1
|
Abstract
WHO defined in 1976 psychopharmaca as drugs affecting psychological functions, behaviour and self-perception. Psychopharmacology is the study of pharmacological agents that affect mental and emotional functions. Creative approach to psychopharmacotherapy reflects a transdisciplinary, integrative and person-centered psychiatry. Psychiatric disorders often occur in cardiac patients and can affect the clinical presentation and morbidity. Cardiovascular (CV) side effects (SE) caused by psychopharmaceutic agents require comprehensive attention. Therapeutic approach can increase placebo and decrease nocebo reactions. The main purpose of this review is to comprehend CV SE of psychotropic drugs (PD). Critical overview of CV SE of PD will be presented in this review. Search was directed but not limited to CV effects of psychopharmacological substances, namely antipsychotics, anxiolytics, hypnotics, sedatives, antidepressants and stimulants. Literature review was performed and data identified by searches of Medline and PubMed for period from 2004 to 2015. Only full articles and abstracts published in English were included. SE of PD are organized according to the following types of CV effects: cardiac and circulatory effects, abnormalities of cardiac repolarisation and arrhythmias and heart muscle disease. There is wide spectrum and various CV effects of PD. Results of this review are based on literature research. The reviewed data came largely from prevalence studies, case reports, and cross-sectional studies. Psychopharmacotherapy of psychiatric disorders is complex and when concomitantly present with CV disease, presentation of drug SEs can significantly contribute to illness course. Further development of creative psychopharmacotherapy is required to deal with CV effects of PD.
Collapse
|
2
|
Fedoce AG, Ferreira-Junior NC, Reis DG, Corrêa FMA, Resstel LBM. M3 muscarinic receptor in the ventral medial prefrontal cortex modulating the expression of contextual fear conditioning in rats. Psychopharmacology (Berl) 2016; 233:267-80. [PMID: 26518024 DOI: 10.1007/s00213-015-4109-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/03/2015] [Indexed: 01/16/2023]
Abstract
RATIONALE Basal forebrain cholinergic neurons modulate the activation of cortical neurons by several stimuli such as fear and anxiety. However, the role of the muscarinic receptor in the medial prefrontal cortex (MPFC) in the modulation of the conditioned emotional response (CER) evoked in the model contextual conditioned fear remains unclear. OBJECTIVES The objective of this study is to test the hypothesis that inhibition of the muscarinic receptor in ventral MPFC modulates CER observed during animal's re-exposure to the aversive context. METHODS Rats implanted with cannulae aimed at the prelimbic (PL) or the infralimbic (IL) were submitted to a high-intensity contextual fear conditioning protocol. Before the test session, they received microinjections of the hemicholinium (choline reuptake blocker), atropine (muscarinic antagonist), J104129 fumarate (M1-M3 muscarinic antagonists), pirenzepine (M1 muscarinic antagonist), neostigmine (inhibitor acetylcholinesterase enzyme), or the systemic administration of the FG7142 (inverse benzodiazepine agonist). Additional independent groups received the neostigmine or FG7142 before the ineffective doses of J104129 fumarate in the low-intensity protocol of contextual fear conditioning. RESULTS In the high-intensity protocol, the administration of hemicholinium (1 nmol), atropine (0.06-6 nmol), J104129 fumarate (6 nmol), or pirenzepine (6 nmol) attenuated the expression of CER in rats. However, in the low-intensity protocol, only J10129 fumarate (0.06 nmol) reduced the expression of the CER. Finally, neostigmine (0.1-1 nmol) or FG7142 (8 mg/Kg) increased CER expression, an effect inhibited by the low dose of the J10129 fumarate. CONCLUSIONS These results indicated that the blockade of M3 muscarinic receptor in the vMPFC attenuates the CER expression.
Collapse
Affiliation(s)
- A G Fedoce
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - N C Ferreira-Junior
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - D G Reis
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil
| | - L B M Resstel
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Cannabinoid CB1 receptors in the medial prefrontal cortex modulate the expression of contextual fear conditioning. Int J Neuropsychopharmacol 2010; 13:1163-73. [PMID: 20587131 DOI: 10.1017/s1461145710000684] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB1 receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB1 receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB1 receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB1 receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB1 receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB1 receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.
