1
|
LaFlamme EM, Waguespack HF, Forcelli PA, Malkova L. The Parahippocampal Cortex and its Functional Connection with the Hippocampus are Critical for Nonnavigational Spatial Memory in Macaques. Cereb Cortex 2021; 31:2251-2267. [PMID: 33270817 PMCID: PMC7945022 DOI: 10.1093/cercor/bhaa358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 11/14/2022] Open
Abstract
The Hamilton Search Task (HST) is a test of nonnavigational spatial memory that is dependent on the hippocampus. The parahippocampal cortex (PHC) is a major route for spatial information to reach the hippocampus, but the extent to which the PHC and hippocampus function independently of one another in the context of nonnavigational spatial memory is unclear. Here, we tested the hypotheses that (1) bilateral pharmacological inactivation of the PHC would impair HST performance, and (2) that functional disconnection of the PHC and hippocampus by contralateral (crossed) inactivation would likewise impair performance. Transient inactivation of the PHC impaired HST performance most robustly with 30 s intertrial delays, but not when color cues were introduced. Functional disconnection of the PHC and hippocampus, but not separate unilateral inactivation of either region, also selectively impaired long-term spatial memory. These findings indicate a critical role for the PHC and its interactions with the hippocampus in nonnavigational spatial memory.
Collapse
Affiliation(s)
- Elyssa M LaFlamme
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hannah F Waguespack
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Karantzoulis S, Rich JB, Mangels JA. Subject-performed tasks improve associative learning in amnestic mild cognitive impairment. J Int Neuropsychol Soc 2006; 12:493-501. [PMID: 16981601 DOI: 10.1017/s1355617706060632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subject-performed tasks (SPTs) may facilitate the deficit in associative learning among individuals with amnestic mild cognitive impairment (aMCI) by inducing episodic integration of object-action associations. To test this hypothesis, we examined free recall and recognition memory following enactment and verbal encoding in healthy elderly controls and individuals with aMCI. Study lists contained either semantically integrated ("Bounce the ball") or crossed object-action commands, in which episodic and semantic associations were placed in opposition ("Pet the compass"). Associative learning was indeed better after SPT than verbal encoding and with integrated relative to crossed lists for the aMCI group, as it was for controls. Moreover, the degree to which SPTs reduced the semantic interference inherent in the crossed conditions was equivalent for the two groups. The results showed that enactment facilitates formation of episodic associations, even when not supported by preexisting semantic knowledge, and even among individuals who have particular difficulty forming new associations.
Collapse
|
3
|
Cameron NM, Carey P, Erskine MS. Medullary noradrenergic neurons release norepinephrine in the medial amygdala in females in response to mating stimulation sufficient for pseudopregnancy. Brain Res 2006; 1022:137-47. [PMID: 15353223 DOI: 10.1016/j.brainres.2004.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
In the female rat, stimuli from the uterine cervix and vagina are carried to the brain areas involved in the mating-induced pseudopregnancy (PSP) response via the ventral noradrenergic bundle. Noradrenergic neurons projecting through this tract synapse in many forebrain areas including the amygdala, and neurons in the posterodorsal medial amygdala (MePD) are activated following mating. The goal of this experiment was to investigate whether norepinephrine (NE) is released into the MePD after mating using microdialysis and to determine the origin of this release. Ovariectomized estrogen- and progesterone-treated rats were implanted unilaterally with guide cannulae aimed at the MePD. Females were placed with males until they received 15 intromissions (15I), 5 intromissions (5I) or 15 mounts-without-intromission (MO). Dialysate samples collected every 20 min for 2 h before to 3 h after mating were analyzed for NE using HPLC with electrochemical detection. A significant increase in mean NE release in the MePD was seen at 80 min after mating onset in females receiving 15I, and no increase was seen in animals receiving 5I or MO. The time of peak NE release varied in 15I animals from 60 to 160 min after mating. Mean baseline levels of NE did not differ between groups. The retrograde tracer FluoroGold (FG), administered through the probe after cessation of dialysis sampling, was observed within identified noradrenergic cells primarily within the A1 and A2 cell groups. Infusion of anti-dopamine-beta-hydroxylase-saporin (DBH-SAP) into the MePD lesioned noradrenergic neurons located in the A1 and A2 cell groups. Because high levels of NE release occurred in the MePD only after the females received a number of intromissions sufficient to induce PSP, these results suggest that NE release within the MePD may be important for the establishment of PSP.
