1
|
Menéndez-Delmestre R, Agosto-Rivera JL, González-Segarra AJ, Segarra AC. Cocaine sensitization in male rats requires activation of estrogen receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579327. [PMID: 38370714 PMCID: PMC10871307 DOI: 10.1101/2024.02.07.579327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Gonadal steroids play a modulatory role in cocaine use disorders, and are responsible for many sex differences observed in the behavioral response to cocaine. In females, it is well established that estradiol enhances the behavioral response to cocaine. In males, we have recently shown that testosterone enhances sensitization to cocaine but its mechanism of action remains to be elucidated. The current study investigated the contribution of DHT, a non-aromatizable androgen, and of estradiol, in regulating cocaine-induced sensitization in male rats. Gonadectomized (GDX) male rats treated with estradiol sensitized to repeated cocaine administration, while GDX rats treated with DHT did not, implicating estradiol in cocaine sensitization. Furthermore, intact male rats treated with the antiestrogen ICI 182,780 did not show sensitization to repeated cocaine. This study demonstrates the pivotal role of estradiol in cocaine-induced neuroplasticity and neuroadaptations in the rodent brain.
Collapse
Affiliation(s)
- Raissa Menéndez-Delmestre
- Physiology Department, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - José L. Agosto-Rivera
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, Puerto Rico 00931-3360
| | - Amanda J González-Segarra
- Department of Neuroscience and Behavior, Barnard College, Columbia University, New York, New York 10027
| | - Annabell C. Segarra
- Physiology Department, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| |
Collapse
|
2
|
Harris EP, Villalobos-Manriquez F, Melo TG, Clarke G, O'Leary OF. Stress during puberty exerts sex-specific effects on depressive-like behavior and monoamine neurotransmitters in adolescence and adulthood. Neurobiol Stress 2022; 21:100494. [DOI: 10.1016/j.ynstr.2022.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
|
3
|
Williams ES, Mazei-Robison M, Robison AJ. Sex Differences in Major Depressive Disorder (MDD) and Preclinical Animal Models for the Study of Depression. Cold Spring Harb Perspect Biol 2022; 14:a039198. [PMID: 34404738 PMCID: PMC8886985 DOI: 10.1101/cshperspect.a039198] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Depression and related mood disorders constitute an enormous burden on health, quality of life, and the global economy, and women have roughly twice the lifetime risk of men for experiencing depression. Here, we review sex differences in human brain physiology that may be connected to the increased susceptibility of women to major depressive disorder (MDD). Moreover, we summarize decades of preclinical research using animal models for the study of mood dysfunction that uncover some of the potential molecular, cellular, and circuit-level mechanisms that may underlie sex differences and disease etiology. We place particular emphasis on a series of recent studies demonstrating the central contribution of the circuit projecting from ventral hippocampus to nucleus accumbens and how inherent sex differences in the excitability of this circuit may predict and drive depression-related behaviors. The findings covered in this review underscore the continued need for studies using preclinical models and circuit-specific strategies for uncovering molecular and physiological mechanisms that could lead to potential sex-specific diagnosis, prognosis, prevention, and/or treatments for MDD and other mood disorders.
Collapse
Affiliation(s)
- Elizabeth S Williams
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
4
|
Harris EP, McGovern AJ, Melo TG, Barron A, Nola YM, O'Leary OF. Juvenile Stress Exerts Sex-independent Effects on Anxiety, Antidepressant-like Behaviours and Dopaminergic Innervation of the Prelimbic Cortex in Adulthood and Does Not Alter Hippocampal Neurogenesis. Behav Brain Res 2021; 421:113725. [PMID: 34929235 DOI: 10.1016/j.bbr.2021.113725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Stress, particularly during childhood, is a major risk factor for the development of depression. Depression is twice as prevalent in women compared to men, which suggests that that biological sex also contributes to depression susceptibility. However, the neurobiology underpinning sex differences in the long-term consequences of childhood stress remains unknown. Thus, the aim of this study was to determine whether stress applied during the prepubertal juvenile period (postnatal day 27-29) in rats induces sex-specific changes in anxiety-like behaviour, anhedonia, and antidepressant-like behaviour in adulthood in males and females. The impact of juvenile stress on two systems in the brain associated with these behaviours and that develop during the juvenile period, the mesocorticolimbic dopaminergic system and hippocampal neurogenesis, were also investigated. Juvenile stress altered escape-oriented behaviours in the forced swim test in both sexes, decreased latency to drink a palatable substance in a novel environment in the novelty-induced hypophagia test in both sexes, and decreased open field supported rearing behavior in females. These behavioural changes were accompanied by stress-induced increases in tyrosine hydroxylase immunoreactivity in the prefrontal cortex of both sexes, but not other regions of the mesocorticolimbic dopaminergic system. Juvenile stress did not impact anhedonia in adulthood as measured by the saccharin preference test and had no effect hippocampal neurogenesis across the longitudinal axis of the hippocampus. These results suggest that juvenile stress has long-lasting impacts on antidepressant-like and reward-seeking behaviour in adulthood and these changes may be due to alterations to catecholaminergic innervation of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Erin P Harris
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Yvonne M Nola
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
5
|
Chen CV, Jordan CL, Breedlove SM. Testosterone works through androgen receptors to modulate neuronal response to anxiogenic stimuli. Neurosci Lett 2021; 753:135852. [PMID: 33785380 DOI: 10.1016/j.neulet.2021.135852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Testosterone (T) exerts anxiolytic effects through functional androgen receptors (ARs) in rodents. T treatment of castrated mice reduces anxiety-like behavior in wild-type (WT) males, but not males with a spontaneous mutation that renders AR dysfunctional (testicular feminization mutation, Tfm). Using Cre-LoxP technology we created males carrying induced dysfunctional AR allele (induced TFM; iTfm) to determine the brain regions responsible for T-induced anxiolysis. Adult WT and iTfm mice were castrated and T treated. Castrated WTs given a blank capsule (WT + B) served as additional controls. Mice were later exposed to the anxiogenic light/dark box, sacrificed and their brains processed for immediate early gene cFos immunoreactivity. Analyses revealed that T treatment increased cFos-expressing neurons in the basolateral amygdala (blAMY) of WT males, but not in iTfm males, which did not differ from WT + B mice. In contrast, WT + T males displayed fewer cFos + cells than iTfm + T or WT + B groups in the suprachiasmatic nucleus of the hypothalamus (SCN). No effects of genotype or hormone were seen in cFos expression in the hippocampus, medial prefrontal cortex, paraventricular nucleus of the hypothalamus, oval and anterodorsal bed nucleus of the stria terminalis, or dorsal periaqueductal grey. AR immunohistochemistry indicated that ∼65 % of cells in the blAMY and SCN were AR + in WT males, so AR could act directly within neurons in these regions to modulate the animals' response to anxiogenic stimuli. Because absence of a functional AR did not affect cFos response to mild stress in the other brain regions, they are unlikely to mediate androgen's anxiolytic effects.
