-related cognitive and brain declines in middle-aged and older adults? A systematic review. Neurosci Biobehav Rev 2020; 121:259-276. [PMID: 33278423 DOI: 10.1016/j.neubiorev.2020.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 09/01/2020] [Accepted: 11/21/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dance is a multidomain activity that combines aerobic, coordination and cognitive exercise. This music-associated physical and cognitive exercise is a leisure activity that motivates people, elicits emotions, and avoids boredom, promoting adherence to practice. Continuing physical activity is of paramount importance, since cognitive benefits tend to disappear or even reverse when training ceases. OBJECTIVE The question we addressed in this systematic review is what influence dance has on the brain and cognition of healthy middle-aged and older adults. LITERATURE SURVEY We systematically reviewed the effects of dance on brain and cognition in older adults using MEDLINE, Psyc-Info, PubMed and Scopus databases. METHODOLOGY After screening 1051 studies, thirty-five met the eligibility inclusion criteria. These studies showed that dance improves brain structure and function as well as physical and cognitive functions. CONCLUSIONS The protective effect of dance training on cognition in older adults, together with the possibility of adapting intensity and style to suit possible physical limitations makes this activity very suitable for older adults.
Collapse
Affiliation(s)
- Mónica Muiños
- Universidad Internacional de Valencia (VIU), Valencia, Spain
| | | |
Collapse
|
18
|
Verheggen ICM, de Jong JJA, van Boxtel MPJ, Postma AA, Jansen JFA, Verhey FRJ, Backes WH. Imaging the role of blood-brain barrier disruption in normal cognitive ageing. GeroScience 2020; 42:1751-1764. [PMID: 33025410 PMCID: PMC7732959 DOI: 10.1007/s11357-020-00282-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
To investigate whether blood-brain barrier (BBB) disruption is a potential mechanism of usual age-related cognitive decline, we conducted dynamic contrast-enhanced (DCE) MRI to measure BBB leakage in a healthy sample, and investigated the association with longitudinal cognitive decline. In a sample of neurologically and cognitively healthy, older individuals, BBB leakage rate in the white and grey matter and hippocampus was measured using DCE MRI with pharmacokinetic modelling. Regression analysis was performed to investigate whether the leakage rate was associated with decline in cognitive performance (memory encoding, memory retrieval, executive functioning and processing speed) over 12 years. White and grey matter BBB leakages were significantly associated with decline in memory retrieval. No significant relations were found between hippocampal BBB leakage and cognitive performance. BBB disruption already being associated with usual cognitive ageing, supports that this neurovascular alteration is a possible explanation for the cognitive decline inherent to the ageing process. More insight into BBB leakage during the normal ageing process could improve estimation and interpretation of leakage rate in pathological conditions. The current results might also stimulate the search for strategies to maintain BBB integrity and help increase the proportion people experiencing successful ageing. Netherlands Trial Register number: NL6358, date of registration: 2017-03-24.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
- Alzheimer Center Limburg, Maastricht, The Netherlands.
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin P J van Boxtel
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
19
|
Shalev N, Brosnan MB, Chechlacz M. Right Lateralized Brain Reserve Offsets Age-Related Deficits in Ignoring Distraction. Cereb Cortex Commun 2020; 1:tgaa049. [PMID: 33073236 PMCID: PMC7545855 DOI: 10.1093/texcom/tgaa049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022] Open
Abstract
Age-related deterioration of attention decreases the ability to stay focused on the task at hand due to less efficient selection of relevant information and increased distractibility in the face of irrelevant, but salient stimuli. While older (compared with younger) adults may have difficulty suppressing salient distractors, the extent of these challenges differs vastly across individuals. Cognitive reserve measured by proxies of cognitively enriching life experiences, such as education, occupation, and leisure activities, is thought to mitigate the effects of the aging process and account for variability in trajectories of cognitive decline. Based on combined behavioral and neuroimaging (voxel-based morphometry) analyses of demographic, cognitive, and neural markers of aging and cognitive reserve proxy measures, we examine here predictors of variability in the age-related changes in attention function, indexed by ability to suppress salient distraction. Our findings indicate that in healthy (neurotypical), aging gray matter volume within several right lateralized fronto-parietal brain regions varies according to both levels of cognitive reserve (education) and the capacity to effectively select visual stimuli amid salient distraction. Thus, we provide here novel experimental evidence supporting Robertson's theory of a right lateralized neural basis for cognitive reserve.
