1
|
Takeda K, Watanabe K, Iijima S, Nagahiro T, Suzuki H, Izumo K, Ikegaya Y, Matsumoto N. Ramelteon coordinates theta and gamma oscillations in the hippocampus for novel object recognition memory in mice. J Pharmacol Sci 2025; 158:121-130. [PMID: 40288822 DOI: 10.1016/j.jphs.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/14/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Object recognition memory is an animal's ability to discriminate between novel and familiar items and is supported by neural activities in not only the perirhinal cortex but also the hippocampus and prefrontal cortex. Since we previously demonstrated that ramelteon enhanced object recognition memory in mice, we sought neural correlates of the memory improvement. We recorded neural activity in the hippocampus and prefrontal cortex of mice while they performed a novel object recognition task. We found that theta oscillations in the hippocampus were enhanced when ramelteon-treated mice explored both novel and familiar objects. Moreover, we showed high coherence in phases at low gamma frequencies between the hippocampus and prefrontal cortex. We assume that theta enhancement is indicative of increased cholinergic activity by melatonin receptor activation. High coherence of low gamma oscillations between the hippocampal and prefrontal network in ramelteon-treated mice sampling novel objects suggests better cognitive operations for discrimination between novelty and familiarity. The current study sheds light upon physiological consequences of melatonin receptor activation, further contributing improved cognitive functions.
Collapse
Affiliation(s)
- Kinjiro Takeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kisa Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sena Iijima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Nagahiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kano Izumo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Welzel B, Schmidt R, Löscher W. Early postnatal inhibition of neurosteroid synthesis changes the later-life adverse outcome of neonatal asphyxia in rats. Neuropharmacology 2025; 276:110506. [PMID: 40354978 DOI: 10.1016/j.neuropharm.2025.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Birth asphyxia (BA) is a common cause of hypoxic-ischemic encephalopathy (HIE), neonatal seizures, and detrimental neurodevelopment. Brain levels of neurosteroids such as allopregnanolone rise in response to acute hypoxic stress, which is thought to represent an endogenous protective mechanism that reduces excitotoxicity in the developing brain. In the present study, we investigated how inhibition of neurosteroid synthesis by the steroid 5α-reductase inhibitor finasteride affects the adverse outcomes of BA/HIE. Intermittent asphyxia was induced in neonatal rats at postnatal day 11. Finasteride (50 mg/kg) was administered immediately before asphyxia. Behavioral and cognitive tests were performed over the subsequent 14 months, which corresponds to ∼50 % of the lifespan of the outbred rat strain used. In contrast to our expectation, finasteride decreased the severity and duration of the neonatal seizures and did not increase mortality. Subsequent behavioral experiments showed no adverse development of motor function, but finasteride-treated rats exhibited increased anxiety-like behavior in the open field, elevated plus-maze, and light-dark box tests. The increased anxiety-like behavior was correlated with enhanced mossy fiber sprouting in the hippocampal CA3a region. While vehicle-treated post-asphyxial rats showed a serious decline in cognitive functions, this was not observed in the finasteride-treated group. One possible explanation of the latter finding is that a significant loss of CA3c neurons in the dorsal hippocampus was only determined in vehicle-treated but not finasteride-treated post-asphyxial rats. Overall, the present study indicates that the role of neurosteroids in BA and its adverse outcome is much more complex than previously thought.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
4
|
Weisberg SM, Ebner NC, Seidler RD. Getting LOST: A conceptual framework for supporting and enhancing spatial navigation in aging. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1669. [PMID: 37933623 PMCID: PMC10939954 DOI: 10.1002/wcs.1669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Spatial navigation is more difficult and effortful for older than younger individuals, a shift which occurs for a variety of neurological, physical, and cognitive reasons associated with aging. Despite a large body of evidence documenting age-related deficits in spatial navigation, comparatively less research addresses how to facilitate more effective navigation behavior for older adults. Since navigation challenges arise for a variety of reasons in old age, a one-size-fits-all solution is unlikely to work. Here, we introduce a framework for the variety of spatial navigation challenges faced in aging, which we call LOST-Location, Orientation, Spatial mapping, and Transit. The LOST framework builds on evidence from the cognitive neuroscience of spatial navigation, which reveals distinct components underpinning human wayfinding. We evaluate research on navigational aids-devices and depictions-which help people find their way around; and we reflect on how navigation aids solve (or fail to solve) specific wayfinding difficulties faced by older adults. In summary, we emphasize a bespoke approach to improving spatial navigation in aging, which focuses on tailoring navigation solutions to specific navigation challenges. Our hope is that by providing precise support to older navigators, navigation opportunities can facilitate independence and exploration, while minimizing the danger of becoming lost. We conclude by delineating critical knowledge gaps in how to improve older adults' spatial navigation capacities that the novel LOST framework could guide to address. This article is categorized under: Psychology > Development and Aging Neuroscience > Cognition Neuroscience > Behavior.
Collapse
Affiliation(s)
- Steven M. Weisberg
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL 32611
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, 1225 Center Dr., Gainesville, FL 32611
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL 32611
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, 1225 Center Dr., Gainesville, FL 32611
- Institute on Aging, University of Florida, 2004 Mowry Rd., Gainesville, FL 32611
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610-0274
| | - Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611
- Department of Neurology, University of Florida, 1149 Newell Dr., Gainesville, FL 32611
- Normal Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Rd. 1864 Stadium Rd., Gainesville, FL 32608
| |
Collapse
|
5
|
Mazzara C, Migliore M. A realistic computational model for the formation of a Place Cell. Sci Rep 2023; 13:21763. [PMID: 38066014 PMCID: PMC10709575 DOI: 10.1038/s41598-023-48183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Hippocampal Place Cells (PCs) are pyramidal neurons showing spatially localized firing when an animal gets into a specific area within an environment. Because of their obvious and clear relation with specific cognitive functions, Place Cells operations and modulations are intensely studied experimentally. However, although a lot of data have been gathered since their discovery, the cellular processes that interplay to turn a hippocampal pyramidal neuron into a Place Cell are still not completely understood. Here, we used a morphologically and biophysically detailed computational model of a CA1 pyramidal neuron to show how, and under which conditions, it can turn into a neuron coding for a specific cue location, through the self-organization of its synaptic inputs in response to external signals targeting different dendritic layers. Our results show that the model is consistent with experimental findings demonstrating PCs stability within the same spatial context over different trajectories, environment rotations, and place field remapping to adapt to changes in the environment. To date, this is the only biophysically and morphologically accurate cellular model of PCs formation, which can be directly used in physiologically accurate microcircuits and large-scale model networks to study cognitive functions and dysfunctions at cellular level.
Collapse
Affiliation(s)
- Camille Mazzara
- Department of Promoting Health, Maternal-Infant. Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Palermo, Italy
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy.
| |
Collapse
|
6
|
Layfield D, Sidell N, Blankenberger K, Newman EL. Hippocampal inactivation during rearing on hind legs impairs spatial memory. Sci Rep 2023; 13:6136. [PMID: 37061540 PMCID: PMC10105745 DOI: 10.1038/s41598-023-33209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal activity during these periods of attentive sampling for spatial memory is unknown. To address this, we tested the necessity of dorsal hippocampal activity during rearing epochs in the study phase of a delayed win-shift task for memory performance in the subsequent test phase. Hippocampal activity was manipulated with closed-loop, bilateral, optogenetic inactivation. Spatial memory accuracy was significantly and selectively reduced when the dorsal hippocampus was inactivated during rearing epochs at encoding. These data show that hippocampal activity during periods of rearing can be important for spatial memory, revealing a novel link between hippocampal function during epochs of rearing and spatial memory.