Collapse
Affiliation(s)
- Chieh V Chen
- Texas A&M University, Psychiatry Department, Clinical Building 1 Suite 1100, 8441 Riverside Parkway, Bryan, TX 77807, United States; Michigan State University, United States.
| | - Cynthia L Jordan
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| | - S Marc Breedlove
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| |
Collapse
|
6
|
Bishnoi IR, Ossenkopp KP, Kavaliers M. Sex and age differences in locomotor and anxiety-like behaviors in rats: From adolescence to adulthood. Dev Psychobiol 2020; 63:496-511. [PMID: 33047845 DOI: 10.1002/dev.22037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022]
Abstract
Risk-taking behaviors are a primary contributor to elevated adolescent injury and mortality. Locomotor and anxiety-like behaviors in rodents have been used to examine risk-taking. Here, we examined risk-taking behavior (i.e., changes in locomotor and anxiety-like behaviors) from early to late adolescence and adulthood in male and female rats in the open-field (OF) apparatus and the light-dark (LD) test. We also examined whether these behaviors are affected by an early adolescent immune stressor, lipopolysaccharide (LPS). Long-Evans male and female rats were injected with LPS (200 μg/kg) or vehicle control in early adolescence (postnatal day [PND] 30 and 32). Anxiety-like behavior and locomotor activity were measured in early (PND 38-40), late adolescence (PND 50), and adulthood (PND 88 and 98) in the OF and in early adolescence (PND 42) and adulthood (PND 90) in the LD test. Early and late adolescent rats displayed significantly greater locomotor and anxiety-like behaviors than adult rats in the OF and LD test. Sex differences were also found, with adolescent and adult females displaying greater locomotor and anxiety-like behaviors than male rats in the OF and LD tests. LPS administered two times in early adolescence did not have a significant impact on either locomotor or anxiety-like behaviors suggesting minimal impact of the immune stressor.
Collapse
Affiliation(s)
- Indra R Bishnoi
- Graduate Program in Neuroscience, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
7
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
8
|
Schatz KC, Martin CD, Ishiwari K, George AM, Richards JB, Paul MJ. Mutation in the vasopressin gene eliminates the sex difference in social reinforcement in adolescent rats. Physiol Behav 2019; 206:125-133. [PMID: 30951747 DOI: 10.1016/j.physbeh.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
The neuropeptide, arginine vasopressin (AVP), is thought to contribute to sex differences in normative and pathological social development by regulating social motivation. Recent studies using Brattleboro rats that have a mutation in the Avp gene, however, have suggested that AVP impacts adolescent social behaviors of males and females in a similar manner through actions on behavioral state (i.e., arousal). In the present study, we made use of a recently developed operant conditioning paradigm to test whether the chronic, lifelong AVP deficiency caused by the Brattleboro mutation impacts the reinforcement value of social stimuli during adolescence. Operant responding for access to a familiar conspecific was assessed in male and female adolescent wild type (WT; normal AVP), heterozygous Brattleboro (HET), and homozygous Brattleboro (HOM) rats. Following the social reinforcement test, rats were tested in the same operant paradigm except that the social reinforcer was replaced with a light reinforcer to determine whether effects of the Brattleboro mutation were specific to social stimuli or a general characteristic of operant conditioning. WT males directed a greater proportion of their responding toward the social and light stimuli than WT females; only males exhibited a preference for these reinforcers over unreinforced ports. The sex difference in social reinforcement was absent in HOM rats, whereas the sex difference in light reinforcement was present in all genotypes. These data indicate that adolescent males are more sensitive to the reinforcing properties of social and light stimuli, and that the sex difference in social, but not light, reinforcement depends upon normal levels of AVP. These findings support the hypothesis that AVP plays a critical role in sex differences in social development by acting on factors that influence social motivation.
Collapse
Affiliation(s)
- K C Schatz
- Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| | - C D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - K Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - A M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - J B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - M J Paul
- Department of Psychology, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, Buffalo, NY, USA; Evolution, Ecology and Behavior Program, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
9
|
Neonatal blockade of GABA‐A receptors alters behavioral and physiological phenotypes in adult mice. Int J Dev Neurosci 2017; 57:62-71. [DOI: 10.1016/j.ijdevneu.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/11/2016] [Accepted: 01/16/2017] [Indexed: 11/21/2022] Open
|
10
|
Chisamore MJ, Gentile MA, Dillon GM, Baran M, Gambone C, Riley S, Schmidt A, Flores O, Wilkinson H, Alves SE. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice. J Steroid Biochem Mol Biol 2016; 163:88-97. [PMID: 27106747 DOI: 10.1016/j.jsbmb.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT which may provide potent anti-androgenic activity at the prostate yet protective activity on skeletal muscle and behavior in patients.
Collapse
Affiliation(s)
- Michael J Chisamore
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA.
| | - Michael A Gentile
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | | | - Matthew Baran
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | - Carlo Gambone
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | - Sean Riley
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | - Azriel Schmidt
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | - Osvaldo Flores
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | - Hilary Wilkinson
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA
| | - Stephen E Alves
- Department of Molecular Endocrinology, Merck & Co., Inc. West Point, PA, 19486 USA.
| |
Collapse
|
11
|
Differential effects of photoperiod length on depression- and anxiety-like behavior in female and male diurnal spiny mice. Physiol Behav 2016; 165:1-6. [DOI: 10.1016/j.physbeh.2016.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
|
12
|
Experimental elevation of wildlife testosterone using silastic tube implants. Res Vet Sci 2016; 108:1-7. [PMID: 27663363 DOI: 10.1016/j.rvsc.2016.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/22/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022]
Abstract
Testosterone (T) is a key androgen that mediates vertebrate molecular, cellular, and behavioral processes. Its manipulation is therefore of interest to a vast number of researchers studying animal behavior and reproduction, among others. Here, the usage of silastic implants across wildlife species is reviewed, and a method to manipulate rock hyrax (Procavia capensis) testosterone levels using silastic implants is presented. Using a series of in-vitro and in-vivo experiments, the secretion patterns of silastic tubes and silastic glue were tested and were surprisingly found to be similar. In addition, we studied endogenous T levels in wild-captured rock hyraxes (Procavia capensis), and using T implants succeeded in elevating T to the maximal physiological concentrations recorded during the mating period. The number of implants that were inserted was the only predictor of T levels, and seven 20mm implants were found to be the optimal dose. Implants induced sexual behaviors in the non-reproductive period. The duration of time that the implants were in the hyrax was the only significant factor that influenced the amount of T left over in the implant once it was removed. All together we affirm that T implants may offer a versatile tool for wildlife behavioral research by elevating T levels in the non-breeding period to maximal breeding levels.
Collapse
|
13
|
Brown GR, Kulbarsh KD, Spencer KA, Duval C. Peri-pubertal exposure to testicular hormones organizes response to novel environments and social behaviour in adult male rats. Horm Behav 2015; 73:135-41. [PMID: 26159287 PMCID: PMC4550464 DOI: 10.1016/j.yhbeh.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
Previous research has shown that exposure to testicular hormones during the peri-pubertal period of life has long-term, organizational effects on adult sexual behaviour and underlying neural mechanisms in laboratory rodents. However, the organizational effects of peri-pubertal testicular hormones on other aspects of behaviour and brain function are less well understood. Here, we investigated the effects of manipulating peri-pubertal testicular hormone exposure on later behavioural responses to novel environments and on hormone receptors in various brain regions that are involved in response to novelty. Male rodents generally spend less time in the exposed areas of novel environments than females, and this sex difference emerges during the peri-pubertal period. Male Lister-hooded rats (Rattus norvegicus) were castrated either before puberty or after puberty, then tested in three novel environments (elevated plus-maze, light-dark box, open field) and in an object/social novelty task in adulthood. Androgen receptor (AR), oestrogen receptor (ER1) and corticotropin-releasing factor receptor (CRF-R2) mRNA expression were quantified in the hypothalamus, hippocampus and medial amygdala. The results showed that pre-pubertally castrated males spent more time in the exposed areas of the elevated-plus maze and light-dark box than post-pubertally castrated males, and also confirmed that peri-pubertal hormone exposure influences later response to an opposite-sex conspecific. Hormone receptor gene expression levels did not differ between pre-pubertally and post-pubertally castrated males in any of the brain regions examined. This study therefore demonstrates that testicular hormone exposure during the peri-pubertal period masculinizes later response to novel environments, although the neural mechanisms remain to be fully elucidated.