Collapse
Affiliation(s)
- Nir Shalev
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Méadhbh B Brosnan
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Magdalena Chechlacz
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Verheggen ICM, de Jong JJA, van Boxtel MPJ, Gronenschild EHBM, Palm WM, Postma AA, Jansen JFA, Verhey FRJ, Backes WH. Increase in blood-brain barrier leakage in healthy, older adults. GeroScience 2020; 42:1183-1193. [PMID: 32601792 PMCID: PMC7394987 DOI: 10.1007/s11357-020-00211-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) breakdown can disrupt nutrient supply and waste removal, which affects neuronal functioning. Currently, dynamic contrast-enhanced (DCE) MRI is the preferred in-vivo method to quantify BBB leakage. Dedicated DCE MRI studies in normal aging individuals are lacking, which could hamper value estimation and interpretation of leakage rate in pathological conditions. Therefore, we applied DCE MRI to investigate the association between BBB disruption and age in a healthy sample. Fifty-seven cognitively and neurologically healthy, middle-aged to older participants (mean age: 66 years, range: 47-91 years) underwent MRI, including DCE MRI with intravenous injection of a gadolinium-based contrast agent. Pharmacokinetic modeling was applied to contrast concentration time-curves to estimate BBB leakage rate in each voxel. Subsequently, leakage rate was calculated in the white and gray matter, and primary (basic sensory and motor functions), secondary (association areas), and tertiary (higher-order cognition) brain regions. A difference in vulnerability to deterioration was expected between these regions, with especially tertiary regions being affected by age. Higher BBB leakage rate was significantly associated with older age in the white and gray matter, and also in tertiary, but not in primary or secondary brain regions. Even in healthy individuals, BBB disruption was stronger in older persons, which suggests BBB disruption is a normal physiologically aging phenomenon. Age-related increase in BBB disruption occurred especially in brain regions most vulnerable to age-related deterioration, which may indicate that BBB disruption is an underlying mechanism of normal age-related decline.Netherlands Trial Register number: NL6358, date of registration: 2017-03-24.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Alzheimer Center Limburg, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin P J van Boxtel
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Alzheimer Center Limburg, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Ed H B M Gronenschild
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Alzheimer Center Limburg, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Walter M Palm
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Alzheimer Center Limburg, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
Cole RC, Hazeltine E, Weng TB, Wharff C, DuBose LE, Schmid P, Sigurdsson G, Magnotta VA, Pierce GL, Voss MW. Cardiorespiratory fitness and hippocampal volume predict faster episodic associative learning in older adults. Hippocampus 2019; 30:143-155. [PMID: 31461198 DOI: 10.1002/hipo.23151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Declining episodic memory is common among otherwise healthy older adults, in part due to negative effects of aging on hippocampal circuits. However, there is significant variability between individuals in severity of aging effects on the hippocampus and subsequent memory decline. Importantly, variability may be influenced by modifiable protective physiological factors such as cardiorespiratory fitness (CRF). More research is needed to better understand which aspects of cognition that decline with aging benefit most from CRF. The current study evaluated the relation of CRF with learning rate on the episodic associative learning (EAL) task, a task designed specifically to target hippocampal-dependent relational binding and to evaluate learning with repeated occurrences. Results show higher CRF was associated with faster learning rate. Larger hippocampal volume was also associated with faster learning rate, though hippocampal volume did not mediate the relationship between CRF and learning rate. Furthermore, to support the distinction between learning item relations and learning higher-order sequences, which declines with aging but is largely reliant on extra-hippocampal learning systems, we found learning rate on the EAL task was not related to motor sequence learning on the alternating serial reaction time task. Motor sequence learning was also not correlated with hippocampal volume. Thus, for the first time, we show that both higher CRF and larger hippocampal volume in healthy older adults are related to enhanced rate of relational memory acquisition.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Eliot Hazeltine
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Timothy B Weng
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Conner Wharff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Lyndsey E DuBose
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Phillip Schmid
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Gardar Sigurdsson
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Vincent A Magnotta
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Michelle W Voss
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
22
|
Templer VL, Wise TB, Heimer-McGinn VR. Social housing protects against age-related working memory decline independently of physical enrichment in rats. Neurobiol Aging 2018; 75:117-125. [PMID: 30557770 DOI: 10.1016/j.neurobiolaging.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
Longitudinal human studies suggest that as we age, sociality provides protective benefits against cognitive decline. However, little is known about the underlying neural mechanisms. Rodent studies, which are ideal for studying cognition, fail to examine the independent effects of social housing while controlling for physical enrichment in all groups. In this study, rats were socially housed or nonsocially housed throughout their lifespan and tested in the radial arm maze to measure working memory (WM) and reference memory longitudinally at 3 ages. In old age, exclusively, socially housed rats made significantly less WM errors than nonsocially housed rats, while reference memory errors did not differ between groups at any age. Anxiety, as assessed behaviorally and physiologically, could not account for the observed differences in WM. These data provide the first evidence that social enrichment alone can prevent age-related WM deficits in spite of the effects of practice seen in longitudinal designs. Importantly, our model will facilitate future investigations into the mechanisms underlying the neuroprotective benefits of sociability in old age.
Collapse
Affiliation(s)
| | - Taylor B Wise
- Psychology Department, Providence College, Providence, RI, USA
| | | |
Collapse
|
23
|
Tune S, Wöstmann M, Obleser J. Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners. Eur J Neurosci 2018; 48:2537-2550. [PMID: 29430736 DOI: 10.1111/ejn.13862] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/22/2017] [Accepted: 02/01/2018] [Indexed: 02/05/2023]
Abstract
In recent years, hemispheric lateralisation of alpha power has emerged as a neural mechanism thought to underpin spatial attention across sensory modalities. Yet, how healthy ageing, beginning in middle adulthood, impacts the modulation of lateralised alpha power supporting auditory attention remains poorly understood. In the current electroencephalography study, middle-aged and older adults (N = 29; ~40-70 years) performed a dichotic listening task that simulates a challenging, multitalker scenario. We examined the extent to which the modulation of 8-12 Hz alpha power would serve as neural marker of listening success across age. With respect to the increase in interindividual variability with age, we examined an extensive battery of behavioural, perceptual and neural measures. Similar to findings on younger adults, middle-aged and older listeners' auditory spatial attention induced robust lateralisation of alpha power, which synchronised with the speech rate. Notably, the observed relationship between this alpha lateralisation and task performance did not co-vary with age. Instead, task performance was strongly related to an individual's attentional and working memory capacity. Multivariate analyses revealed a separation of neural and behavioural variables independent of age. Our results suggest that in age-varying samples as the present one, the lateralisation of alpha power is neither a sufficient nor necessary neural strategy for an individual's auditory spatial attention, as higher age might come with increased use of alternative, compensatory mechanisms. Our findings emphasise that explaining interindividual variability will be key to understanding the role of alpha oscillations in auditory attention in the ageing listener.