Collapse
Affiliation(s)
- Dylan Layfield
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
| | - Nathan Sidell
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Kevin Blankenberger
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Ehren Lee Newman
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| |
Collapse
|
7
|
Zhu N, Zhang Y, Xiao X, Wang Y, Yang J, Colgin LL, Zheng C. Hippocampal oscillatory dynamics in freely behaving rats during exploration of social and non-social stimuli. Cogn Neurodyn 2023; 17:411-429. [PMID: 37007194 PMCID: PMC10050611 DOI: 10.1007/s11571-022-09829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/03/2022] Open
Abstract
Hippocampal CA2 supports social memory and encodes information about social experiences. Our previous study showed that CA2 place cells responded specifically to social stimuli (Nat Commun, (Alexander et al. 2016)). In addition, a prior study showed that activation of CA2 induces slow gamma rhythms (~ 25-55 Hz) in the hippocampus (Elife, (Alexander 2018)). Together, these results raise the question of whether slow gamma rhythms coordinate CA2 activity during social information processing. We hypothesized that slow gamma would be associated with transmission of social memories from CA2 to CA1, perhaps to integrate information across regions or promote social memory retrieval. We recorded local field potentials from hippocampal subfields CA1, CA2, and CA3 of 4 rats performing a social exploration task. We analyzed the activity of theta, slow gamma, and fast gamma rhythms, as well as sharp wave-ripples (SWRs), within each subfield. We assessed interactions between subfields during social exploration sessions and during presumed social memory retrieval in post-social exploration sessions. We found that CA2 slow gamma rhythms increased during social interactions but not during non-social exploration. CA2-CA1 theta-show gamma coupling was enhanced during social exploration. Furthermore, CA1 slow gamma rhythms and SWRs were associated with presumed social memory retrieval. In conclusion, these results suggest that CA2-CA1 interactions via slow gamma rhythms occur during social memory encoding, and CA1 slow gamma is associated with retrieval of social experience. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09829-8.
Collapse
Affiliation(s)
- Nan Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiyuan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xi Xiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Laura Lee Colgin
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712-0805 USA
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712-0805 USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712-0805 USA
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| |
Collapse
|
8
|
Lehr AB, Hitti FL, Deibel SH, Stöber TM. Silencing hippocampal CA2 reduces behavioral flexibility in spatial learning. Hippocampus 2023; 33:759-768. [PMID: 36938702 DOI: 10.1002/hipo.23521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
The hippocampus is a key structure involved in learning and remembering spatial information. However, the extent to which hippocampal region CA2 is involved in these processes remains unclear. Here, we show that chronically silencing dorsal CA2 impairs reversal learning in the Morris water maze. After platform relocation, CA2-silenced mice spent more time in the vicinity of the old platform location and less time in the new target quadrant. Accordingly, behavioral strategy analysis revealed increased perseverance in navigating to the old location during the first day and an increased use of non-spatial strategies during the second day of reversal learning. Confirming previous indirect indications, these results demonstrate that CA2 is recruited when mice must flexibly adapt their behavior as task contingencies change. We discuss how these findings can be explained by recent theories of CA2 function and outline testable predictions to understand the underlying neural mechanisms. Demonstrating a direct involvement of CA2 in spatial learning, this work lends further support to the notion that CA2 plays a fundamental role in hippocampal information processing.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Scott H Deibel
- Department of Psychology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Tristan M Stöber
- Institute for Neuroinformatics, Ruhr University Bochum, Bochum, Germany.,Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
9
|
Jude MB, Strand CR. Sex and Season Affect Cortical Volumes in Free-Living Western Fence Lizards, Sceloporus occidentalis. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:160-170. [PMID: 36796337 DOI: 10.1159/000529692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
The hippocampus plays an important role in spatial navigation and spatial learning across a variety of vertebrate species. Sex and seasonal differences in space use and behavior are known to affect hippocampal volume. Similarly, territoriality and differences in home range size are known to affect the volume of the reptile hippocampal homologues, the medial and dorsal cortices (MC, DC). However, studies have almost exclusively investigated males and little is known about sex or seasonal differences in MC and/or DC volumes in lizards. Here, we are the first to simultaneously examine sex and seasonal differences in MC and DC volumes in a wild lizard population. In Sceloporus occidentalis, males display territorial behaviors that are more pronounced during the breeding season. Given this sex difference in behavioral ecology, we expected males to have larger MC and/or DC volumes than females and for this difference to be most pronounced during the breeding season when territorial behavior is increased. Male and female S. occidentalis were captured from the wild during the breeding season and the post-breeding season and were sacrificed within 2 days of capture. Brains were collected and processed for histology. Cresyl-violet-stained sections were used to quantify brain region volumes. In these lizards, breeding females had larger DC volumes than breeding males and nonbreeding females. There was no sex or seasonal difference in MC volumes. Differences in spatial navigation in these lizards may involve aspects of spatial memory related to breeding other than territoriality that affect plasticity of the DC. This study highlights the importance of investigating sex differences and including females in studies of spatial ecology and neuroplasticity.