Collapse
Affiliation(s)
- Gillian R Brown
- School of Psychology & Neuroscience, University of St Andrews, UK.
| | - Kyle D Kulbarsh
- School of Psychology & Neuroscience, University of St Andrews, UK
| | - Karen A Spencer
- School of Psychology & Neuroscience, University of St Andrews, UK
| | - Camille Duval
- School of Psychology & Neuroscience, University of St Andrews, UK
| |
Collapse
|
14
|
Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol 2014; 171:4595-619. [PMID: 24697577 DOI: 10.1111/bph.12710] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive-compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories.
Collapse
Affiliation(s)
- N Kokras
- Department of Pharmacology, Medical School, University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, University of Athens, Greece
| | | |
Collapse
|
15
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
16
|
Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol 2014; 35:42-57. [PMID: 24076484 PMCID: PMC3946856 DOI: 10.1016/j.yfrne.2013.09.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/31/2013] [Accepted: 09/06/2013] [Indexed: 01/30/2023]
Abstract
Compelling evidence exists for pervasive sex differences in pathological conditions, including anxiety and depressive disorders, with females more than twice as likely to be afflicted. Gonadal hormones may be a major factor in this disparity, given that women are more likely to experience mood disturbances during times of hormonal flux, and testosterone may have protective benefits against anxiety and depression. In this review we focus on the effects of testosterone in males and females, revealed in both human and animal studies. We also present possible neurobiological mechanisms underlying testosterone's mostly protective benefits, including the brain regions, neural circuits, and cellular and molecular pathways involved. While the precise underlying mechanisms remain unclear, both activational and organizational effects of testosterone appear to contribute to these effects. Future clinical studies are necessary in order to better understand when and how testosterone therapy may be effective in both sexes.
Collapse
|
17
|
Zuloaga DG, Poort JE, Jordan CL, Breedlove SM. Male rats with the testicular feminization mutation of the androgen receptor display elevated anxiety-related behavior and corticosterone response to mild stress. Horm Behav 2011; 60:380-8. [PMID: 21801726 PMCID: PMC3171185 DOI: 10.1016/j.yhbeh.2011.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 11/16/2022]
Abstract
Testosterone influences the hypothalamic-pituitary-adrenal axis, anxiety-related behavior, and sensorimotor gating in rodents, but little is known about the role of the androgen receptor (AR) in mediating these influences. We compared levels of the stress hormone corticosterone at baseline and following exposure to a novel object in an open field in wild type (wt) male and female rats, and male rats with the testicular feminization mutation (Tfm) of the AR, which disables its function. Basal corticosterone was equivalent in all groups, but exposure to a novel object in an open field elicited a greater increase in corticosterone in Tfm males and wt females than in wt males. Tfm males also showed increased behavioral indices of anxiety compared to wt males and females in the test. Analysis of the immediate early gene c-Fos expression after exposure to a novel object revealed greater activation in Tfm males than wt males in some regions (medial preoptic area) and lesser activation in others (dentate gyrus, posterodorsal medial amygdala). No differences were found in a measure of sensorimotor gating (prepulse inhibition of the acoustic startle response), although Tfm males had an increased acoustic startle response compared to wt males and females. These findings demonstrate that ARs play a role in regulating anxiety-related behaviors, as well as corticosterone responses and neural activation following exposure to a mild stressor in rats.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology and Program in Neuroscience, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | | | | | |
Collapse
|
18
|
Zuloaga DG, Jordan CL, Breedlove SM. The organizational role of testicular hormones and the androgen receptor in anxiety-related behaviors and sensorimotor gating in rats. Endocrinology 2011; 152:1572-81. [PMID: 21325044 PMCID: PMC3060630 DOI: 10.1210/en.2010-1016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Perinatal exposure to testosterone (T), which can act upon both the androgen receptor (AR) and, via aromatization of T into estrogens, upon estrogen receptors, organizes many adult behaviors in rodents. We compared behaviors in wild-type (WT) male rats and AR-deficient rats with the testicular feminization mutation (Tfm), which on the day of birth were either gonadectomized (Neo-Gdx) or sham operated. In adulthood, all rats were either gonadectomized or sham operated and implanted with T capsules to equilibrate circulating androgens. In each of four tests of behavior related to anxiety (open field, novel object exposure, light/dark box, and elevated plus maze), Neo-Gdx rats showed decreased indices of anxiety and increased activity compared with rats sham operated on the day of birth, with no differences between WT or Tfm males within treatment groups. These results indicate that testicular hormones act in development to increase adult indices of anxiety and decrease activity in males and that functional ARs are not required for this effect. Acoustic startle response was also reduced by Neo-Gdx, suggesting that postnatal testicular secretions potentiate this behavior as well. Adult corticosterone levels and sensorimotor gating, as measured by prepulse inhibition of the acoustic startle response, were increased by neonatal castration in both WT and Tfm rats. These findings indicate a role of T before adulthood in the organization of anxiety-related behaviors, activity, the hypothalamic-pituitary-adrenal axis, and sensorimotor gating in rats, all of which appears to be AR independent.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology and Program in Neuroscience, Michigan State University, East Lansing, Michigan 48824-1101, USA.
| | | | | |
Collapse
|
19
|
Spivey JM, Shumake J, Colorado RA, Conejo-Jimenez N, Gonzalez-Pardo H, Gonzalez-Lima F. Adolescent female rats are more resistant than males to the effects of early stress on prefrontal cortex and impulsive behavior. Dev Psychobiol 2009; 51:277-88. [PMID: 19125421 DOI: 10.1002/dev.20362] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We tested the hypothesis that adolescent Sprague-Dawley females may be more resistant than males to display impulsive behavior and lower prefrontal cortex thickness after mother-infant separation (MS). Starting at postnatal day 2 (P2), the MS group was separated 6 hr/day and the early handled (EH) group 15 min/day for 10 days, and another group was standard facility reared (SFR). Subjects were examined for novel open-field activity (P28), light-dark apparatus (P29), familiar open-field (P30) and frontal cortical thickness. This protocol resulted in impulsive behavior in MS rats relative to EH and SFR, but this effect was less pronounced in females than males. MS affected the two sexes differently in terms of decreased prefrontal cortex dorsoventral thickness, with this effect being significant in males but not females. Neuroanatomical and behavioral documentation that adolescent females are more resistant than males to ADHD-like effects of maternal separation have not been previously reported.