Collapse
Affiliation(s)
- Sarah Tune
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, 23562, Lübeck, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, 23562, Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, 23562, Lübeck, Germany
| |
Collapse
|
24
|
Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task. Neuroimage 2017; 165:92-101. [PMID: 28988829 DOI: 10.1016/j.neuroimage.2017.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/24/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022] Open
Abstract
Cognitive decline during aging includes impairments in frontal executive functions like reduced inhibitory control. However, decline is not uniform across the population, suggesting individual brain response variability to the aging process. Here we tested the hypothesis, within the oculomotor system, that older adults compensate for age-related neural alterations by changing neural activation levels of the oculomotor areas, or even by recruiting additional areas to assist with cognitive performance. We established that the observed changes had to be related to better cognitive performance to be considered as compensatory. To probe this hypothesis we used the antisaccade paradigm and analyzed the effect of aging on brain activations during the inhibition of prepotent responses to visual stimuli. While undergoing a fMRI scan with concurrent eye tracking, 25 young adults (21.7 y/o ± 1.9 SDM) and 25 cognitively normal older adults (66.2 y/o ± 9.8 SDM) performed an interleaved pro/antisaccade task consisting of a preparatory stage and an execution stage. Compared to young adults, older participants showed a larger increase in antisaccade reaction times, while also generating more antisaccade direction errors. BOLD signal analyses during the preparatory stage, when response inhibition processes are established to prevent an automatic response, showed decreased activations in the anterior cingulate and the supplementary eye fields in the older group. Moreover, older adults also showed additional recruitment of the frontal pole not seen in the younger group, and larger activations in the dorsolateral prefrontal cortex during antisaccade preparation. Additional analyses to address the performance variability in the older group showed distinct behavioral-BOLD signal correlations. Larger activations in the saccade network, including the frontal pole, positively correlated with faster antisaccade reaction times, suggesting a functional recruitment of this area. However, only the activation in the dorsolateral prefrontal cortex during the antisaccade events showed a negative correlation with the number of errors across older adults. These findings support the presence of two dissociable age-related plastic mechanisms that result in different behavioral outcomes. One related to the additional recruitment of neural resources within anterior pole to facilitate modulation of cognitive responses like faster antisaccade reaction times, and another related to increased activation of the dorsolateral prefrontal cortex resulting in a better inhibitory control in aging.
Collapse
|
25
|
Gallagher M, Burwell R, Burchinal M. Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behav Neurosci 2016. [PMID: 26214219 DOI: 10.1037/bne0000080] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Morris water maze task was originally designed to assess the rat's ability to learn to navigate to a specific location in a relatively large spatial environment. This article describes new measures that provide information about the spatial distribution of the rat's search during both training and probe trial performance. The basic new measure optimizes the use of computer tracking to identify the rat's position with respect to the target location. This proximity measure was found to be highly sensitive to age-related impairment in an assessment of young and aged male Long-Evans rats. Also described is the development of a learning index that provides a continuous, graded measure of the severity of age-related impairment in the task. An index of this type should be useful in correlational analyses with other neurobiological or behavioral measures for the study of individual differences in functional/biological decline in aging.
Collapse
|
26
|
Moussard A, Bermudez P, Alain C, Tays W, Moreno S. Life-long music practice and executive control in older adults: An event-related potential study. Brain Res 2016; 1642:146-153. [PMID: 27021953 DOI: 10.1016/j.brainres.2016.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/29/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Recent research has indicated that music practice can influence cognitive processing across the lifespan. Although extensive musical experience may have a mitigating effect on cognitive decline in older adults, the nature of changes to brain functions underlying performance benefits remains underexplored. The present study was designed to investigate the underlying neural mechanisms that may support apparent beneficial effects of life-long musical practice on cognition. We recorded event-related potentials (ERPs) in older musicians (N=17; average age=69.2) and non-musicians (N=17; average age=69.9), matched for age and education, while they completed an executive control task (visual go/no-go). Whereas both groups showed similar response speed and accuracy on go trials, older musicians showed fewer no-go errors. ERP recordings revealed the typical N2/P3 complex, but the nature of these responses differed between groups in that (1) older musicians showed larger N2 and P3 effects ('no-go minus go' amplitude), with the N2 amplitude being correlated with behavioral accuracy for no-go trials and (2) the topography of the P3 response was more anterior in musicians. Moreover, P3 amplitude was correlated with measures of musical experience in musicians. In our discussion of these results, we propose that music practice may have conferred an executive control advantage for musicians in later life.
Collapse
Affiliation(s)
- Aline Moussard
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Canada.