Collapse
Affiliation(s)
- Morgan B Jude
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA,
- School of Medicine, University of California Davis Medical Center, Sacramento, California, USA,
| | - Christine R Strand
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
10
|
Lee SM, Shin J, Lee I. Significance of visual scene-based learning in the hippocampal systems across mammalian species. Hippocampus 2022; 33:505-521. [PMID: 36458555 DOI: 10.1002/hipo.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
The hippocampus and its associated cortical regions in the medial temporal lobe play essential roles when animals form a cognitive map and use it to achieve their goals. As the nature of map-making involves sampling different local views of the environment and putting them together in a spatially cohesive way, visual scenes are essential ingredients in the formative process of cognitive maps. Visual scenes also serve as important cues during information retrieval from the cognitive map. Research in humans has shown that there are regions in the brain that selectively process scenes and that the hippocampus is involved in scene-based memory tasks. The neurophysiological correlates of scene-based information processing in the hippocampus have been reported as "spatial view cells" in nonhuman primates. Like primates, it is widely accepted that rodents also use visual scenes in their background for spatial navigation and other kinds of problems. However, in rodents, it is not until recently that researchers examined the neural correlates of the hippocampus from the perspective of visual scene-based information processing. With the advent of virtual reality (VR) systems, it has been demonstrated that place cells in the hippocampus exhibit remarkably similar firing correlates in the VR environment compared with that of the real-world environment. Despite some limitations, the new trend of studying hippocampal functions in a visually controlled environment has the potential to allow investigation of the input-output relationships of network functions and experimental testing of traditional computational predictions more rigorously by providing well-defined visual stimuli. As scenes are essential for navigation and episodic memory in humans, further investigation of the rodents' hippocampal systems in scene-based tasks will provide a critical functional link across different mammalian species.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Vasavda C, Semenza ER, Liew J, Kothari R, Dhindsa RS, Shanmukha S, Lin A, Tokhunts R, Ricco C, Snowman AM, Albacarys L, Pastore F, Ripoli C, Grassi C, Barone E, Kornberg MD, Dong X, Paul BD, Snyder SH. Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Sci Signal 2022; 15:eabh3066. [PMID: 35536885 PMCID: PMC9281001 DOI: 10.1126/scisignal.abh3066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synapses connect discrete neurons into vast networks that send, receive, and encode diverse forms of information. Synaptic function and plasticity, the neuronal process of adapting to diverse and variable inputs, depend on the dynamic nature of synaptic molecular components, which is mediated in part by cell adhesion signaling pathways. Here, we found that the enzyme biliverdin reductase (BVR) physically links together key focal adhesion signaling molecules at the synapse. BVR-null (BVR-/-) mice exhibited substantial deficits in learning and memory on neurocognitive tests, and hippocampal slices in which BVR was postsynaptically depleted showed deficits in electrophysiological responses to stimuli. RNA sequencing, biochemistry, and pathway analyses suggested that these deficits were mediated through the loss of focal adhesion signaling at both the transcriptional and biochemical level in the hippocampus. Independently of its catalytic function, BVR acted as a bridge between the primary focal adhesion signaling kinases FAK and Pyk2 and the effector kinase Src. Without BVR, FAK and Pyk2 did not bind to and stimulate Src, which then did not phosphorylate the N-methyl-d-aspartate (NMDA) receptor, a critical posttranslational modification for synaptic plasticity. Src itself is a molecular hub on which many signaling pathways converge to stimulate NMDAR-mediated neurotransmission, thus positioning BVR at a prominent intersection of synaptic signaling.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shruthi Shanmukha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony Lin
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Robert Tokhunts
- Department of Anesthesiology, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Cristina Ricco
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Within-Trial Persistence of Learned Behavior as a Dissociable Behavioral Component in Hippocampus-Dependent Memory Tasks: A Potential Postlearning Role of Immature Neurons in the Adult Dentate Gyrus. eNeuro 2021; 8:ENEURO.0195-21.2021. [PMID: 34281981 PMCID: PMC8387154 DOI: 10.1523/eneuro.0195-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
The term “memory strength” generally refers to how well one remembers something. But more precisely it contains multiple modalities, such as how easily, how accurately, how confidently and how vividly we remember it. In human, these modalities of memory strength are dissociable. In this study, we asked whether we can isolate a behavioral component that is dissociable from others in hippocampus-dependent memory tasks in mice, which potentially reflect a modality of memory strength. Using a virus-mediated inducible method, we ablated immature neurons in the dentate gyrus in mice after we trained the mice with hippocampus-dependent memory tasks normally. In memory retrieval tests, these ablated mice initially showed intact performance. However, the ablated mice ceased learned behavior prematurely within a trial compared with control mice. In addition, the ablated mice showed shorter duration of individual episodes of learned behavior. Both affected behavioral measurements point to persistence of learned behavior. Thus, the effect of the postlearning manipulation showed dissociation between initial performance and persistence of learned behavior. These two behavioral components are likely to reflect different brain functions and be mediated by separate mechanisms, which might represent different modalities of memory strength. These simple dissociable measurements in widely used behavioral paradigms would be useful to understand detailed mechanisms underlying the expression of learned behavior and potentially different modalities of memory strength in mice. We also discuss a potential role that immature neurons in the dentate gyrus may play in persistence of learned behavior.
Collapse
|
13
|
Johnsen SHW, Rytter HM. Dissociating spatial strategies in animal research: Critical methodological review with focus on egocentric navigation and the hippocampus. Neurosci Biobehav Rev 2021; 126:57-78. [PMID: 33771535 DOI: 10.1016/j.neubiorev.2021.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
One major challenge in animal research on spatial learning and memory pertains to designing methods to dissociate spatial strategies (allocentric vs. egocentric). This is crucial for understanding the underlying cognitive processes and neural circuits that are recruited in navigational tasks. Taking the egocentric reference frames as a starting point, this review argues that in many extensively used spatial paradigms, multiple spatial reference frames are often available to the animals but remain unaccounted for. We discuss the implications this has for the inferences that can be made and propose a decision-algorithm to construct spatial learning paradigms that can reduce the influence of these confounding variables. Furthermore, with these considerations in mind, we review the role of the hippocampus in egocentric navigation forms, i.e. in response learning, egocentric sequential learning and path integration. This choice is based on the controversy surrounding the role of hippocampus in these spatial paradigms. We discuss the possible methodological confounders that may explain the inconclusive results.
Collapse
Affiliation(s)
- Svend Heini W Johnsen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen, Denmark.
| | - Hana Malá Rytter
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen, Denmark; University Hospital Bispebjerg - Frederiksberg, Department of Neurology, Nielsine Nielsens vej 7, 2400 Copenhagen, Denmark; Danish Concussion Center, Amagerfælledvej 56A, 2300 Copenhagen, Denmark.
| |
Collapse
|
14
|
Dringenberg HC. The history of long-term potentiation as a memory mechanism: Controversies, confirmation, and some lessons to remember. Hippocampus 2020; 30:987-1012. [PMID: 32442358 DOI: 10.1002/hipo.23213] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
The discovery of long-term potentiation (LTP) provided the first, direct evidence for long-lasting synaptic plasticity in the living brain. Consequently, LTP was proposed to serve as a mechanism for information storage among neurons, thus providing the basis for the behavioral and psychological phenomena of learning and long-term memory formation. However, for several decades, the LTP-memory hypothesis remained highly controversial, with inconsistent and contradictory evidence providing a barrier to its general acceptance. This review summarizes the history of these early debates, challenges, and experimental strategies (successful and unsuccessful) to establish a link between LTP and memory. Together, the empirical evidence, gathered over a period of about four decades, strongly suggests that LTP serves as one of the mechanisms affording learning and memory storage in neuronal circuits. Notably, this body of work also offers some important lessons that apply to the broader fields of behavioral and cognitive neuroscience. As such, the history of LTP as a learning mechanism provides valuable insights to neuroscientists exploring the relations between brain and psychological states.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Meléndez DM, Nordquist RE, Vanderschuren LJMJ, van der Staay FJ. Spatial memory deficits after vincristine-induced lesions to the dorsal hippocampus. PLoS One 2020; 15:e0231941. [PMID: 32315349 PMCID: PMC7173870 DOI: 10.1371/journal.pone.0231941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/04/2020] [Indexed: 11/23/2022] Open
Abstract
Vincristine is a commonly used cytostatic drug for the treatment of leukemia, neuroblastoma and lung cancer, which is known to have neurotoxic properties. The aim of this study was to assess the effects of vincristine, injected directly into the dorsal hippocampus, in spatial memory using the spatial cone field discrimination task. Long Evans rats were trained in the cone field, and after reaching training criterion received bilateral vincristine infusions into the dorsal hippocampus. Vincristine-treated animals presented unilateral or bilateral hippocampal lesions. Animals with bilateral lesions showed lower spatial working and reference memory performance than control animals, but task motivation was unaffected by the lesions. Working and reference memory of animals with unilateral lesions did not differ from animals with bilateral lesions and control animals. In sum, intrahippocampal injection of vincristine caused profound tissue damage in the dorsal hippocampus, associated with substantial cognitive deficits.