Collapse
Affiliation(s)
- Jaclyn M Spivey
- Department of Psychology, Pharmacology and Toxicology, University of Texas at Austin, 1 University Station A8000, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ahern TH, Modi ME, Burkett JP, Young LJ. Evaluation of two automated metrics for analyzing partner preference tests. J Neurosci Methods 2009; 182:180-8. [PMID: 19539647 DOI: 10.1016/j.jneumeth.2009.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/21/2009] [Accepted: 06/04/2009] [Indexed: 11/26/2022]
Abstract
The partner preference test (PPT) is commonly used to examine sexual and social preferences in rodents. The test offers experimental subjects a choice between two stimulus animals, and time spent with each is used to calculate a preference score. In monogamous prairie voles (Microtus ochrogaster), the PPT has been paramount to the study of pair bonding. Although powerful, use of the PPT in voles has depended primarily on human manual scoring. Manual scoring is time-consuming and is susceptible to bias and fatigue, limiting the use of the PPT in high-throughput studies. Here we compared manual scoring (real-time and 16x) and two automated scoring metrics: "social proximity" and "immobile social contact". We hypothesized that "immobile social contact" would provide data most comparable to manually scored "huddling", and thus be the most sensitive measure of partner preference in prairie voles. Each automated metric produced data that highly correlated with manual scoring (R>0.90); however, "immobile social contact" more closely reflected manually scored huddling (R=0.99; P<0.001). "Social proximity" and "immobile social contact" were then used to detect group partner preferences in four data sets that varied by cohabitation length and sex. "Immobile social contact" revealed a significant partner preference in each data set; "social proximity" detected partner preferences in only three of the four. Our results demonstrate the utility of automated systems in high-throughput PPTs, and further confirm that automated systems capable of scoring "immobile social contact" yield results indistinguishable from manual scoring.
Collapse
Affiliation(s)
- Todd H Ahern
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
21
|
Dalla C, Shors TJ. Sex differences in learning processes of classical and operant conditioning. Physiol Behav 2009; 97:229-38. [PMID: 19272397 DOI: 10.1016/j.physbeh.2009.02.035] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/05/2009] [Accepted: 02/20/2009] [Indexed: 12/12/2022]
Abstract
Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
22
|
Aubele T, Kaufman R, Montalmant F, Kritzer MF. Effects of gonadectomy and hormone replacement on a spontaneous novel object recognition task in adult male rats. Horm Behav 2008; 54:244-52. [PMID: 18511051 PMCID: PMC2517217 DOI: 10.1016/j.yhbeh.2008.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/14/2008] [Accepted: 04/03/2008] [Indexed: 11/16/2022]
Abstract
Recent studies in adult male rats have shown that gonadal hormones influence performance on certain working memory and other types of cognitive tasks that are sensitive to lesions of the medial and/or orbital prefrontal cortices. This study asked whether gonadal hormone modulation of prefrontal cortical function in males also extends to the perirhinal division of the rat prefrontal cortex. Specifically, sham-operated control, gonadectomized, and gonadectomized rats supplemented with testosterone propionate or estradiol were tested on a spontaneous novel object recognition task, a paradigm where performance has been shown to be impaired by perirhinal cortical lesions. Using analyses of variance, regression analyses and post-hoc testing to evaluate group differences, it was found that during both the sample and test trials of the task all four groups spent similar absolute and proportional amounts of time ambulating, rearing, stationary, and exploring the two objects present. All groups also explored each of the two identical objects present during sample trials equally. However, during the test trials, only the control and gonadectomized rats given testosterone showed the expected increase in exploration of the novel objects presented, whereas the gonadectomized and gonadectomized, estradiol-supplemental groups continued to explore the novel and familiar objects equally. That regression analyses also identified significant correlations between low bulbospongiosus muscle weight and impaired novel vs. familiar object discrimination further indicates that gonadectomy in adult male rats adversely affects spontaneous novel object recognition in an androgen-sensitive, estrogen-insensitive manner.
Collapse
Affiliation(s)
- T Aubele
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| | | | | | | |
Collapse
|
23
|
Weiser MJ, Goel N, Sandau US, Bale TL, Handa RJ. Androgen regulation of corticotropin-releasing hormone receptor 2 (CRHR2) mRNA expression and receptor binding in the rat brain. Exp Neurol 2008; 214:62-8. [PMID: 18706413 DOI: 10.1016/j.expneurol.2008.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/10/2008] [Accepted: 07/16/2008] [Indexed: 01/30/2023]
Abstract
Stress-induced affective disorders, such as depression and anxiety, are more prevalent in females than in males. The reduced vulnerability to these disorders in males may be due to the presence of androgens, which are known to dampen the stress response and reduce anxiety-like behaviors. However, a neurobiological mechanism for this sex difference has yet to be elucidated. Corticotropin-releasing hormone receptor 2 (CRHR2) has been implicated in regulating anxiety-type behaviors and is expressed in stress-responsive brain regions that also contain androgen receptors (AR). We hypothesized that androgen may exert its effects through actions on CRHR2 and we therefore examined the regulation of CRHR2 mRNA and receptor binding in the male rat forebrain following androgen administration. Young adult male Sprague/Dawley rats were gonadectomized (GDX) and treated with the non-aromatizable androgen, dihydrotestosterone propionate (DHTP) using hormone filled Silastic capsules. Control animals received empty capsules. Using quantitative real-time RT-PCR, CRHR2 mRNA levels were determined in block-dissected brain regions. DHTP treatment significantly increased CRHR2 mRNA expression in the hippocampus, hypothalamus, and lateral septum (p<0.01) when compared to vehicle-treated controls. A similar trend was observed in amygdala (p= 0.05). Furthermore, in vitro autoradiography revealed significantly higher CRHR2 binding in the lateral septum in androgen-treated males, with the highest difference observed in the ventral lateral region. Regulation of CRHR2 mRNA by AR was also examined using an in vitro approach. Hippocampal neurons, which contain high levels of AR, were harvested from E17-18 rat fetuses, and maintained in primary culture for 14 days. Neurons were then treated with dihydrotestosterone (DHT; 1 nM), DHT plus flutamide (an androgen receptor antagonist), or vehicle for 48 h. CRHR2 mRNA levels were measured using quantitative real-time RT-PCR. Consistent with in vivo studies, DHT significantly increased CRHR2 mRNA expression in hippocampal neurons (p<.02) compared to vehicle-treated controls. Flutamide treatment prevented the effect of DHT on CRHR2 mRNA indicating that DHT's effect on CRHR2 expression is AR-mediated. Thus, the CRHR2 gene appears to be a target for regulation by AR and these data suggest a potential mechanism by which androgen may alter mood and anxiety-related behaviors.
Collapse
Affiliation(s)
- Michael J Weiser
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Puberty is a plastic period of neurological development when critical maturation of stress pathways occurs. Abnormal maturation may be predictive of future stress sensitivity and affective disorder risk. To identify potential early markers of stress-related disease predisposition, we examined physiological and behavioral stress responses in male pubertal mice compared with adults, using a genetic model of elevated stress sensitivity, CRF receptor-2 (CRFR2)-deficient mice. Juvenile mice of both genotypes exhibited greater basal and stress-induced corticosterone levels than adult mice, indicating that overall hypothalamic-pituitary-adrenal axis sensitivity diminishes in adulthood. However, juvenile CRFR2-deficient mice displayed a delayed stress recovery typical of adults of this genotype, suggesting an early marker of stress sensitivity. The adult phenotype of reduced hippocampal glucocorticoid receptor expression in these sensitive mice was also detected during puberty. This reduction may account for an impaired hypothalamic-pituitary-adrenal axis negative feedback and as such be an early indicator of a stress-sensitive phenotype. Examination of behavioral responses to stress revealed that CRFR2-deficient mice show exaggerated postpubertal maturation. Although wild-type mice did not alter their burying response to stress-provoking marbles after puberty, CRFR2-deficient mice showed a dramatic increase in burying behavior. We conclude that identification of abnormal pubertal stress pathway maturation may be predictive of adult heightened stress sensitivity and future susceptibility to stress-related affective disorders.