Collapse
Affiliation(s)
- Nicole M Cameron
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
4
|
Loewenstein DA, Acevedo A, Luis C, Crum T, Barker WW, Duara R. Semantic interference deficits and the detection of mild Alzheimer's disease and mild cognitive impairment without dementia. J Int Neuropsychol Soc 2004; 10:91-100. [PMID: 14751011 DOI: 10.1017/s1355617704101112] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 04/22/2003] [Indexed: 11/06/2022]
Abstract
Impairment in delayed recall has traditionally been considered a hallmark feature of Alzheimer's disease (AD). However, vulnerability to semantic interference may reflect early manifestations of the disorder. In this study, 26 mildly demented AD patients (mild AD), 53 patients with mild cognitive impairment without dementia (MCI), and 53 normal community-dwelling elders were first presented 10 common objects that were recalled over 3 learning trials. Subjects were then presented 10 new semantically related objects followed by recall for the original targets. After controlling for the degree of overall memory impairment, mild AD patients demonstrated greater proactive but equivalent retroactive interference relative to MCI patients. Normal elderly subjects exhibited the least amount of proactive and retroactive interference effects. Recall for targets susceptible to proactive interference correctly classified 81.3% of MCI patients and 81.3% of normal elderly subjects, outperforming measures of delayed recall and rate of forgetting. Adding recognition memory scores to the model enhanced both sensitivity (84.6%) and specificity (88.5%). A combination of proactive and retroactive interference measures yielded sensitivity of 84.6% and specificity of 96.2% in differentiating mild AD patients from normal older adults. Susceptibility to proactive semantic interference may be an early cognitive feature of MCI and AD patients presenting for clinical evaluation.
Collapse
Affiliation(s)
- David A Loewenstein
- Department of Psychiatry, Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, Florida 33140, USA.
| | | | | | | | | | | |
Collapse
|
5
|
May-Simera H, Levin ED. NMDA systems in the amygdala and piriform cortex and nicotinic effects on memory function. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 17:475-83. [PMID: 12880917 DOI: 10.1016/s0926-6410(03)00163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both nicotinic cholinergic and NMDA glutaminergic systems are important for memory function. Nicotine has been found repeatedly to significantly improve working memory performance in the radial-arm maze. The NMDA antagonist dizocilpine has been found to impair working memory performance. There is neuropharmacological evidence that these two systems are functionally related. Nicotine is potent at releasing many transmitters including glutamate. The current study was conducted to examine the interaction of nicotinic and NMDA systems within the amygdala with regard to working and reference memory. Rats were trained on a working/reference procedure on a 16-arm radial maze. After acquisition, local infusion cannulae were implanted bilaterally into the amygdala and piriform cortex using stereotaxic techniques. Then 20 min prior to running the rats on the radial-arm maze, they were injected subcutaneously with (-) nicotine ditartrate at doses of 0 and 0.4 mg/kg. Following this, the rats received local infusions of (+) dizocilpine maleate (MK-801) at doses of 0, 2, 6 and 18 microg per side into the lateral amygdala or piriform cortex 10 min prior to running on the radial-arm maze. Each of the eight nicotine and dizocilpine combinations was administered to each rat in a counterbalanced order. After completion of the drug sessions the rats were sacrificed, and using histological methods the cannulae placements were verified. Acute amygdalar infusions of the NMDA glutamate receptor antagonist dizocilpine induced dose-related working and reference memory deficits in the radial-arm maze. Systemic nicotine was not seen to reverse these effects. Dizocilpine infusions into the adjacent piriform cortex did not impair memory function, supporting the specificity of dizocilpine effects in the amygdala. Latency effects were seen with both drugs in both areas. Latencies were decreased with both systemic nicotine and dizocilpine in both the lateral amygdala and the piriform cortex. This study demonstrated the importance of NMDA glutamate systems in the amygdala for appetitively-motivated spatial memory performance.