Collapse
Affiliation(s)
- Daniela M. Meléndez
- Division of Farm Animal Health, Department of Population Health Sciences, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rebecca E. Nordquist
- Division of Farm Animal Health, Department of Population Health Sciences, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Louk J. M. J. Vanderschuren
- Department of Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Franz-Josef van der Staay
- Division of Farm Animal Health, Department of Population Health Sciences, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Broadbent N, Lumeij LB, Corcoles M, Ayres AI, Bin Ibrahim MZ, Masatsugu B, Moreno A, Carames JM, Begg E, Strickland L, Mazidzoglou T, Padanyi A, Munoz-Lopez M, Takeuchi T, Peters M, Morris RGM, Tse D. A stable home-base promotes allocentric memory representations of episodic-like everyday spatial memory. Eur J Neurosci 2020; 51:1539-1558. [PMID: 31944427 PMCID: PMC7614820 DOI: 10.1111/ejn.14681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
A key issue in neurobiological studies of episodic-like memory is the geometric frame of reference in which memory traces of experience are stored. Assumptions are sometimes made that specific protocols favour either allocentric (map-like) or egocentric (body-centred) representations. There are, however, grounds for suspecting substantial ambiguity about coding strategy, including the necessity to use both frames of reference occasionally, but tests of memory representation are not routinely conducted. Using rats trained to find and dig up food in sandwells at a particular place in an event arena (episodic-like 'action-where' encoding), we show that a protocol previously thought to foster allocentric encoding is ambiguous but more predisposed towards egocentric encoding. Two changes in training protocol were examined with a view to promoting preferential allocentric encoding-one in which multiple start locations were used within a session as well as between sessions; and another that deployed a stable home-base to which the animals had to carry food reward. Only the stable home-base protocol led to excellent choice performance which rigorous analyses revealed to be blocked by occluding extra-arena cues when this was done after encoding but before recall. The implications of these findings for studies of episodic-like memory are that the representational framework of memory at the start of a recall trial will likely include a path direction in the egocentric case but path destination in the allocentric protocol. This difference should be observable in single-unit recording or calcium-imaging studies of spatially-tuned cells.
Collapse
Affiliation(s)
| | - Lucas Berend Lumeij
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Marta Corcoles
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Alice I Ayres
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | | | | | - Andrea Moreno
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Jose-Maria Carames
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Begg
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Lauren Strickland
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Theofilos Mazidzoglou
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Anna Padanyi
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Monica Munoz-Lopez
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK.,Regional Centre of Biomedical Research (CRIB), School of Medicine, Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Tomonori Takeuchi
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK.,Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark
| | - Marco Peters
- Dart Neuroscience, San Diego, Edinburgh, UK.,Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Richard G M Morris
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Dorothy Tse
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Gahnstrom CJ, Spiers HJ. Striatal and hippocampal contributions to flexible navigation in rats and humans. Brain Neurosci Adv 2020; 4:2398212820979772. [PMID: 33426302 PMCID: PMC7755934 DOI: 10.1177/2398212820979772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus has been firmly established as playing a crucial role in flexible navigation. Recent evidence suggests that dorsal striatum may also play an important role in such goal-directed behaviour in both rodents and humans. Across recent studies, activity in the caudate nucleus has been linked to forward planning and adaptation to changes in the environment. In particular, several human neuroimaging studies have found the caudate nucleus tracks information traditionally associated with that by the hippocampus. In this brief review, we examine this evidence and argue the dorsal striatum encodes the transition structure of the environment during flexible, goal-directed behaviour. We highlight that future research should explore the following: (1) Investigate neural responses during spatial navigation via a biophysically plausible framework explained by reinforcement learning models and (2) Observe the interaction between cortical areas and both the dorsal striatum and hippocampus during flexible navigation.
Collapse
Affiliation(s)
- Christoffer J. Gahnstrom
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Hugo J. Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
18
|
Casillas-Espinosa PM, Shultz SR, Braine EL, Jones NC, Snutch TP, Powell KL, O’Brien TJ. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Prog Neurobiol 2019; 182:101677. [DOI: 10.1016/j.pneurobio.2019.101677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
|
19
|
Bracke A, Domanska G, Bracke K, Harzsch S, van den Brandt J, Bröker B, von Bohlen Und Halbach O. Obesity Impairs Mobility and Adult Hippocampal Neurogenesis. J Exp Neurosci 2019; 13:1179069519883580. [PMID: 31765441 PMCID: PMC6852358 DOI: 10.1177/1179069519883580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Currently, it is controversially discussed whether a relationship between obesity
and cognition exists. We here analyzed a mouse model of obesity
(leptin-deficient mice) to study the effects of obesity on the morphology of the
hippocampus (a brain structure involved in mechanisms related to learning and
memory) and on behavior. Mice aged 4 to 6 months were analyzed. At this age, the
obese mice have nearly double the body weight as controls, but display smaller
brains (brain volume is about 10% smaller) as control animals of the same age.
Adult hippocampal neurogenesis, a process that is linked to learning and memory,
might be disturbed in the obese mice and contribute to the smaller brain volume.
Adult hippocampal neurogenesis was examined using specific markers for cell
proliferation (phosphohistone H3), neuronal differentiation (doublecortin), and
apoptosis (caspase 3). The number of phosphohistone H3 and doublecortin-positive
cells was markedly reduced in leptin-deficient mice, but not the number of
apoptotic cells, indicating that adult hippocampal neurogenesis on the level of
cell proliferation was affected. In addition, dendritic spine densities of
pyramidal neurons in the hippocampal area CA1 were analyzed using Golgi
impregnation. However, no significant change in dendritic spine densities was
noted in the obese mice. Moreover, the performance of the mice was analyzed in
the open field as well as in the Morris water maze. In the open field test,
obese mice showed reduced locomotor activity, but in the Morris water maze they
showed similar performance compared with control animals.