Collapse
MESH Headings
- Adaptation, Psychological
- Aging
- Animals
- Behavior, Animal
- Biomarkers
- Corticosterone/blood
- Corticotropin-Releasing Hormone/genetics
- Disease Susceptibility
- Feedback, Physiological
- Gene Expression
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Mice
- Mice, Knockout
- Phenotype
- Pituitary-Adrenal System/physiopathology
- Predictive Value of Tests
- Receptors, Corticotropin-Releasing Hormone/deficiency
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Recovery of Function
- Sexual Maturation
- Stress, Physiological/etiology
- Stress, Physiological/physiopathology
- Stress, Physiological/psychology
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Animal Biology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
25
|
Gioiosa L, Fissore E, Ghirardelli G, Parmigiani S, Palanza P. Developmental exposure to low-dose estrogenic endocrine disruptors alters sex differences in exploration and emotional responses in mice. Horm Behav 2007; 52:307-16. [PMID: 17568585 DOI: 10.1016/j.yhbeh.2007.05.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 11/30/2022]
Abstract
Estrogenic endocrine disruptors (EEDs) are naturally occurring or man-made compounds present in the environment that are able to bind to estrogen receptors and interfere with normal cellular development in target organs and tissues. There is mounting evidence that EEDs can interfere with the processes of sexual differentiation of brain and behavior in different animal models. We investigated the effects of maternal exposure to EEDs, at concentrations within the range of human exposure and not patently teratogenic, on behavioral responses of male and female house mice (Mus musculus domesticus) before and after puberty. Pregnant dams were trained to spontaneously drink daily doses of corn oil with or without the estrogenic plastic derivative, bisphenol A (BPA 10 microg/kg), or the estrogenic insecticide methoxychlor (MXC 20 microg/kg) from gestation day 11 to postpartum day 8. Their male and female offspring were examined at different ages to examine several components of explorative and emotional behaviors in 3 experimental paradigms: a novelty test before puberty and, as adults, a free-exploratory open-field test and the elevated plus maze test. The main results are sex differences in control mice on a number of behavioral responses at both ages and in all experimental paradigms, while perinatal exposure to BPA or MXC decreased or eliminated such sex differences. The present findings are evidence of long-term consequences of developmental exposure to BPA and MXC on neurobehavioral development and suggest a differential effect of low-dose exposure to these estrogenic chemicals in males and females.
Collapse
Affiliation(s)
- Laura Gioiosa
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, Viale Usberti 11A, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Schneider T, Popik P. Increased depressive-like traits in an animal model of premenstrual irritability. Horm Behav 2007; 51:142-8. [PMID: 17049520 DOI: 10.1016/j.yhbeh.2006.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 09/14/2006] [Accepted: 09/14/2006] [Indexed: 11/28/2022]
Abstract
Women are at higher risk of anxiety and mood disorders, especially at transitions across the reproductive life cycle (premenstruum, postpartum, menopause). Premenstrual dysphoric disorder (PMDD) is one of female mood disorders associated with changing ovarian hormone levels. Because anxiety and depression frequently occur in women with PMDD, premenstrual dysphoria might be a manifestation of certain vulnerability traits increasing the risk of those disorders. The present study was conducted to elucidate a potential association between estrous cycle-dependent aggression, the rodent model of "premenstrual irritability" (resident-intruder test), and anxiety (elevated plus maze), depressive-like traits (forced swim test) as well as carbohydrate craving in female Wistar rats. Some aggressive and nonaggressive females were restraint-stressed before testing to determine their sensitivity to stress at different hormonal stages. The results revealed that females expressing the estrous cycle-dependent aggression but not those not expressing cycle-dependent aggression spent longer time immobile and shorter time swimming in the forced swim test at metestrus compared to proestrus phase of the estrous cycle. There was no difference between aggressive and nonaggressive females in anxiety, locomotor activity and sensitivity to restraint stress and sucrose consumption. The present study suggests a common neurobiological background for the estrous cycle-dependent aggression and depressive-like traits in rodents. This phenomenon could potentially aid the elucidation of premenstrual emotional dysfunctions and might be used as an ethological model to study a biochemical and genetic proneness to depression.
Collapse
Affiliation(s)
- Tomasz Schneider
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | | |
Collapse
|
28
|
Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 2005; 26:163-74. [PMID: 16309736 DOI: 10.1016/j.yfrne.2005.10.003] [Citation(s) in RCA: 693] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 11/22/2022]
Abstract
Maturation of the reproductive system during puberty results in elevated levels of gonadal steroid hormones. These hormones sculpt neural circuits during adolescence, a time of dramatic rewiring of the nervous system. Here, we review the evidence that steroid-dependent organization of the adolescent brain programs a variety of adult behaviors in animals and humans. Converging lines of evidence indicate that adolescence may be a sensitive period for steroid-dependent brain organization and that variation in the timing of interactions between the hormones of puberty and the adolescent brain leads to individual differences in adult behavior and risk of sex-biased psychopathologies.
Collapse
Affiliation(s)
- Cheryl L Sisk
- Neuroscience Program and Department of Psychology, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
29
|
Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and “depressive-like” symptomatology. Behav Brain Res 2005; 163:186-93. [PMID: 16029903 DOI: 10.1016/j.bbr.2005.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 11/17/2022]
Abstract
It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.
Collapse
Affiliation(s)
- C Dalla
- Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
30
|
Ray J, Hansen S. Temperament in the rat: sex differences and hormonal influences on harm avoidance and novelty seeking. Behav Neurosci 2004; 118:488-97. [PMID: 15174926 DOI: 10.1037/0735-7044.118.3.488] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study showed large and consistent individual differences in 64 rats (32 males) in the hole board and canopy test, which are considered to measure exploration and anxiety, respectively. Nonestrous females were more active than males and nose poked more in the hole board. In the canopy test, nonestrous females, compared with males, showed greater intraindividual variability in time spent outside the protective canopy. Estrous females spent significantly more time outside the canopy. Gonadectomy reduced nose poking in males and hole board locomotion in both sexes. Principal-components analysis disclosed 2 temperamental dimensions reflecting harm avoidance and novelty seeking. More males had high levels of psychometric harm avoidance, and fewer males than females had a low-harm-avoidance/high-novelty-seeking, sanguine profile.
Collapse
Affiliation(s)
- J Ray
- Department of Psychology, Goteborg University, SE-405 30 Goteborg, Sweden
| | | |
Collapse
|
31
|
Flagel SB, Vázquez DM, Robinson TE. Manipulations during the second, but not the first, week of life increase susceptibility to cocaine self-administration in female rats. Neuropsychopharmacology 2003; 28:1741-51. [PMID: 12888774 DOI: 10.1038/sj.npp.1300228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We compared the effects of manipulations during week 1 vs week 2 of life on the propensity to self-administer cocaine. Pups received daily subcutaneous saline injections, were handled briefly, or remained undisturbed during their respective treatment periods. Animals handled during the second week of life exhibited increased locomotor response to novelty when tested on postnatal day (PND) 48, compared to all other groups. Rats were implanted with jugular catheters on PND 70 and then given the opportunity to self-administer (0.125 mg/kg/infusion) cocaine for 5 consecutive days (1 h sessions). The dose was then raised to 0.25 mg/kg/infusion for 5 days and to 0.5 mg/kg/infusion for the final 5 days of testing. Only animals manipulated during the second week of life acquired drug-taking behavior. These effects were both stimulus- and gender-specific. Females handled during the second week of life acquired cocaine self-administration (SA) at the lowest dose, and females injected during the second week of life acquired at the intermediate dose. Males injected during the second week of life showed a similar, but more variable, drug-taking pattern. There were no group differences in serum corticosterone response to novelty, although relative to undisturbed animals and those manipulated in the first week of life, female animals manipulated during the second week of life had lower basal expression of hippocampal glucocorticoid receptor mRNA in adulthood. We conclude that the second week of life in the rodent is a sensitive period during which manipulations result in a more vulnerable phenotype for the acquisition of cocaine SA.