| | - Patrick Bermudez
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Canada
| | - William Tays
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Canada
| | - Sylvain Moreno
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Canada
| |
Collapse
|
27
|
DeCarli C. A call for new thoughts about what might influence human brain aging: aging, apolipoprotein E, and amyloid. JAMA Neurol 2015; 72:500-2. [PMID: 25775040 DOI: 10.1001/jamaneurol.2015.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento
| |
Collapse
|
28
|
Kaja S, Sumien N, Shah VV, Puthawala I, Maynard AN, Khullar N, Payne AJ, Forster MJ, Koulen P. Loss of Spatial Memory, Learning, and Motor Function During Normal Aging Is Accompanied by Changes in Brain Presenilin 1 and 2 Expression Levels. Mol Neurobiol 2015; 52:545-54. [PMID: 25204494 PMCID: PMC4362879 DOI: 10.1007/s12035-014-8877-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Mutations in presenilin (PS) proteins cause familial Alzheimer's disease. We herein tested the hypothesis that the expression levels of PS proteins are differentially affected during healthy aging, in the absence of pathological mutations. We used a preclinical model for aging to identify associations between PS expression and quantitative behavioral parameters for spatial memory and learning and motor function. We identified significant changes of PS protein expression in both cerebellum and forebrain that correlated with the performance in behavioral paradigms for motor function and memory and learning. Overall, PS1 levels were decreased, while PS2 levels were increased in aged mice compared with young controls. Our study presents novel evidence for the differential expression of PS proteins in a nongenetic model for aging, resulting in an overall increase of the PS2 to PS1 ratio. Our findings provide a novel mechanistic basis for molecular and functional changes during normal aging.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Natalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107
| | - Vidhi V. Shah
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Imran Puthawala
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Alexandra N. Maynard
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Nitasha Khullar
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Andrew J. Payne
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
- Department of Basic Medical Science, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| |
Collapse
|
29
|
Languille S, Liévin-Bazin A, Picq JL, Louis C, Dix S, De Barry J, Blin O, Richardson J, Bordet R, Schenker E, Djelti F, Aujard F. Deficits of psychomotor and mnesic functions across aging in mouse lemur primates. Front Behav Neurosci 2015; 8:446. [PMID: 25620921 PMCID: PMC4288241 DOI: 10.3389/fnbeh.2014.00446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition (NOR) memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.
Collapse
Affiliation(s)
- Solène Languille
- UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France Brunoy, France
| | - Agatha Liévin-Bazin
- UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France Brunoy, France
| | - Jean-Luc Picq
- UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France Brunoy, France ; Laboratoire de Psychopathologie et de Neuropsychologie, EA 2027, Université Paris 8 St-Denis, France
| | - Caroline Louis
- Institut de Recherches Servier Croissy-sur-Seine, France
| | | | - Jean De Barry
- INCI UPR3212 CNRS et Innovative Health Diagnostics Strasbourg, France
| | - Olivier Blin
- Centre de Pharmacologie Clinique et d'Evaluations Thérapeutiques-CIC, Timone CNRS-INT-Aix Marseille Université Marseille, France
| | - Jill Richardson
- GlaxoSmithKline, R&D China U.K. Group Stevenage Stevenage, UK
| | - Régis Bordet
- Département de Pharmacologie Médicale, EA 1046, Université Lille Nord de France, UDSL, Faculté de Médecine CHU, Lille, France
| | | | - Fathia Djelti
- UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France Brunoy, France
| | - Fabienne Aujard
- UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle France Brunoy, France
| |
Collapse
|
30
|
Hayat SA, Luben R, Moore S, Dalzell N, Bhaniani A, Anuj S, Matthews FE, Wareham N, Khaw KT, Brayne C. Cognitive function in a general population of men and women: a cross sectional study in the European Investigation of Cancer-Norfolk cohort (EPIC-Norfolk). BMC Geriatr 2014; 14:142. [PMID: 25527303 PMCID: PMC4349767 DOI: 10.1186/1471-2318-14-142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/11/2014] [Indexed: 01/10/2023] Open
Abstract
Background Although ageing is strongly associated with cognitive decline, a wide range of cognitive ability is observed in older populations with varying rates of change across different cognitive domains. Methods Cognitive function was measured as part of the third health examination of the European Prospective Investigation of Cancer in Norfolk (EPIC-Norfolk 3) between 2006 and 2011 (including measures from the pilot phase from 2004 to 2006). This was done using a battery consisting of seven previously validated cognitive function tests assessing both global function and specific domains. The battery included a shortened version of the Extended Mental State Exam (SF-EMSE); letter cancellation task; Hopkins Verbal Learning Test (HVLT); Cambridge Neuropsychological Test Automated Battery Paired Associates Learning Test (CANTAB-PAL); Visual Sensitivity Test (VST); Shortened version of the National Adult Reading Test (Short-NART) and a task to test for prospective memory. We report the distribution of cognitive function in different cognitive domains by age and sex and compare the utility of a number of assessment tests in a general population of older men and women. Results Cognitive test data were available for 8585 men and women taking part in EPIC-Norfolk 3. Increasing age was generally associated with declining mean cognitive function, but there was a wide range observed within each age group as well as variability across different cognitive domains. Some sex differences were also observed. Conclusion Descriptive data are presented for this general population sample of older men and women. There is a wide range of cognitive performance seen in this population. Though average performance declines with age, there is large individual variability across different cognitive domains. These variations may provide insights into the determinants of cognitive function in later life. Electronic supplementary material The online version of this article (doi:10.1186/1471-2318-14-142) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shabina A Hayat
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Autrey MM, Reamer LA, Mareno MC, Sherwood CC, Herndon JG, Preuss T, Schapiro SJ, Hopkins WD. Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification. Neuroimage 2014; 101:59-67. [PMID: 24983715 PMCID: PMC4165649 DOI: 10.1016/j.neuroimage.2014.06.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan.