Collapse
Affiliation(s)
- Alexander Bracke
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Grazyna Domanska
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Bracke
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University Greifswald, Greifswald, Germany
| | - Jens van den Brandt
- Central Service and Research Unit for Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany
| | - Barbara Bröker
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
20
|
Cooke MB, O'Leary TP, Harris P, Ma R, Brown RE, Snyder JS. Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Res 2019; 8:1521. [PMID: 32025289 PMCID: PMC6974928 DOI: 10.12688/f1000research.20352.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Timothy P O'Leary
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Phelan Harris
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Ricky Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Richard E Brown
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason S Snyder
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
21
|
Cooke MB, O'Leary TP, Harris P, Ma R, Brown RE, Snyder JS. Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Res 2019; 8:1521. [PMID: 32025289 DOI: 10.12688/f1000research.20352.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 01/24/2023] Open
Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Timothy P O'Leary
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Phelan Harris
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Ricky Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Richard E Brown
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason S Snyder
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
22
|
Ferguson TD, Livingstone-Lee SA, Skelton RW. Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze. Behav Brain Res 2019; 364:281-295. [DOI: 10.1016/j.bbr.2019.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
23
|
Bye CM, McDonald RJ. A Specific Role of Hippocampal NMDA Receptors and Arc Protein in Rapid Encoding of Novel Environmental Representations and a More General Long-Term Consolidation Function. Front Behav Neurosci 2019; 13:8. [PMID: 30863289 PMCID: PMC6399163 DOI: 10.3389/fnbeh.2019.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022] Open
Abstract
Activation of the NMDA receptor (NMDAR) has been proposed to be a key event responsible for the structural changes that occur in neurons during learning and memory formation. It has been extensively studied yet no consensus has been reached on its mnemonic role as both NMDAR dependent and independent forms of learning have been observed. We investigated the role that hippocampal NMDAR have in rapid spatial learning and memory across training environments. Hippocampal NMDAR was blocked via intra-hippocampal injection of the competitive antagonist CPP. Groups of rats were pre-trained on a spatial version of the Morris water task, and then mass reversal training under NMDAR blockade occurred in the same or different training environments as pre-training. We measured expression of Arc protein throughout the main hippocampal subfields, CA1, CA3, and dentate gyrus, after mass-training. We observed that NMDAR blockade allowed for rapid spatial learning, but not consolidation, when the SUBJECTS used previously acquired environmental information. Interestingly, NMDAR blockade impaired rapid spatial learning when rats were mass-trained in a novel context. Arc protein expression in the dentate gyrus followed this pattern of NMDAR dependent spatial behavior, with high levels of expression observed after being trained in the new environment, and low levels when trained in the same environment. CPP significantly reduced Arc expression in the dentate gyrus. These results implicate dentate NMDAR in the acquisition of novel environmental information.
Collapse
Affiliation(s)
- Cameron M Bye
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Blankenship PA, Normann MC, Donaldson TN, Baumeister J, McNeal N, Grippo AJ, Wallace DG. Making waves: Comparing Morris water task performance in rats and prairie voles. Behav Brain Res 2018; 360:7-15. [PMID: 30472112 DOI: 10.1016/j.bbr.2018.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022]
Abstract
Spatial processing is a critical component for survival. This domain of information processing has been extensively studied in rats and mice. Limited work has examined the capacity of other rodent species, like the prairie vole (Microtus ochrogaster), to process spatial information. The Morris water task (MWT) is a classic spatial task that has been used to examine spatial cognition in rodents. This task involves an animal developing configural relationships between extra-maze cues and the location of a hidden platform to successfully escape from a pool of water. The current study compared performance in the MWT between rats and prairie voles. Rats were observed to outperform prairie voles in key aspects of the task including latency to find the platform, directness of swim paths to the platform, and degrees of heading error. These results may be attributed to potential interspecies differences in spatial cognition, stress reactivity, physiology, or motivation. This study provides the foundation for future work investigating the spatial cognition of prairie voles and the factors that contribute to water task performance in rodents.
Collapse
Affiliation(s)
| | - Marigny C Normann
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Tia N Donaldson
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Joanna Baumeister
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Neal McNeal
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Angela J Grippo
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| | - Douglas G Wallace
- Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892 USA
| |
Collapse
|
25
|
Buckley MG, Bast T. A new human delayed-matching-to-place test in a virtual environment reverse-translated from the rodent watermaze paradigm: Characterization of performance measures and sex differences. Hippocampus 2018; 28:796-812. [PMID: 30451330 DOI: 10.1002/hipo.22992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 05/27/2018] [Indexed: 11/09/2022]
Abstract
Watermaze tests of place learning and memory in rodents and corresponding reverse-translated human paradigms in real or virtual environments are key tools to study hippocampal function. In common variants, the animal or human participant has to find a hidden goal that remains in the same place over many trials, allowing for incremental learning of the place with reference to distal cues surrounding the circular, featureless maze. Although the hippocampus is involved in incremental place learning, rodent studies have shown that the delayed-matching-to-place (DMP) watermaze test is a more sensitive assay of hippocampal function. On the DMP test, the goal location changes every four trials, requiring the rapid updating of place memory. Here, we developed a virtual DMP test reverse-translated from the rat watermaze DMP paradigm. In two replications, participants showed 1-trial place learning, evidenced by marked latency and path length savings between Trials 1 and 2 to the same goal location, and by search preference for the vicinity of the goal when Trial 2 was run as probe trial (during which the goal was removed). The performance was remarkably similar to rats' performance on the watermaze DMP test. In both replications, male participants showed greater savings and search preferences compared to female participants. Male participants also showed better mental rotation performance, although mental rotation scores did not consistently correlate with DMP performance measures, pointing to distinct neurocognitive mechanisms. The remarkable similarity between rodent and human DMP performance suggests similar underlying neuro-psychological mechanisms, including hippocampus dependence. The new virtual DMP test may, therefore, provide a sensitive tool to probe human hippocampal function.
Collapse
Affiliation(s)
| | - Tobias Bast
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Two strategies used to solve a navigation task: A different use of the hippocampus by males and females? A preliminary study in rats. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/psicolj-2018-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
There is abundant research (both in rodents and in humans) showing that males and females often use different types of information in spatial navigation. Males prefer geometry as a source of information, whereas females tend to focus on landmarks (which are often near to a goal objects). However, when considering the role of the hippocampus, the research focuses primarily on males only. In the present study, based on Rodríguez, Torres, Mackintosh, and Chamizo’s (2010, Experiment 2) navigation protocol, we conducted two experiments, one with males and another with females, in order to tentatively evaluate the role of the dorsal hippocampus in the acquisition of two tasks: one based on landmark learning and the alternate one on local pool-geometry learning. Both when landmark learning and when geometry learning, Sham male rats learned significantly faster than Lesion male animals. This was not the case with female rats in geometry learning. These results suggest that the dorsal hippocampus could play an important role in males only.