Collapse
Affiliation(s)
- Shelly B Flagel
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
32
|
Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 2003; 45:345-56. [PMID: 12631470 DOI: 10.1016/s0168-0102(02)00251-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is an endocrinological concern that environmental endocrine disrupters (EEDs) may influence sexual differentiation. Bisphenol A (BPA), one of EEDs, is released from polycarbonate plastics, and has been detected in the human umbilical cord. In this study, we examined the effect of BPA on the sexual differentiation of open-field behavior and the sexually dimorphic nuclei in the brain in the offspring of rats exposed to BPA during the fetal and suckling periods at a dosage below the human tolerable daily intake (TDI) level. In the control group, females were more active in the open field and had a larger locus coeruleus (LC) volume than males. BPA abolished and inverted the sex differences of the open-field behavior and the LC volume, respectively, without affecting the reproductive system. We also compared the effects of estrogenic compounds, diethylstilbestrol (DES) and resveratrol (RVT), to that of BPA because of their structural similarities. DES affected the open-field behavior, LC volume and reproductive system, while RVT affected the LC volume and the reproductive system. These results suggest that the brain is highly sensitive to BPA at a dosage below TDI and that the disrupting effects of BPA on sexual differentiation may vary from those of RVT and DES.
Collapse
Affiliation(s)
- Kazuhiko Kubo
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Febo M, Jiménez-Rivera CA, Segarra AC. Estrogen and opioids interact to modulate the locomotor response to cocaine in the female rat. Brain Res 2002; 943:151-61. [PMID: 12088849 DOI: 10.1016/s0006-8993(02)02748-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Estrogen is known to modulate the behavioral response to cocaine; however the mechanisms by which this is accomplished is unknown. In this study we examine one possible candidate, the endogenous opioid system. Adult Sprague-Dawley rats were ovariectomized (OVX), half received Silastic implants with estradiol benzoate (OVX-EB), the other half received empty implants (OVX). After 1 week, spontaneous locomotor and stereotyped activity was measured for 60 min using an automated system. On day 2, locomotor activity was recorded for 30 min. Rats were injected with saline (SAL) or naloxone (NAL) (2 mg/kg, i.p.) and activity measured for the next 20 min. Each of these groups were further subdivided, one that received a saline injection (SAL) and another that received a cocaine injection (COC) (15 mg/kg, i.p.). Locomotor and stereotyped activities were recorded for 60 min. This resulted in the following injection groups: SAL-SAL, NAL-SAL, SAL-COC and NAL-COC. During habituation, OVX rats displayed an overall higher level of activity than OVX-EB rats. Similar to what is observed in males, naloxone significantly reduced locomotion and stereotyped behavior but only in OVX rats. Estrogen administration to OVX rats abolished the effect of naloxone. Surprisingly, when naloxone was administered prior to cocaine, an increase in cocaine-induced locomotor and stereotyped activity was observed, but only in OVX-EB rats. These results indicate that opioid modulation of cocaine-induced locomotor and stereotype activity in the female differs from that reported in the male. In addition in the female, the effect of opioids on cocaine-induced locomotor behavior is dependent on plasma levels of estrogen.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Physiology, School of Medicine, University of Puerto Rico, PO Box 365067, San Juan, PR 00936, USA
| | | | | |
Collapse
|
34
|
Weiss IC, Domeney AM, Heidbreder CA, Moreau JL, Feldon J. Early social isolation, but not maternal separation, affects behavioral sensitization to amphetamine in male and female adult rats. Pharmacol Biochem Behav 2001; 70:397-409. [PMID: 11701213 DOI: 10.1016/s0091-3057(01)00626-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Early life stressful manipulations, such as maternal separation (MS) or social isolation (SI), can influence the neurobiological development of rats and alter the response of adult animals to drugs of abuse. The present study examined the acute and sensitized behavioral responses (locomotor activity (LMA) and stereotypy) induced by amphetamine after MS or SI in male and female rats. In addition, the hypothesis that the combination of SI and MS could lead to additional effects on the behavioral response to amphetamine was tested. After the repetitive, intermittent administration of 1.5 mg/kg D-amphetamine over five consecutive days, the behavioral expression of sensitization to a challenge injection was assessed following a 2-day withdrawal period. In both sexes, MS and SI did not alter the acute locomotor activating effects of amphetamine as measured in the open-field environment after the first administration of the drug. Whereas SI altered the expression of sensitization to amphetamine in both sexes, MS did not affect it. Finally, in none of the behavioral variables measured did MS and SI interact to further modify the behavioral profile of the animals. The present results suggest that a postweaning manipulation of the environment (SI) is more effective than a preweaning manipulation (MS) in modifying the expression of sensitization to amphetamine.
Collapse
Affiliation(s)
- I C Weiss
- Behavioural Neurobiology Laboratory, ETH, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Stock HS, Ford K, Wilson MA. Gender and gonadal hormone effects in the olfactory bulbectomy animal model of depression. Pharmacol Biochem Behav 2000; 67:183-91. [PMID: 11113499 DOI: 10.1016/s0091-3057(00)00318-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major depressive disorder (MDD) affects women to a greater extent then men; however, the few studies that have examined the role of gender in an animal model of depression have shown inconsistent results. The purpose of the present study was to determine if the gonadal hormone milieu of the animal modulated behavioral changes following olfactory bulbectomy (OBX), a well-documented animal model of depression. Body weight, sucrose preference levels and open-field activity levels were measured once a week for a period of 2 weeks in gonadally intact and gonadectomized male and female rats. Following these baseline measurements, animals underwent either OBX or sham surgery. Body weight, sucrose preference and activity levels were assessed for 4 weeks post-OBX surgery. OBX-gonadectomized animals exhibited higher activity levels than OBX gonadally intact and control animals. This effect of gonadectomy was more robust in males. OBX-females (both intact and gonadectomized) exhibited significantly lower sucrose preference levels than OBX-males (both intact and gonadectomized) and control animals. These results suggest that the gonadal hormone milieu of the animal plays a role in modulating sucrose preference and activity levels following OBX.