Collapse
Affiliation(s)
- Michelle M Autrey
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA
| | - Lisa A Reamer
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington DC 20052, USA
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Todd Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Steve J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, USA; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
32
|
Adrenocortical status predicts the degree of age-related deficits in prefrontal structural plasticity and working memory. J Neurosci 2014; 34:8387-97. [PMID: 24948795 DOI: 10.1523/jneurosci.1385-14.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cognitive decline in aging is marked by considerable variability, with some individuals experiencing significant impairments and others retaining intact functioning. Whereas previous studies have linked elevated hypothalamo-pituitary-adrenal (HPA) axis activity with impaired hippocampal function during aging, the idea has languished regarding whether such differences may underlie the deterioration of other cognitive functions. Here we investigate whether endogenous differences in HPA activity are predictive of age-related impairments in prefrontal structural and behavioral plasticity. Young and aged rats (4 and 21 months, respectively) were partitioned into low or high HPA activity, based upon averaged values of corticosterone release from each animal obtained from repeated sampling across a 24 h period. Pyramidal neurons in the prelimbic area of medial prefrontal cortex were selected for intracellular dye filling, followed by 3D imaging and analysis of dendritic spine morphometry. Aged animals displayed dendritic spine loss and altered geometric characteristics; however, these decrements were largely accounted for by the subgroup bearing elevated corticosterone. Moreover, high adrenocortical activity in aging was associated with downward shifts in frequency distributions for spine head diameter and length, whereas aged animals with low corticosterone showed an upward shift in these indices. Follow-up behavioral experiments revealed that age-related spatial working memory deficits were exacerbated by increased HPA activity. By contrast, variations in HPA activity in young animals failed to impact structural or behavioral plasticity. These data implicate the cumulative exposure to glucocorticoids as a central underlying process in age-related prefrontal impairment and define synaptic features accounting for different trajectories in age-related cognitive function.
Collapse
|
33
|
Koh MT, Spiegel AM, Gallagher M. Age-associated changes in hippocampal-dependent cognition in Diversity Outbred mice. Hippocampus 2014; 24:1300-7. [PMID: 24909986 DOI: 10.1002/hipo.22311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/05/2022]
Abstract
Episodic memory impairment due to aging has been linked to hippocampal dysfunction. Evidence exists for alterations in specific circuits within the hippocampal system that are closely coupled to individual differences in the presence and severity of such memory loss. Here, we used the newly developed Diversity Outbred (DO) mouse that was designed to model the genetic diversity in human populations. Young and aged DO mice were tested in a hippocampal-dependent water maze task. Young mice showed higher proficiency and more robust memory compared to the overall performance of aged mice. A substantial number of the older mice, however, performed on par with the normative performance of the younger mice. Stereological quantification of somatostatin-immunoreactive neurons in the dentate hilus showed that high-performing young and unimpaired aged mice had similar numbers of somatostatin-positive interneurons, while aged mice that were impaired in the spatial task had significantly fewer such neurons. These data in the DO model tie loss of hilar inhibitory network integrity to age-related memory impairment, paralleling data in other rodent models.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | | |
Collapse
|
34
|
Lu W, Yang S, Chen L, Qiu X, Huang CX, Wu H, Li C, Yang JQ, Zhang L, Chao FL, Tang Y. Stereological investigation of the age-related changes of the myelinated fibers in the hippocampus of male rats. Anat Rec (Hoboken) 2014; 297:1490-7. [PMID: 24782353 DOI: 10.1002/ar.22936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 03/18/2014] [Indexed: 11/08/2022]
Abstract
The decline of hippocampus-dependent learning and memory during normal aging is not associated with neuron death and synapse loss. Until now, age-related changes in the myelinated fibers of the hippocampus have not been investigated. Therefore, in this study, the myelinated fibers in the hippocampi of young (6 months), middle-aged (18 months), and old-aged (28 months) male Sprague-Dawley rats were studied with transmission electron microscope and stereological methods, following spatial learning tests in a Morris water maze. The results showed that hippocampus-dependent spatial learning was impaired in old-aged rats but that the total volume, length, and mean diameter of the myelinated fibers in the hippocampus, as well as the hippocampal volume, remained constant during the normal aging process. Our results suggest that the age-related decline in hippocampus-dependent spatial learning is not attributable to myelinated fiber changes in the hippocampus and that other, undetermined factors are responsible.
Collapse
Affiliation(s)
- Wei Lu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China; Department of Pediatrics, Navy General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sadagopan N, Smith A. Age differences in speech motor performance on a novel speech task. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2013; 56:1552-1566. [PMID: 24023373 DOI: 10.1044/1092-4388(2013/12-0293)] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PURPOSE The study was aimed at characterizing age-related changes in speech motor performance on a nonword repetition task as a function of practice and nonword length and complexity. METHOD Nonword repetition accuracy, lip aperture coordination, and nonword production durations were assessed on 2 consecutive days for 16 young and 16 elderly participants for the production of 6 novel nonwords increasing in length and complexity. RESULTS The effect of age on the ability to accurately and rapidly repeat long, complex nonwords was significant. However, the authors found no differences between the speech motor coordinative patterns of young and elderly adults. Further, the authors demonstrated age- and nonword-specific within- and between-session gains in speech motor performance. CONCLUSIONS The authors speculate that cognitive, sensory, and motor factors interact in complex ways in elderly individuals to produce individual differences in nonword repetition ability at the levels of both behavioral and speech motor performance.