Collapse
|
27
|
Zhong JY, Magnusson KR, Swarts ME, Clendinen CA, Reynolds NC, Moffat SD. The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning. Behav Neurosci 2018; 131:470-482. [PMID: 29189018 DOI: 10.1037/bne0000219] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study applied a rodent-based Morris water maze (MWM) protocol to an investigation of search performance differences between young and older adult humans. To investigate whether similar age-related decline in search performance could be seen in humans based on the rodent-based protocol, we implemented a virtual MWM (vMWM) that has characteristics similar to those of the MWM used in previous studies of spatial learning in mice. Through the use of a proximity to platform measure, robust differences were found between healthy young and older adults in search performance. After dividing older adults into good and poor performers based on a median split of their corrected cumulative proximity values, the age effects in place learning were found to be largely related to search performance differences between the young and poor-performing older adults. When compared with the young, poor-performing older adults exhibited significantly higher proximity values in 83% of 24 place trials and overall in the probe trials that assessed spatial learning in the absence of the hidden platform. In contrast, good-performing older adults exhibited patterns of search performance that were comparable with that of the younger adults in most place and probe trials. Taken together, our findings suggest that the low search accuracy in poor-performing older adults stemmed from potential differences in strategy selection, differences in assumptions or expectations of task demands, as well as possible underlying functional and/or structural changes in the brain regions involved in vMWM search performance. (PsycINFO Database Record
Collapse
Affiliation(s)
- Jimmy Y Zhong
- School of Psychology, College of Sciences, Georgia Institute of Technology
| | - Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine & Linus Pauling Institute, Oregon State University
| | - Matthew E Swarts
- School of Architecture, College of Design, Georgia Institute of Technology
| | | | - Nadjalisse C Reynolds
- Department of Biomedical Sciences, College of Veterinary Medicine & Linus Pauling Institute, Oregon State University
| | - Scott D Moffat
- School of Psychology, College of Sciences, Georgia Institute of Technology
| |
Collapse
|
28
|
Seib DR, Chahley E, Princz-Lebel O, Snyder JS. Intact memory for local and distal cues in male and female rats that lack adult neurogenesis. PLoS One 2018; 13:e0197869. [PMID: 29787617 PMCID: PMC5963786 DOI: 10.1371/journal.pone.0197869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
The dentate gyrus is essential for remembering the fine details of experiences that comprise episodic memory. Dentate gyrus granule cells receive highly-processed sensory information and are hypothesized to perform a pattern separation function, whereby similar sensory inputs are transformed into orthogonal neural representations. Behaviorally, this is believed to enable distinct memory for highly interfering stimuli. Since the dentate gyrus is comprised of a large number of adult-born neurons, which have unique synaptic wiring and neurophysiological firing patterns, it has been proposed that neurogenesis may contribute to this process in unique ways. Some behavioral evidence exists to support this role, whereby neurogenesis-deficient rodents are impaired at discriminating the fine visuospatial details of experiences. However, the extent to which newborn neurons contribute to dentate gyrus-dependent learning tasks is unclear. Furthermore, since most studies of dentate gyrus function are conducted in male rats, little is known about how females perform in similar situations, and whether there might be sex differences in the function of adult neurogenesis. To address these issues, we examined spatial discrimination memory in transgenic male and female rats that lacked adult neurogenesis. The first task probed memory for the position of local objects in an open field, assessed by behavioral responses to novel object locations. The second task examined memory for distal environmental cues. All rats were able to successfully discriminate local and distal cue changes. Males and females also performed comparably, although females displayed higher levels of rearing and locomotion. Collectively, our results indicate that rats are capable of learning about local and distal cues in the absence of adult neurogenesis.
Collapse
Affiliation(s)
- Desiree R. Seib
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Erin Chahley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Oren Princz-Lebel
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason Scott Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
29
|
Bedi SS, Aertker BM, Liao GP, Caplan HW, Bhattarai D, Mandy F, Mandy F, Fernandez LG, Zelnick P, Mitchell MB, Schiffer W, Johnson M, Denson E, Prabhakara K, Xue H, Smith P, Uray K, Olson SD, Mays RW, Cox CS. Therapeutic time window of multipotent adult progenitor therapy after traumatic brain injury. J Neuroinflammation 2018; 15:84. [PMID: 29548333 PMCID: PMC5856201 DOI: 10.1186/s12974-018-1122-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability. TBI results in a prolonged secondary central neuro-inflammatory response. Previously, we have demonstrated that multiple doses (2 and 24 h after TBI) of multipotent adult progenitor cells (MAPC) delivered intravenously preserve the blood-brain barrier (BBB), improve spatial learning, and decrease activated microglia/macrophages in the dentate gyrus of the hippocampus. In order to determine if there is an optimum treatment window to preserve the BBB, improve cognitive behavior, and attenuate the activated microglia/macrophages, we administered MAPC at various clinically relevant intervals. METHODS We administered two injections intravenously of MAPC treatment at hours 2 and 24 (2/24), 6 and 24 (6/24), 12 and 36 (12/36), or 36 and 72 (36/72) post cortical contusion injury (CCI) at a concentration of 10 million/kg. For BBB experiments, animals that received MAPC at 2/24, 6/24, and 12/36 were euthanized 72 h post injury. The 36/72 treated group was harvested at 96 h post injury. RESULTS Administration of MAPC resulted in a significant decrease in BBB permeability when administered at 2/24 h after TBI only. For behavior experiments, animals were harvested post behavior paradigm. There was a significant improvement in spatial learning (120 days post injury) when compared to cortical contusion injury (CCI) in groups when MAPC was administered at or before 24 h. In addition, there was a significant decrease in activated microglia/macrophages in the dentate gyrus of hippocampus of the treated group (2/24) only when compared to CCI. CONCLUSIONS Intravenous injections of MAPC at or before 24 h after CCI resulted in improvement of the BBB, improved cognitive behavior, and attenuated activated microglia/macrophages in the dentate gyrus.
Collapse
Affiliation(s)
- Supinder S Bedi
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA.
| | - Benjamin M Aertker
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - George P Liao
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Henry W Caplan
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Deepa Bhattarai
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Fanni Mandy
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Franciska Mandy
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Luis G Fernandez
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Pamela Zelnick
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Matthew B Mitchell
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Walter Schiffer
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Margaret Johnson
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Emma Denson
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Karthik Prabhakara
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Hasen Xue
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Philippa Smith
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Karen Uray
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Scott D Olson
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | | | - Charles S Cox
- Departments of Pediatric Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA.,Departments of Surgery, University of Texas, Health Science Center at Houston, Houston, TX, USA.,Michael E DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices and Athersys, Inc., Cleveland, OH, USA
| |
Collapse
|
30
|
Tucker LB, Velosky AG, McCabe JT. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 2018; 88:187-200. [PMID: 29545166 DOI: 10.1016/j.neubiorev.2018.03.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance.
Collapse
Affiliation(s)
- Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
31
|
The effects of pool shape manipulations on rat spatial memory acquired in the Morris water maze. Learn Behav 2018. [DOI: 10.3758/s13420-018-0319-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Michaels TI, Long LL, Stevenson IH, Chrobak JJ, Chen CMA. Effects of chronic ketamine on hippocampal cross-frequency coupling: implications for schizophrenia pathophysiology. Eur J Neurosci 2018; 48:2903-2914. [PMID: 29359413 DOI: 10.1111/ejn.13822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 11/27/2022]
Abstract
Disrupted neuronal oscillations have been identified as a potentially important biomarker for the perceptual and cognitive symptoms of schizophrenia. Emerging evidences suggest that interactions between different frequency bands, cross-frequency coupling (CFC), serve an important role in integrating sensory and cognitive information and may contribute to disease pathophysiology. In this study, we investigated the effects of 14-day consecutive administration of ketamine (30 mg/kg i.p.) vs. saline on alterations in amplitude and changes in the coupling of low-frequency (0-30 Hz) phase and high-frequency (30-115 Hz) amplitude in the CA1 hippocampus of Long Evans rats. Intracranial electrode recordings were conducted pre- and post-injection while the animals performed a foraging task on a four-arm rectangular maze. Permutation analysis of frequency band-specific change in amplitudes revealed between-group differences in theta (6-12 Hz) and slow gamma (25-50 Hz) but not fast gamma (65-100 Hz) bands at both slow and fast speeds. Chronic ketamine challenge resulted in decreased coupling (pre to post) at slow speeds but increased coupling at faster speeds, compared to either no or modest increased coupling in the saline group. These results demonstrate that chronic ketamine administration alters the interaction of low-frequency phase and high-frequency oscillations chronically and that such coupling varies as a function of locomotive speed. These findings provide evidence for the potential relevance of CFC to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Timothy I Michaels
- Psychological Sciences Department, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| | - Lauren L Long
- Psychological Sciences Department, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| | - Ian H Stevenson
- Psychological Sciences Department, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| | - James J Chrobak
- Psychological Sciences Department, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| | - Chi-Ming A Chen
- Psychological Sciences Department, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| |
Collapse
|
33
|
An analysis of dentate gyrus function (an update). Behav Brain Res 2017; 354:84-91. [PMID: 28756212 DOI: 10.1016/j.bbr.2017.07.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023]
Abstract
In this review there will be a description of the dentate gyrus (DG) neural circuitry that mediates the operation of a variety of mnemonic processes associated with dorsal and ventral DG function in rats. Dysfunction of the dorsal DG can be shown to mediate mnemonic processing of spatially based information including a) the operation of conjunctive encoding of multiple sensory inputs to determine spatial representations, b) pattern separation based on reducing interference between similar spatial locations and spatial contexts for horizontal distance between objects, vertical distance for height of objects, slope or angle of motor movements, c) importance of spatial context in object recognition and processing of shades of grey associated with the walls of the box d) temporal integration in the creation of remote memory based in part on DG neurogenesis and function of the CA3 subregion of the hippocampus. Dysfunction of the ventral DG can be shown to mediate mnemonic processing of odor and reward value based information including a) pattern separation for odors and reward value, and b) social recognition.