Collapse
Affiliation(s)
- Helen May-Simera
- Neurobehavioral Research Laboratory, Department of Psychiatry, Box #3412, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
6
|
Addy NA, Nakijama A, Levin ED. Nicotinic mechanisms of memory: effects of acute local DHbetaE and MLA infusions in the basolateral amygdala. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 16:51-7. [PMID: 12589888 DOI: 10.1016/s0926-6410(02)00209-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nicotine has been shown to improve working memory. The neural mechanisms underlying this effect are still being determined. The ventral hippocampus is critical for nicotinic effects on memory. Local ventral hippocampal infusions of either the nicotinic alpha7 nicotinic receptor antagonist methyllycaconitine (MLA) or the alpha4beta2 nicotinic receptor antagonist dihydro-beta-erythroidine (DHbetaE) caused working memory impairments, but no additive effects were seen. Other areas, such as the amygdala, also likely play important roles in nicotinic effects on memory. Amygdalar lesions cause memory impairment and there is a dense concentration of nicotinic receptors in the basolateral amygdala. The current study used local basolateral amygdalar infusions of the nicotinic antagonists MLA and DHbetaE to determine the involvement of alpha7 and alpha4beta2 nicotinic receptors in spatial working and reference memory. Rats (n=8) were trained in the 16-arm radial maze and were implanted with bilateral infusion cannulae into the basolateral amygdala. Acute infusions of MLA (6.75 micro g/side, P<0.0005) or DHbetaE (3.38 micro g/side, P<0.025) caused significant working memory impairments. When given together MLA and DHbetaE did not produce an additive effect. In fact, the 6.75 micro g/kg dose of DHbetaE produced a significant (P<0.0005) attenuation of the MLA-induced working memory impairment. Significant effects were not seen with reference memory or response latency. Nicotinic systems in the basolateral amygdala, as in the ventral hippocampus, are important for spatial working memory. In both the basolateral amygdala and the ventral hippocampus, MLA and DHbetaE individually caused working memory impairments. The lowest effective dose of DHbetaE was lower in the basolateral amygdala than in the ventral hippocampus. In both the basolateral amygdala and the ventral hippocampus, combined MLA and DHbetaE treatment did not produce additive working memory deficits. Unlike in the ventral hippocampus, the addition of DHbetaE to MLA in the basolateral amygdala significantly reduced the MLA-induced working memory deficit.
Collapse
Affiliation(s)
- Nii A Addy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
7
|
Gilbert PE, Kesner RP. The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiol Learn Mem 2002; 77:338-53. [PMID: 11991762 DOI: 10.1006/nlme.2001.4033] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 32 male Long-Evans rats were tested on a modified version of Flaherty, Turovsky, and Krauss's (1994) anticipatory contrast paradigm to assess pattern separation for reward value. Prior to testing, each rat received either a control, a hippocampal, or an amygdala lesion. In the home cage, each rat was allowed to drink a water solution containing 2% sucrose for 3 min followed by a water solution containing 32% sucrose for 3 min. Across 10 days of testing, the rats in each lesion group showed significantly increased anticipatory discriminability as a function of days. To assess the operation of a pattern separation mechanism, each rat was then tested using the same procedure except the 2% solution was followed by a 16% solution for 10 days and then by an 8% solution for 10 days. Control and hippocampal-lesioned rats continued to show high discriminability when the 2% solution was followed by a 16% solution; however, the amygdala-lesioned rats showed low anticipatory discriminability. On trials where the 2% sucrose solution was followed by an 8% sucrose solution, all groups showed low discriminability scores, suggesting that when two reward values are very similar even control animals are not able to separate the reward values in memory. However, the results of a preference task revealed that all groups can perceptually discriminate between a 2% and an 8% sucrose solution. The data suggest that the amygdala but not the hippocampus is involved in the separation of patterns based on reward value.
Collapse
Affiliation(s)
- Paul E Gilbert
- Department of Psychology, University of Utah, 380 South 1530 East, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
8
|
Wall PM, Messier C. The hippocampal formation--orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behav Brain Res 2001; 127:99-117. [PMID: 11718887 DOI: 10.1016/s0166-4328(01)00355-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long held view that the hippocampal formation is not only essential, but also solely responsible for declarative memory in humans (and by analogy non-human primates) has come into question. Based on extensive reciprocal connection patterns between the hippocampal formation and the orbitoventromedial prefrontal cortex in primates and rats, a central role for the hippocampal formation in the attentional control of behavior is emerging. In this paper, evidence is reviewed showing that the hippocampal-orbitomedial prefrontal cortex circuit may be involved in attentional monitoring of the internal sensorium. This attentional monitoring system, in a sense, is the working memory of viscero-emotional processing. The hippocampal formation can thus be viewed as a discrepancy detector with respect to the relative activational status of cognitive/emotional set in the orbitomedial prefrontal cortex. Discrepancies between the current representation of the internal milieu and the "just-prior" representation held "on-line" in orbitomedial prefrontal cortex associative working memory, are signaled from the hippocampus to the prefrontal cortex prospective attentional systems to activate, process, and reconcile internal (past) with external (present) environments, and finally to effectively alter active working emotional "sets" to exert cognitive-emotional control of behavior.