Collapse
|
36
|
Kaja S, Sumien N, Borden PK, Khullar N, Iqbal M, Collins JL, Forster MJ, Koulen P. Homer-1a immediate early gene expression correlates with better cognitive performance in aging. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1799-1808. [PMID: 23054826 PMCID: PMC3776093 DOI: 10.1007/s11357-012-9479-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/13/2012] [Indexed: 05/31/2023]
Abstract
The molecular mechanisms underlying cognitive decline during healthy aging remain largely unknown. Utilizing aged wild-type C57BL/6 mice as a model for normal aging, we tested the hypothesis that cognitive performance, memory, and learning as assessed in established behavioral testing paradigms are correlated with the differential expression of isoforms of the Homer family of synaptic scaffolding proteins. Here we describe a loss of cognitive and motor function that occurs when Homer-1a/Vesl-1S protein levels drop during aging. Our data describe a novel mechanism of age-related synaptic changes contributing to loss of biological function, spatial learning, and memory formation as well as motor coordination, with the dominant negative uncoupler of synaptic protein clustering, Homer-1a/Vesl-1S, as a potential target for the prophylaxis and treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Simon Kaja
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Nathalie Sumien
- />Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Priscilla K. Borden
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Nitasha Khullar
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Maaz Iqbal
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Julie L. Collins
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Michael J. Forster
- />Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Peter Koulen
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
- />Department of Basic Medical Science, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| |
Collapse
|
37
|
Ottis P, Topic B, Loos M, Li KW, de Souza A, Schulz D, Smit AB, Huston JP, Korth C. Aging-induced proteostatic changes in the rat hippocampus identify ARP3, NEB2 and BRAG2 as a molecular circuitry for cognitive impairment. PLoS One 2013; 8:e75112. [PMID: 24069387 PMCID: PMC3777897 DOI: 10.1371/journal.pone.0075112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/10/2013] [Indexed: 11/28/2022] Open
Abstract
Disturbed proteostasis as a particular phenotype of the aging organism has been advanced in C. elegans experiments and is also conceived to underlie neurodegenerative diseases in humans. Here, we investigated whether particular changes in non-disease related proteostasis can be identified in the aged mammalian brain, and whether a particular signature of aberrant proteostasis is related to behavioral performance of learning and memory. Young (adult, n = 30) and aged (2 years, n = 50) Wistar rats were tested in the Morris Water Maze (MWM) to distinguish superior and inferior performers. For both young and old rats, the best and worst performers in the MWM were selected and the insoluble proteome, termed aggregome, was purified from the hippocampus as evidence for aberrant proteostasis. Quantitative proteomics (iTRAQ) was performed. The aged inferior performers were considered as a model for spontaneous, age-associated cognitive impairment. Whereas variability of the insoluble proteome increased with age, absolute changes in the levels of insoluble proteins were small compared to the findings in the whole C. elegans insoluble proteome. However, we identified proteins with aberrant proteostasis in aging. For the cognitively impaired rats, we identified a changed molecular circuitry of proteins selectively involved in F-actin remodeling, synapse building and long-term depression: actin related protein 3 (ARP3), neurabin II (NEB2) and IQ motif and SEC7 domain-containing protein 1 (BRAG2). We demonstrate that aberrant proteostasis is a specific phenotype of brain aging in mammals. We identify a distinct molecular circuitry where changes in proteostasis are characteristic for poor learning and memory performance in the wild type, aged rat. Our findings 1. establish the search for aberrant proteostasis as a successful strategy to identify neuronal dysfunction in deficient cognitive behavior, 2. reveal a previously unknown functional network of proteins (ARP3, NEB2, BRAG2) involved in age-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Philipp Ottis
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Bianca Topic
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Maarten Loos
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Synaptologics B.V., Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Angelica de Souza
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Daniela Schulz
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Joseph P. Huston
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
Evidence is growing that vascular risk factors (VRFs) for Alzheimer's disease (AD) affect cerebral hemodynamics to launch a cascade of cellular and molecular changes that initiate cognitive deficits and eventual progression of AD. Neuroimaging studies have reported VRFs for AD to be accurate predictors of cognitive decline and dementia. In regions that participate in higher cognitive function, middle temporal, posterior cingulate, inferior parietal and precuneus regions, and neuroimaging studies indicate an association involving VRFs, cerebral hypoperfusion, and cognitive decline in elderly individuals who develop AD. The VRF can be present in cognitively intact individuals for decades before mild cognitive deficits or neuropathological signs are manifested. In that sense, they may be "ticking time bombs" before cognitive function is demolished. Preventive intervention of modifiable VRF may delay or block progression of AD. Intervention could target cerebral blood flow (CBF), since most VRFs act to lower CBF in aging individuals by promoting cerebrovascular dysfunction.
Collapse
|
39
|
Alichniewicz KK, Brunner F, Klünemann HH, Greenlee MW. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Front Psychol 2013; 4:467. [PMID: 23898312 PMCID: PMC3721022 DOI: 10.3389/fpsyg.2013.00467] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/04/2013] [Indexed: 11/25/2022] Open
Abstract
Performance on tasks that require saccadic inhibition declines with age and altered inhibitory functioning has also been reported in patients with Alzheimer's disease. Although mild cognitive impairment (MCI) is assumed to be a high-risk factor for conversion to AD, little is known about changes in saccadic inhibition and its neural correlates in this condition. Our study determined whether the neural activation associated with saccadic inhibition is altered in persons with amnestic mild cognitive impairment (aMCI). Functional magnetic resonance imaging (fMRI) revealed decreased activation in parietal lobe in healthy elderly persons compared to young persons and decreased activation in frontal eye fields in aMCI patients compared to healthy elderly persons during the execution of anti-saccades. These results illustrate that the decline in inhibitory functions is associated with impaired frontal activation in aMCI. This alteration in function might reflect early manifestations of AD and provide new insights in the neural activation changes that occur in pathological ageing.