Collapse
|
34
|
Yuliani S, Mustofa, Partadiredja G. Turmeric (Curcuma longa L.) extract may prevent the deterioration of spatial memory and the deficit of estimated total number of hippocampal pyramidal cells of trimethyltin-exposed rats. Drug Chem Toxicol 2017; 41:62-71. [PMID: 28440093 DOI: 10.1080/01480545.2017.1293087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Protection of neurons from degeneration is an important preventive strategy for dementia. Much of the dementia pathology implicates oxidative stress pathways. Turmeric (Curcuma longa L.) contains curcuminoids which has anti-oxidative and neuro-protective effects. These effects are considered to be similar to those of citicoline which has been regularly used as one of standard medications for dementia. OBJECTIVE This study aimed at investigating the effects of turmeric rhizome extract on the hippocampus of trimethyltin (TMT)-treated Sprague-Dawley rats. MATERIALS AND METHODS The rats were divided randomly into six groups, i.e., a normal control group (N); Sn group, which was given TMT chloride; Sn-Cit group, which was treated with citicoline and TMT chloride; and three Sn-TE groups, which were treated with three different dosages of turmeric rhizome extract and TMT chloride. Morris water maze test was carried out to examine the spatial memory. The estimated total number of CA1 and CA2-CA3 pyramidal cells was calculated using a stereological method. RESULTS The administration of turmeric extract at a dose of 200 mg/kg bw has been shown to prevent the deficits in the spatial memory performance and partially inhibit the reduction of the number of CA2-CA3 regions pyramidal neurons. DISCUSSION TMT-induced neurotoxic damage seemed to be mediated by the generation of reactive oxygen species and reactive nitrogen species. Turmeric extract might act as anti inflammatory as well as anti-oxidant agent. CONCLUSIONS The effects of turmeric extract at a dose of 200 mg/kg bw seem to be comparable to those of citicoline.
Collapse
Affiliation(s)
- Sapto Yuliani
- a Faculty of Pharmacy , Ahmad Dahlan University , Yogyakarta , Indonesia
| | - Mustofa
- b Department of Pharmacology and Therapy, Faculty of Medicine , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | - Ginus Partadiredja
- c Department of Physiology, Faculty of Medicine , Universitas Gadjah Mada , Yogyakarta , Indonesia
| |
Collapse
|
35
|
Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation. Neurobiol Learn Mem 2017; 139:37-49. [DOI: 10.1016/j.nlm.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
|
36
|
Lee JQ, Zelinski EL, McDonald RJ, Sutherland RJ. Heterarchic reinstatement of long-term memory: A concept on hippocampal amnesia in rodent memory research. Neurosci Biobehav Rev 2016; 71:154-166. [DOI: 10.1016/j.neubiorev.2016.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 11/27/2022]
|
37
|
Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 2016; 71:484-505. [DOI: 10.1016/j.neubiorev.2016.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
38
|
Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Regul Integr Comp Physiol 2016; 311:R811-R840. [PMID: 27534877 PMCID: PMC5130579 DOI: 10.1152/ajpregu.00234.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
Humans and animals such as rats and mice tend to overconsume calorie-dense foods, a phenomenon that likely contributes to obesity. One often-advanced explanation for why we preferentially consume sweet and fatty foods is that they are more "rewarding" than low-calorie foods. "Reward" has been subdivided into three interdependent psychological processes: hedonia (liking a food), reinforcement (formation of associations among stimuli, actions, and/or the food), and motivation (wanting the food). Research into these processes has focused on the mesolimbic system, which comprises both dopamine neurons in the ventral tegmental area and neurons in their major projection target, the nucleus accumbens. The mesolimbic system and closely connected structures are commonly referred to as the brain's "reward circuit." Implicit in this title is the assumption that "rewarding" experiences are generally the result of activity in this circuit. In this review, I argue that food intake and the preference for calorie-dense foods can be explained without reference to subjective emotions. Furthermore, the contribution of mesolimbic dopamine to food intake and preference may not be a general one of promoting or coordinating behaviors that result in the most reward or caloric intake but may instead be limited to the facilitation of a specific form of neural computation that results in conditioned approach behavior. Studies on the neural mechanisms of caloric intake regulation must address how sensory information about calorie intake affects not just the mesolimbic system but also many other forms of computation that govern other types of food-seeking and food-oriented behaviors.
Collapse
Affiliation(s)
- Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
39
|
Sell SL, Johnson K, DeWitt DS, Prough DS. Persistent Behavioral Deficits in Rats after Parasagittal Fluid Percussion Injury. J Neurotrauma 2016; 34:1086-1096. [PMID: 27650266 DOI: 10.1089/neu.2016.4616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although traumatic brain injury (TBI) is now considered a chronic disease, few studies have investigated the long-term behavioral deficits elicited by a well-established rodent model of injury. Here we evaluate behavioral measures, commonly used in TBI research, to determine which tests are useful for studying long-term effects of brain injury in rats. Male Sprague-Dawley rats were handled and pre-trained to neurological, balance, and motor coordination tests prior to receiving parasagittal fluid-percussion injury (FPI), sham injury, or maintenance as naïve cohorts. Rats underwent neuroscore, beam-balance, and beam-walk tests for 3 days after injury. Subsequently, in separate groups at 3, 6, or 12 months, they were re-tested on the same tasks followed by a working memory version of the Morris water maze. On post-injury days (PIDs) 1-3, significant effects of injury on neuroscore, beam-balance, and beam-walk were observed. Differences in the beam-walk task were not detectable at any of the later time-points. However, deficits persisted in beam-balance out to 3 months and neuroscore out to 6 months. Working memory deficits persisted out to 12 months, at which time a reference memory deficit was also evident. These data suggest that balance and motor coordination recovered more quickly than neurological deficits. Furthermore, while deficits in working memory remained stable over the 12-month period, the late onset of the reference memory deficit points to the progressive nature of the injury, or an age/TBI interaction. In conclusion, standard behavioral tests are useful measures of persistent behavioral deficits after parasagittal FPI and provide evidence that TBI is a chronic condition that can change over time and worsen with age.