Collapse
Affiliation(s)
- P M Wall
- School of Psychology, Behavioral Neuroscience, University of Ottawa, Vanier: Room 202 (INTRA 108), Ottawa, Ontario, Canada K1N 6N5.
| | | |
Collapse
|
9
|
Herreros de Tejada P, Muñoz Tedó C. The decade 1989-1998 in Spanish psychology: an analysis of research in psychobiology. THE SPANISH JOURNAL OF PSYCHOLOGY 2001; 4:219-36. [PMID: 11723643 DOI: 10.1017/s113874160000576x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, we present an analysis of the research published during the 1989-1998 decade by tenured Spanish faculty members from the area of psychobiology. Database search and direct correspondence with the 110 faculty members rendered a list of 904 psychobiological papers. Classification and analysis of these papers led to the definition of at least 70 different research trends. Topics are grouped into several specific research areas: Learning and Memory; Development and Neural Plasticity; Emotion and Stress; Ethology; Neuropsychology; Sensory Processing; and Psychopharmacology. The international dissemination of this research, published in journals of high impact index, and the increasing number of papers are two noteworthy features.
Collapse
|
10
|
Hsueh CM, Kuo JS, Chen SF, Huang HJ, Cheng FC, Chung LJ, Lin RJ. Involvement of catecholamines in recall of the conditioned NK cell response. J Neuroimmunol 1999; 94:172-81. [PMID: 10376951 DOI: 10.1016/s0165-5728(98)00250-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The primary goal of the study was to identify the types of catecholamines and the associated receptors which might be involved in the recall of the conditioned NK cell response. Specific catecholamine receptor antagonists were selected to block the conditioned NK cell response at the recall step. The regional contents of dopamine (DA), norepinephrine (NE), and epinephrine were determined in the brain of the conditioned animals by using the high performance liquid chromatography with electrochemical detection (HPLC/ED). Results showed that pre-disruption of the central alpha1-, alpha2-, beta1-, beta2-, D1-, or D2-receptors at the conditioned recall stage, interrupted the conditioned enhancement in NK cell activity. The NE contents at the cerebellum, and DA contents at the striatum and hippocampus, were significantly higher in the brain of the conditioned animals when compared to that of the control animals. These information indicated the possible roles of the central noradrenergic and dopaminergic systems in regulating the recall of the conditioned NK cell response.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Amygdala/chemistry
- Amygdala/immunology
- Animals
- Atenolol/pharmacology
- Brain Chemistry/immunology
- Catecholamines/analysis
- Catecholamines/immunology
- Cerebellum/chemistry
- Cerebellum/immunology
- Cerebral Cortex/chemistry
- Cerebral Cortex/immunology
- Chromatography, High Pressure Liquid
- Conditioning, Classical/physiology
- Corpus Striatum/chemistry
- Corpus Striatum/immunology
- Dopamine/analysis
- Dopamine/immunology
- Dopamine Antagonists/pharmacology
- Epinephrine/analysis
- Epinephrine/immunology
- Female
- Immunologic Memory
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mental Recall/physiology
- Mice
- Mice, Inbred BALB C
- Norepinephrine/analysis
- Norepinephrine/immunology
- Oxathiins/pharmacology
- Propanolamines/pharmacology
- Salicylamides/pharmacology
- Spleen/cytology
- Yohimbine/pharmacology
Collapse
Affiliation(s)
- C M Hsueh
- Department of Zoology, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
McIntyre CK, Ragozzino ME, Gold PE. Intra-amygdala infusions of scopolamine impair performance on a conditioned place preference task but not a spatial radial maze task. Behav Brain Res 1998; 95:219-26. [PMID: 9806441 DOI: 10.1016/s0166-4328(97)00161-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lesions of the amygdala impair performance on a conditioned place preference (CPP) but not a spatial radial maze task. The role of cholinergic receptors within the amygdala in performance of these tasks was evaluated using intra-amygdala injections of the muscarinic receptor antagonist, scopolamine. Food deprived rats were trained on a CPP task, which consisted of four training