Collapse
Affiliation(s)
- H S Stock
- WJB Dorn Department of Veterans Affairs Medical Center, 6439 Garners Ferry Road, Columbia, SC 29209-1439, USA.
| | | | | |
Collapse
|
36
|
Adler A, Vescovo P, Robinson JK, Kritzer MF. Gonadectomy in adult life increases tyrosine hydroxylase immunoreactivity in the prefrontal cortex and decreases open field activity in male rats. Neuroscience 1999; 89:939-54. [PMID: 10199626 DOI: 10.1016/s0306-4522(98)00341-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The prefrontal cortices in rats participate in a range of cognitive, emotional, and locomotor functions that are dependent on its rich catecholamine innervation. Sex differences identified in many of these functions suggest that the prefrontal cortex is also influenced by gonadal hormones. Previous studies have shown that prefrontal catecholamines can be modified by changes in the hormone environment in developing animals. The present analyses, carried out in male rats gonadectomized as adults, with and without supplementation with testosterone proprionate, and examined at intervals from two days to 10 weeks after surgery, revealed that both the anatomical organization of prefrontal catecholamine afferents, and a behavioral measure sensitive to their selective lesioning remain highly responsive to changes in testicular hormones in adulthood. Thus, gonadectomy in adult male rats rapidly led to a large but transient decrease in the density of tyrosine hydroxylase immunoreactivity in all layers of the dorsal anterior cingulate cortex. This was followed by a sustained period in which immunoreactivity in the supragranular layers returned to levels that were just below normal (between 72 and 79% of normal), and labeling in deep laminae stabilized at considerably elevated innervation densities (approximately 150% of normal). Neither the acute decrease nor the chronic over-innervation characteristic of gonadectomized animals was observed in rats that were gonadectomized and supplemented with testosterone proprionate. Open field activity assessed along a corresponding 10 week timeline showed that gonadectomized animals were significantly less active than hormonally intact controls, a behavioral pattern opposite to the hyperactivity which persists following prefrontal dopamine lesions. Gonadectomized animals supplemented with testosterone proprionate, on the other hand, had open field scores that were not significantly different from controls. Taken together, these findings indicate that the adult hormone environment provides a significant, and seemingly functionally significant influence over the catecholamine innervation of the rat prefrontal cortex. Such lifelong responsiveness of the prefrontal cortical catecholamines to circulating hormones suggests that gonadal steroids are an active component of the biology of normal adult cognition, and may also have relevance for cortical dysfunction in disorders such as schizophrenia which are not only strongly tied to the catecholamines, but exhibit considerable biases among men and women as well.
Collapse
Affiliation(s)
- A Adler
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794, USA
| | | | | | | |
Collapse
|
37
|
Bakker J, van Ophemert J, Eijskoot F, Slob AK. A semiautomated test apparatus for studying partner preference behavior in the rat. Physiol Behav 1994; 56:597-601. [PMID: 7972414 DOI: 10.1016/0031-9384(94)90307-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A semiautomated three-compartment box (3CB) for studying partner preference behavior of rats is described. This apparatus automatically records the rat's time spent in each compartment, as well as the locomotor activity (i.e., the number of visits an animal pays to each compartment). Software was developed for calculating partner preference scores. Behavioral testing in the semiautomated 3CB, which is a modification of an earlier version, is less time consuming and less laborious. Three 3CBs can be observed simultaneously by two trained observers, and the behavioral interactions of three experimental animals with the stimulus animals can be observed and scored by hand. The use of the new apparatus was validated by studying adult partner preference behavior of neonatally ATD-treated male rats. The collected data fully corroborate previous results, obtained in the earlier version of the 3CB, again revealing the behavioral bisexual nature of these ATD males. A new finding was the much higher locomotor activity of the ATD males compared to controls.
Collapse
Affiliation(s)
- J Bakker
- Department of Endocrinology and Reproduction, Erasmus University, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
An experiment was performed to determine if hyperprolactinemia (chronically elevated serum prolactin levels), which inhibits testosterone-activated male sexual activity, also affects other androgen-dependent behaviors. Thus defecation and urine marking in response to a novel environment were examined in sham-operated and pituitary-grafted (hyperprolactinemic) male rats that had been castrated or castrated and given subcutaneous testosterone implants. Both castration and pituitary grafting significantly inhibited defecation, with the inhibitory effects of hyperprolactinemia being most pronounced in the castrated non-testosterone-treated animals. In contrast, castration significantly reduced the amount of urine marking observed, but pituitary grafting was without effect on this behavior. Thus, although hyperprolactinemia may inhibit sexual activity through an antagonism of the activational effects of testosterone, these results suggest that this effect is specific to sexual behavior and does not involve a more generalized inhibition of the effects of testosterone on androgen-dependent behaviors.
Collapse
Affiliation(s)
- P C Doherty
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown 44272
| |
Collapse
|
40
|
Sayag N, Robinzon B, Snapir N, Arnon E, Grimm VE. The effects of embryonic treatments with gonadal hormones on sexually dimorphic behavior of chicks. Horm Behav 1991; 25:137-53. [PMID: 2066077 DOI: 10.1016/0018-506x(91)90047-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to study the role of sex steroids in the differentiation of chick behavior, two groups of experiments were carried out. The first part of the study documented sexual dimorphisms in three behavioral measures in chicks: open-field activity, flocking response, and masculine sexual behavior activated by testosterone (crowing, waltzing, and mating attempts). In the second part, possible organizing influences on these sexually dimorphic behaviors were examined. Male and female embryos were injected with estradiol benzoate (EB) or testosterone propionate (TP). Treatment of males with EB or TP demasculinized all three behaviors. None of the steroid treatments had any effect on the behavior of the females. Plasma testosterone levels of the chicks were not affected by any of these treatments, either before or after testosterone activation. Comb weight was reduced by treatment of male embryos with EB and increased by TP in female embryos, which suggests different mechanism for the development of somatic and behavioral characteristics. The results suggest that exogenous T or E given embryonically can exert similar effects on both sexual behavior and nonreproductive activity of chicks.
Collapse
Affiliation(s)
- N Sayag
- Department of Animal Science, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
41
|
van Haaren F, van Hest A, Heinsbroek RP. Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory. Neurosci Biobehav Rev 1990; 14:23-33. [PMID: 2183097 DOI: 10.1016/s0149-7634(05)80157-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The organizational, activational and reorganizational effects of gonadal hormones have been extensively investigated with respect to sexual, aggressive and maternal behavior. It has thus been established that manipulations of gonadal hormones during critical periods in development functionally affect reproductive behavior. The effects of gonadal hormones on nonreproductive behavior are not immediately obvious because of the fact that the behavioral effects of gonadal hormones on learning and memory have been investigated in a large number of unrelated experimental procedures. The present paper provides an organized overview of these different experimental procedures, summarizes the most important findings and discusses some of the variables which determine the effects of manipulations in gonadal hormones on learning and memory in male and female rats.
Collapse
Affiliation(s)
- F van Haaren
- Department of Psychology, University of Florida, Gainesville, 32611
| | | | | |
Collapse
|
42
|
Saavedra MA, Abarca N, Arancibia P, Salinas V. Sex differences in aversive and appetitive conditioning in two strains of rats. Physiol Behav 1990; 47:107-12. [PMID: 2326325 DOI: 10.1016/0031-9384(90)90047-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to examine sex differences in non sexual behavior, 40 rats of each sex from two strains (gray, A x C and albino, Sprague-Dawley) were trained, using different experimental procedures. In Experiment I, aversive conditioning in a one-way (easy task) and a two-way (difficult task) active avoidance task was examined. Results consistently showed that males of both strains were inferior to females in the acquisition of the two-way avoidance task. A significant interaction between sex of both strains and the difficulty of the task was found. In Experiment II, rats were trained in a Sutherland Apparatus in an easy (black vs. white) and a difficult (horizontal vs. vertical) visual discrimination task, using appetitive reinforcement; no differences between sexes were observed. A significant interaction, however, was found between strain and task, indicating a lower performance of the A x C strain in the difficult task. The results are discussed within the theoretical framework of the Yerkes-Dodson Law, which states a relationship between drive level, performance and different degrees of task difficulty.