Collapse
Affiliation(s)
- Stacy L Sell
- Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
40
|
Ghafouri S, Fathollahi Y, Javan M, Shojaei A, Asgari A, Mirnajafi-Zadeh J. Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res 2016; 126:37-44. [DOI: 10.1016/j.eplepsyres.2016.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/28/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
|
41
|
Cabrera-Pastor A, Hernandez-Rabaza V, Taoro-Gonzalez L, Balzano T, Llansola M, Felipo V. In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats. Brain Behav Immun 2016; 57:360-370. [PMID: 27189036 DOI: 10.1016/j.bbi.2016.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | | | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain.
| |
Collapse
|
42
|
Kapadia M, Xu J, Sakic B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference. Neurosci Biobehav Rev 2016; 68:195-217. [PMID: 27229758 DOI: 10.1016/j.neubiorev.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
An instrumental step in assessing the validity of animal models of chronic cognitive disorders is to document disease-related deficits in learning/memory capacity. The water maze (WM) is a popular paradigm because of its low cost, relatively simple protocol and short procedure time. Despite being broadly accepted as a spatial learning task, inference of generalized, bona fide "cognitive" dysfunction can be challenging because task accomplishment is also reliant on non-cognitive processes. We review theoretical background, testing procedures, confounding factors, as well as approaches to data analysis and interpretation. We also describe an extended protocol that has proven useful in detecting early performance deficits in murine models of neuropsychiatric lupus and Alzheimer's disease. Lastly, we highlight the need for standardization of inferential criteria on "cognitive" dysfunction in experimental rodents and exclusion of preparations of a limited scientific merit. A deeper appreciation for the multifactorial nature of performance in WM may also help to reveal other deficits that herald the onset of neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Josie Xu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Boris Sakic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
43
|
Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object-Place Pairings. eNeuro 2016; 3:eN-NWR-0001-16. [PMID: 27257621 PMCID: PMC4874540 DOI: 10.1523/eneuro.0001-16.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/10/2016] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
Hippocampal gamma rhythms increase during mnemonic operations (Johnson and Redish, 2007; Montgomery and Buzsáki, 2007; Sederberg et al., 2007; Jutras et al., 2009; Trimper et al., 2014) and may affect memory encoding by coordinating activity of neurons that code related information (Jensen and Lisman, 2005). Here, a hippocampal-dependent, object–place association task (Clark et al., 2000; Broadbent et al., 2004; Eacott and Norman, 2004; Lee et al., 2005; Winters et al., 2008; Barker and Warburton, 2011) was used in rats to investigate how slow and fast gamma rhythms in the hippocampus relate to encoding of memories for novel object–place associations. In novel object tasks, the degree of hippocampal dependence has been reported to vary depending on the type of novelty (Eichenbaum et al., 2007; Winters et al., 2008). Therefore, gamma activity was examined during three novelty conditions: a novel object presented in a location where a familiar object had been (NO), a familiar object presented in a location where no object had been (NL), and a novel object presented in a location where no object had been (NO+NL). The strongest and most consistent effects were observed for fast gamma rhythms during the NO+NL condition. Fast gamma power, CA3–CA1 phase synchrony, and phase-locking of place cell spikes increased during exploration of novel, compared to familiar, object–place associations. Additionally, place cell spiking during exploration of novel object–place pairings was increased when fast gamma rhythms were present. These results suggest that fast gamma rhythms promote encoding of memories for novel object–place associations.
Collapse
|
44
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
45
|
Lopez-Rojas J, Kreutz MR. Mature granule cells of the dentate gyrus--Passive bystanders or principal performers in hippocampal function? Neurosci Biobehav Rev 2016; 64:167-74. [PMID: 26949226 DOI: 10.1016/j.neubiorev.2016.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
The dentate gyrus is the main entrance of highly processed information to the hippocampus which derives from associative cortices and it is one of the few privileged areas in the brain where adult neurogenesis occurs. This creates the unique situation that neurons of diverse maturation stages are part of one neuronal network at any given point in life. While recently adult-born cells have a low induction threshold for long-term potentiation several studies suggest that following maturation granule cells are poorly excitable and they exhibit reduced Hebbian synaptic plasticity to an extent that it was even suggested that they functionally retire. Here, we review the functional properties of mature granule cells and discuss how plasticity of intrinsic excitability and alterations in excitation-inhibition balance might impact on their role in hippocampal information processing.
Collapse
Affiliation(s)
- Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany.
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
| |
Collapse
|
46
|
Yu Y, Pan G, Gong Y, Xu K, Zheng N, Hua W, Zheng X, Wu Z. Intelligence-Augmented Rat Cyborgs in Maze Solving. PLoS One 2016; 11:e0147754. [PMID: 26859299 PMCID: PMC4747605 DOI: 10.1371/journal.pone.0147754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/07/2016] [Indexed: 11/17/2022] Open
Abstract
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.
Collapse
Affiliation(s)
- Yipeng Yu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongyue Gong
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Hua
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiang Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaohui Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
48
|
Zheng C, Bieri KW, Trettel SG, Colgin LL. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus 2015; 25:924-38. [PMID: 25601003 PMCID: PMC4499477 DOI: 10.1002/hipo.22415] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/06/2022]
Abstract
In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (∼25-55 Hz) and fast (∼60-100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds.
Collapse
Affiliation(s)
- Chenguang Zheng
- Center for Learning and Memory, University of Texas at Austin
- Department of Neuroscience, University of Texas at Austin
| | - Kevin Wood Bieri
- Center for Learning and Memory, University of Texas at Austin
- Institute for Neuroscience, University of Texas at Austin
| | - Sean Gregory Trettel
- Center for Learning and Memory, University of Texas at Austin
- Institute for Neuroscience, University of Texas at Austin
| | - Laura Lee Colgin
- Center for Learning and Memory, University of Texas at Austin
- Institute for Neuroscience, University of Texas at Austin
- Department of Neuroscience, University of Texas at Austin
| |
Collapse
|
49
|
Gidyk DC, Deibel SH, Hong NS, McDonald RJ. Barriers to developing a valid rodent model of Alzheimer's disease: from behavioral analysis to etiological mechanisms. Front Neurosci 2015; 9:245. [PMID: 26283893 PMCID: PMC4518326 DOI: 10.3389/fnins.2015.00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most prevalent form of age-related dementia. As such, great effort has been put forth to investigate the etiology, progression, and underlying mechanisms of the disease. Countless studies have been conducted, however, the details of this disease remain largely unknown. Rodent models provide opportunities to investigate certain aspects of AD that cannot be studied in humans. These animal models vary from study to study and have provided some insight, but no real advancements in the prevention or treatment of the disease. In this Hypothesis and Theory paper, we discuss what we perceive as barriers to impactful discovery in rodent AD research and we offer potential solutions for moving forward. Although no single model of AD is capable of providing the solution to the growing epidemic of the disease, we encourage a comprehensive approach that acknowledges the complex etiology of AD with the goal of enhancing the bidirectional translatability from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Darryl C. Gidyk
- *Correspondence: Darryl C. Gidyk, Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6W4, Canada
| | | | | | | |
Collapse
|
50
|
Keeley R, Bye C, Trow J, McDonald R. Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behav Brain Res 2015; 288:118-31. [DOI: 10.1016/j.bbr.2014.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
|