trials on two arms of a radial eight-arm maze. One arm was consistently paired with a large amount of food (14 g) while the other arm was never baited. Prior to the fourth trial, rats received bilateral intra-amygdala infusions of the muscarinic receptor antagonist, scopolamine (SCOP; 5 microg/0.5 microl) or vehicle. On a retention test 24 h later, unoperated and vehicle-infused rats, but not SCOP-treated rats, spent significantly more time in the paired arm than chance (50%). Therefore, the scopolamine treatment appeared to block learning and/or memory on trial 4. The same rats were then trained on a radial maze task on the same apparatus, in which rats had access to all eight arms but only four were baited with food (1 pellet). Rats were trained until they reached criterion and then infusions were given prior to testing. SCOP treatment did not affect performance on the radial maze task. Thus, intact cholinergic mechanisms in the amygdala are necessary for learning or memory on a CPP task with a high reward component but not performance on a spatial radial maze task with a lower reward component.
Collapse
Affiliation(s)
- C K McIntyre
- Department of Psychology, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
12
|
Hagan MM, Castañeda E, Sumaya IC, Fleming SM, Galloway J, Moss DE. The effect of hypothalamic peptide YY on hippocampal acetylcholine release in vivo: implications for limbic function in binge-eating behavior. Brain Res 1998; 805:20-8. [PMID: 9733907 DOI: 10.1016/s0006-8993(98)00652-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Central injection of peptide YY (PYY) in sated rats produces the most powerful stimulating effect of food intake known to date. The neural mechanisms by which PYY regulates appetite are not clear but may be important because abnormal levels of PYY have been implicated in the neurobiology of bulimia nervosa. Interactions between brain acetylcholine (ACh) and PYY had not been studied. Therefore, the present experiments were designed to explore the in vivo release of ACh from the hippocampus (HPC) of rats in response to hypothalamic infusion of PYY. Hippocampal ACh release was found to increase 400% in response to 10 microg PYY. In a separate experiment, blockade of the same area of the HPC with bilateral intracerebral injections of 3.5 microg scopolamine did not affect intake stimulated by intrahypothalamic injection of 4 microg PYY. Furthermore, a third experiment showed, for the first time, that PYY (2.5-10.0 microg) can elicit robust feeding when infused directly into the HPC. The significance of these findings to the activation of limbic functions such as memory, reinforcement, and obsessional processes that accompany human binge-eating syndromes is discussed.
Collapse
Affiliation(s)
- M M Hagan
- Department of Psychiatry, University of Cincinnati Medical Center, Box 670559, Cincinnati, OH 45267-0559, USA
| | | | | | | | | | | |
Collapse
|
13
|
Bespalov AY, Zvartau EE. Intraaccumbens administration of NMDA receptor antagonist (+/-)-CPP prevents locomotor activation conditioned by morphine and amphetamine in rats. Pharmacol Biochem Behav 1996; 55:203-7. [PMID: 8951955 DOI: 10.1016/s0091-3057(96)00065-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present experiments the influence of NMDA receptor antagonist (+/-)-CPP on morphine- and amphetamine-conditioned activation of locomotor activity was studied in rats chronically implanted with bilateral cannulas in the nucleus accumbens septi. Animals were conditioned by pairing subcutaneous injections of morphine (3.0 mg/kg), amphetamine (1.5 mg/kg), or saline with a distinctive environment. Following the five drug-environment pairings, rats displayed significant increase in locomotion when exposed to the drug-paired environment. The expression of this conditioned response was completely prevented by the bilateral intraaccumbens pretreatment with (+/-)-CPP (1.0, but not 0.1 or 0.3 microgram/ microliter/side). These findings suggest that the locomotor hyperactivity conditioned by morphine and amphetamine involves the activation of NMDA receptors within the nucleus accumbens.
Collapse
Affiliation(s)
- A Y Bespalov
- Department of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | | |
Collapse
|