Collapse
Affiliation(s)
- K K Alichniewicz
- Institute of Experimental Psychology, University of Regensburg Regensburg, Germany
| | | | | | | |
Collapse
|
40
|
Zhang L, Jin C, Liu Q, Lu X, Wu S, Yang J, Du Y, Zheng L, Cai Y. Effects of subchronic aluminum exposure on spatial memory, ultrastructure and L-LTP of hippocampus in rats. J Toxicol Sci 2013; 38:255-68. [DOI: 10.2131/jts.38.255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lifeng Zhang
- Heping District Center for Disease Control and Prevention,China
- Department of Toxicology, School of Public Health, China Medical University, China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Qiufang Liu
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Yanqiu Du
- 9th People’s Hospital of Shenyang, China
| | - Linlin Zheng
- Medical college, Eastern Liaoning University, China
| | - Yuan Cai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
- Department of Toxicology, School of Public Health, China Medical University, China
| |
Collapse
|
41
|
Yetimler B, Ulusoy G, Çelik T, Jakubowska-Doğru E. Differential effect of age on the brain fatty acid levels and their correlation with animal cognitive status in mice. Pharmacol Biochem Behav 2012; 103:53-9. [DOI: 10.1016/j.pbb.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/11/2012] [Accepted: 07/14/2012] [Indexed: 11/29/2022]
|
42
|
Foster TC, Defazio RA, Bizon JL. Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci 2012; 4:12. [PMID: 22988436 PMCID: PMC3439636 DOI: 10.3389/fnagi.2012.00012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
Episodic memory, especially memory for contextual or spatial information, is particularly vulnerable to age-related decline in humans and animal models of aging. The continuing improvement of virtual environment technology for testing humans signifies that widely used procedures employed in the animal literature for examining spatial memory could be developed for examining age-related cognitive decline in humans. The current review examines cross species considerations for implementing these tasks and translating findings across different levels of analysis. The specificity of brain systems as well as gaps in linking human and animal laboratory models is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
43
|
Decreased levels of nuclear glucocorticoid receptor protein in the hippocampus of aged Long-Evans rats with cognitive impairment. Brain Res 2012; 1478:48-54. [PMID: 22971526 DOI: 10.1016/j.brainres.2012.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/22/2022]
Abstract
Previous studies using animal models of cognitive aging showed that hypothalamic-pituitary-adrenal (HPA) responses to stress are impaired and glucocorticoid receptor (GR) mRNA is decreased in cognitively impaired aged rats, compared with those in young rats and cognitively unimpaired aged rats. Increased HPA activity is associated with the loss of hippocampal corticosteroid receptors. In the current investigation, GR expressions in the hippocampus were examined in young and aged male Long-Evans rats whose spatial memory was initially assessed on the Morris water maze task. We evaluated GR protein level in the hippocampus in young and aged rats characterized on the basis of the spatial task. In the hippocampus of aged rats with spatial memory impairments, GR protein level was decreased in the nucleus but not in the cytosol, and levels of glucocorticoid response elements binding activity was decreased. These results suggest that GR signaling is impaired in the hippocampus of rats with cognitive impairment. Impaired GR signaling may contribute to HPA axis dysfunction in aged rats and aged humans with cognitive impairment.
Collapse
|
44
|
Huxter JR, Miranda JA, Dias R. The hippocampal physiology of approaching middle-age: early indicators of change. Hippocampus 2012; 22:1923-40. [PMID: 22674542 DOI: 10.1002/hipo.22027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/24/2022]
Abstract
Age-related cognitive decline presents serious lifestyle challenges, and anatomical changes to the hippocampus are often implicated in clinical conditions later in life. However, relatively little is known about how hippocampal physiology is altered in the transition to middle-age, when early detection may offer the best opportunity for successful treatment. High-yield extracellular recording is a powerful tool for understanding brain function in freely moving animals at single-cell resolution and with millisecond precision. We used this technique to characterize changes to hippocampal physiology associated with maturation in 35-week-old rats. Combining a series of behavioral tasks with recordings of large numbers of neurons, local field potentials (LFP), and network patterns of activation, we were able to generate a comprehensive picture based on more than 25 different assays for each subject. Notable changes associated with aging included increased firing rates in interneurons, reduced LFP power but increased frequency in the 4-12 Hz theta band, and impairment in hippocampal pattern-separation for different environments. General properties of pyramidal cell firing and spatial map integrity were preserved. There was no impairment in theta phase-precession, experience-dependent place field expansion, or sleep reactivation of waking network patterns. There were however changes in foraging strategy and behavioral responses to the introduction of a novel environment. Taken together the results reveal a diverse pattern of changes which are of increasing relevance in an aging population. They also highlight areas where high-yield electrophysiological assays can be used to provide the sensitivity and throughput required for pre-clinical drug-discovery programs.
Collapse
Affiliation(s)
- John R Huxter
- Neusentis, Pfizer Ltd., The Portway Building, Granta Park, Great Abington, United Kingdom.
| | | | | |
Collapse
|
45
|
Abstract
There are important and sustained interindividual differences in cognition during aging. Here, we investigated hippocampal spatial representations in a rat model of cognitive aging characterized by individual differences in a mnemonic task. Individual cognitive capabilities in old rats were assessed in a delayed non-matching-to-position task. We recorded hippocampal CA1 place cells as the rats explored a familiar environment. Unlike the usual place cells commonly described in the literature, we found that a significant fraction of pyramidal neurons recorded in our study showed a substantial delayed onset of their place field activity. We established that this firing onset delay naturally occurs under basal conditions in old rats and is positively correlated with the remapping status of the animals. The lack of firing during the first few hundred seconds after the animals were introduced into a familiar environment was also associated with an increased locomotion in the remapping rats. This delayed activity is central to understanding the individual basis of age-related cognitive impairment and to resolving numerous discrepancies in the literature on the place cell contribution to the etiology of aged-related decline. Finally, we also found a positive correlation between the degree of firing variability of place cells ("overdispersion") and performance during the long delays in the delayed non-matching-to-position task. Place cell overdispersion might provide the functional basis for interindividual differences in behavior and cognition.