Collapse
Affiliation(s)
- M A Saavedra
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago
| | | | | | | |
Collapse
|
43
|
Merkx J, Slob AK, van der Werff ten Bosch JJ. Preference for an estrous female over a non-estrous female evinced by female rats requires dihydrotestosterone plus estradiol. Horm Behav 1989; 23:466-72. [PMID: 2606463 DOI: 10.1016/0018-506x(89)90036-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects were studied of long-term treatment with testosterone metabolites (dihydrotestosterone. DHT, and estradiol, E2, in sc Silastic implants) on preference behavior of ovariectomized female rats for an estrous female over a non-estrous female. For measuring this behavior a residential plus-maze was used which harbored two ovariectomized "stimulus" females on the top of peripheral boxes, one of which was made estrus by injection of estradiol benzoate and progesterone. When both steroids (DHT plus E2) were circulating simultaneously they evoked preference for an estrous female, while neither steroid by itself sufficed. In earlier work with adult male rats castrated on the day of birth, E2 was effective in the absence of DHT. This sex difference, therefore, seems to have arisen before birth. Further, administration of DHT alone caused a profound lack of interest in both "stimulus" females, which cannot be fully explained by the reduced locomotor activity which has been found to be induced by DHT in earlier studies.
Collapse
Affiliation(s)
- J Merkx
- Department of Endocrinology, Faculty of Medicine, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Brand T, Slob AK. Peripubertal castration of male rats, adult open field ambulation and partner preference behavior. Behav Brain Res 1988; 30:111-7. [PMID: 3166710 DOI: 10.1016/0166-4328(88)90141-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The validity of the hypothesis put forward earlier, that testicular secretions during puberty have an organizing effect on open field ambulation was examined. Male rats were castrated or sham-operated at days 21, 43 or 70. At the age of 17 weeks the males were tested in an automated, octagonal open field (3 consecutive days, 3 min/day) for locomotor activity. Male rats castrated at day 21 or day 43 ambulated more than sham-castrated controls. Males castrated at day 70 did not differ from sham-castrated controls. It thus appears that pubertal testicular secretion(s) organize adult open field locomotor activity in male rats. From 18 weeks of age partner preference behavior was tested in the same open field apparatus with one adjacent cage containing an ovariectomized female and an opposite one containing an ovariectomized female brought into heat. The females in the adjacent cages were separated from the experimental males in the octagonal cage by wire mesh. Peripubertally castrated males did not show a clear-cut partner preference, whereas the intact males preferred the vicinity of the estrous female. There were no differences among the males castrated either before, during or after puberty. Testosterone treatment (crystalline T in silastic capsules) caused peripubertally castrated males to prefer the estrous female. Thus, adult partner preference behavior does not seem to be organized by peripubertal testicular androgens.
Collapse
Affiliation(s)
- T Brand
- Department of Endocrinology, Growth and Reproduction, Faculty of Medicine, Erasmus University, Rotterdam, The Netherlands
| | | |
Collapse
|
45
|
Slob AK, Huizer T, Van der Werff ten Bosch JJ. Ontogeny of sex differences in open-field ambulation in the rat. Physiol Behav 1986; 37:313-5. [PMID: 3737744 DOI: 10.1016/0031-9384(86)90239-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of age and gonads were studied in rats subjected to open-field tests, during which ambulation behavior was recorded. Subjects were three groups of male and female rats: sham-operation on day 1 and day 21; gonadectomy on day 1 and sham-operation on day 21; and sham-operation on day 1 and gonadectomy on day 21. Half of each group were tested in a circular open field (3 min/day, 3 consecutive days) on days 28-30; the others were tested on days 47-49. Representatives of both batches were tested again in a square open field on days 76-78. There was a sex difference in ambulation at 77 days, but not at earlier ages. In animals gonadectomized on day 1 or day 21 the sex difference in adulthood failed to occur, because castration caused the males to ambulate as much as sham-operated and ovariectomized females. On the basis of our results and reports in the literature it is suggested that testicular secretions around puberty have an organizing effect on ambulation behavior. The intact adult male rat ambulates less than the adult female and this difference persists after castration in adulthood. Castration well before puberty prevents the development of the adult sex difference.
Collapse
|
46
|
Abstract
The effects of neonatal testicular hormones on preference behaviour for an oestrous female rat were investigated. A residential maze was used in which the position of the animals was registered continuously without disturbing them. Two experiments are described. In the first experiment adult male rats which had been castrated within 24 h of birth were given testosterone (T), dihydrotestosterone (DHT) or oestradiol (E2) in a subcutaneous silastic implant. The T- and E2-treated males showed preference for an oestrous female rat over an anoestrous female. The DHT-treated animals showed no interest in a female conspecific, irrespective of her hormonal state. In the second experiment females spayed in adulthood were given a T-containing silastic implant. They showed preference for the oestrous female, like intact males. Removal of the T-implant caused this preference to disappear, while locomotor activity was not affected. It is concluded that neonatal testicular hormones have little effect on adult sociosexual preference behaviour.
Collapse
|
47
|
Abstract
A series of six experiments was performed to examine the influence of postnatal-gonadal-hormone exposure on home-cage activity in Rockland-Swiss albino mice. Intact females were more active than their male counterparts and gonadectomy in adulthood, while reducing levels of the behavior in both sexes, did not eliminate the gender difference. Males that were castrated on the day of birth were more active than animals castrated 5, 10, or 25 days later. Also, females treated with testosterone propionate on the day of birth were less active than oil-treated controls and females exposed to the steroid 10 days after birth. Thus, perinatal exposure to gonadal hormones suppresses adult levels of home-cage activity in mice.
Collapse
|
48
|
Merkx J. Effect of castration and subsequent substitution with testosterone, dihydrotestosterone and oestradiol on sexual preference behaviour in the male rat. Behav Brain Res 1984; 11:59-65. [PMID: 6538089 DOI: 10.1016/0166-4328(84)90008-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the present study effects of castration and subsequent hormonal substitution on the partner-preference behaviour of the male rat are investigated. For the determination of this behaviour a residential plus-maze is used. Castration of a male rat leads to the disappearance of preference behaviour after a few weeks. Subsequent administration of testosterone by means of a silastic implant restores this behaviour within a few weeks. Castrated male rats with a silastic implant containing dihydrotestosterone will not seek contact with the oestrous female rat. Oestradiol-implanted castrated male rats show the same behaviour in the residential plus-maze as do intact male rats. It is concluded that in the male rat gonadal hormones have an effect on the processing of the signals which an oestrous female rat emits to attract a male.
Collapse
|
49
|
Abstract
Adult castration significantly reduced the homecage locomotor activity of both inbred C57BL/6J and DBA/2J and outbred Rockland-Swiss (R-S) male mice. Castrated C57BL animals exhibited greater reductions in this behavior than did the other genotypes. Locomotor activity in a novel environment (reactivity) was also reduced by castration but only for inbred males. In both test situations, postcastration reductions in ambulation were prevented by implants of testosterone (T)-containing Silastic capsules. Thus, testicular hormones promote activity and reactivity in the male mouse in a genotype-dependent fashion.
Collapse
|