Collapse
|
46
|
Sanders MJ. Context processing in aging: older mice are impaired in renewal of extinguished fear. Exp Aging Res 2012; 37:572-94. [PMID: 22091582 DOI: 10.1080/0361073x.2011.619874] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fear conditioning, extinction, and renewal were evaluated in adult (6-month-old) and aging (17-month-old) male C57Bl/6 mice. Mice were subjected to five tone-shock trials and later exposed to 150 tone-alone trials. Thereafter, all mice showed little fear in the extinction context. Adult mice demonstrated return of fear in a distinct context (renewal) but aging mice did not. Aging mice showed normal shock sensitivity, tone fear learning, and extinction. Aging mice thus exhibited a very selective deficit in the contextual gating of extinguished fear. This contextual gating deficit may reflect age-related pathology in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Matthew J Sanders
- Department of Psychology, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| |
Collapse
|
47
|
Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012; 96:283-303. [PMID: 22307057 DOI: 10.1016/j.pneurobio.2012.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca²⁺) regulation and Ca²⁺-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca²⁺ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca²⁺ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL 32610-0244, USA. ,
| |
Collapse
|
48
|
Languille S, Blanc S, Blin O, Canale CI, Dal-Pan A, Devau G, Dhenain M, Dorieux O, Epelbaum J, Gomez D, Hardy I, Henry PY, Irving EA, Marchal J, Mestre-Francés N, Perret M, Picq JL, Pifferi F, Rahman A, Schenker E, Terrien J, Théry M, Verdier JM, Aujard F. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev 2012; 11:150-62. [PMID: 21802530 DOI: 10.1016/j.arr.2011.07.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 07/08/2011] [Indexed: 01/27/2023]
Abstract
The use of non-human primate models is required to understand the ageing process and evaluate new therapies against age-associated pathologies. The present article summarizes all the contributions of the grey mouse lemur Microcebus murinus, a small nocturnal prosimian primate, to the understanding of the mechanisms of ageing. Results from studies of both healthy and pathological ageing research on the grey mouse lemur demonstrated that this animal is a unique model to study age-dependent changes in endocrine systems, biological rhythms, thermoregulation, sensorial, cerebral and cognitive functions.
Collapse
|
49
|
Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm (Vienna) 2011; 119:173-95. [PMID: 22086139 DOI: 10.1007/s00702-011-0731-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/24/2011] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common origin of dementia in the elderly. Although the cause of AD remains unknown, several factors have been identified that appear to play a critical role in the development of this debilitating disorder. In particular, amyloid precursor protein (APP), tau hyperphosphorylation, and the secretase enzymes, have become the focal point of recent research. Over the last two decades, several transgenic and non-transgenic animal models have been developed to elucidate the mechanistic aspects of AD and to validate potential therapeutic targets. Transgenic rodent models over-expressing human β-amyloid precursor protein (β-APP) and mutant forms of tau have become precious tools to study and understand the pathogenesis of AD at the molecular, cellular and behavioural levels, and to test new therapeutic agents. Nevertheless, none of the transgenic models of AD recapitulate fully all of the pathological features of the disease. Octodon degu, a South American rodent has been recently found to spontaneously develop neuropathological signs of AD in old age. This review aims to address the limitations and clinical relevance of transgenic rodent models in AD, and to highlight the potential for O. degu as a natural model for the study of AD neuropathology.
Collapse
|
50
|
Mawhinney LJ, de Rivero Vaccari JP, Alonso OF, Jimenez CA, Furones C, Moreno WJ, Lewis MC, Dietrich WD, Bramlett HM. Isoflurane/nitrous oxide anesthesia induces increases in NMDA receptor subunit NR2B protein expression in the aged rat brain. Brain Res 2011; 1431:23-34. [PMID: 22137658 DOI: 10.1016/j.brainres.2011.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/13/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
Postoperative cognitive dysfunction, POCD, afflicts a large number of elderly surgical patients following surgery with general anesthesia. Mechanisms of POCD remain unclear. N-methyl-D-aspartate (NMDA) receptors, critical in learning and memory, that display protein expression changes with age are modulated by inhalation anesthetics. The aim of this study was to identify protein expression changes in NMDA receptor subunits and downstream signaling pathways in aged rats that demonstrated anesthesia-induced spatial learning impairments. Three-month-old and 18-month-old male Fischer 344 rats were randomly assigned to receive 1.8% isoflurane/70% nitrous oxide (N(2)O) anesthesia for 4h or no anesthesia. Spatial learning was assessed at 2weeks and 3months post-anesthesia in Morris water maze. Hippocampal and cortical protein lysates of 18-month-old rats were immunoblotted for activated caspase 3, NMDA receptor subunits, and extracellular-signal regulated kinase (ERK) 1/2. In a separate experiment, Ro 25-6981 (0.5mg/kg dose) was administered by I.P. injection before anesthesia to 18-month-old rats. Immunoblotting of NR2B was performed on hippocampal protein lysates. At 3months post-anesthesia, rats treated with anesthesia at 18-months-old demonstrated spatial learning impairment corresponding to acute and long-term increases in NR2B protein expression and a reduction in phospho-ERK1/2 in the hippocampus and cortex. Ro 25-6981 pretreatment attenuated the increase in acute NR2B protein expression. Our findings suggest a role for disruption of NMDA receptor mediated signaling pathways in the hippocampus and cortex of rats treated with isoflurane/ N(2)O anesthesia at 18-months-old, leading to spatial learning deficits in these animals. A potential therapeutic intervention for anesthesia associated cognitive deficits is discussed.
Collapse
Affiliation(s)
- Lana J Mawhinney
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|