Collapse
|
4
|
Abstract
There are numerous sedatives and analgesics used in critical care medicine today; these medications are used on critically ill patients, many of whom have heart disease, including coronary artery disease or congestive heart failure. The purpose of this review is to recognize the effects of these medications on the heart. Studies that evaluated the effects of sedatives and analgesics on normal individuals or on those with heart disease were reviewed. Current choices for sustained sedation in the critically ill include the benzodiazepines, morphine, propofol, and etomidate. Each of these medications has their particular advantages and disadvantages. Benzodiazepines provide the greatest amnesia and cardiovascular safety but they can cause significant hypotension in the hemodynamically unstable patient. Morphine provides analgesia and cardioprotective activity after ischemia, although the large observational study CRUSADE showed increased mortality rate in those patients with non-ST segment elevation myocardial infarction who received morphine. Propofol is the most easily titratable drug with cardioprotective features, but its use must be accompanied with great attention to possible development of propofol infusion syndrome, which is a deadly disease, especially in patients with head injury and those with septic shock receiving vasopressors. Etomidate has a rapid onset effect and short period of action with great hemodynamic stability even in patients with shock and hypovolemia, but the incidence of adrenal insufficiency during infusion, not bolus doses, may cause deterioration in the circulatory stability. In conclusion, the sedatives and analgesics mentioned here have characteristics that give them a cardiovascular safety profile useful in critically ill patients. However, use of these drugs on an individual basis is dependent on each agent's safety and efficacy.
Collapse
|
5
|
Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 2009; 1314:112-23. [PMID: 19699722 DOI: 10.1016/j.brainres.2009.08.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/10/2009] [Accepted: 08/13/2009] [Indexed: 02/02/2023]
Abstract
The basal forebrain cholinergic system (BFCS) plays a role in several aspects of attentional function. Activation of this system by different afferent inputs is likely to influence how attentional resources are allocated. While it has been recognized for some time that the hypothalamus is a significant source of projections to the basal forebrain, the phenotype(s) of these inputs and the conditions under which their regulation of the BFCS becomes functionally relevant are still unclear. The cell bodies of neurons expressing orexin/hypocretin neuropeptides are restricted to the lateral hypothalamus and contiguous perifornical area but have widespread projections, including to the basal forebrain. Orexin fibers and both orexin receptor subtypes are distributed in cholinergic parts of the basal forebrain, where application of orexin peptides increases cell activity and cortical acetylcholine release. Furthermore, disruption of orexin signaling in the basal forebrain impairs the cholinergic response to an appetitive stimulus. In this review, we propose that orexin inputs to the BFCS form an anatomical substrate for links between arousal and attention, and that these interactions might be particularly important as a means by which interoceptive cues bias allocation of attentional resources toward related exteroceptive stimuli. Dysfunction in orexin-acetylcholine interactions may play a role in the arousal and attentional deficits that accompany neurodegenerative conditions as diverse as drug addiction and age-related cognitive decline.
Collapse
Affiliation(s)
- J Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA.
| | | |
Collapse
|
6
|
Evans AK, Lowry CA. Pharmacology of the beta-carboline FG-7,142, a partial inverse agonist at the benzodiazepine allosteric site of the GABA A receptor: neurochemical, neurophysiological, and behavioral effects. CNS DRUG REVIEWS 2008; 13:475-501. [PMID: 18078430 DOI: 10.1111/j.1527-3458.2007.00025.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Given the well-established role of benzodiazepines in treating anxiety disorders, beta-carbolines, spanning a spectrum from full agonists to full inverse agonists at the benzodiazepine allosteric site for the GABA(A) receptor, can provide valuable insight into the neural mechanisms underlying anxiety-related physiology and behavior. FG-7,142 is a partial inverse agonist at the benzodiazepine allosteric site with its highest affinity for the alpha1 subunit-containing GABA(A) receptor, although it is not selective. FG-7,142 also has its highest efficacy for modulation of GABA-induced chloride flux mediated at the alpha1 subunit-containing GABA(A) receptor. FG-7,142 activates a recognized anxiety-related neural network and interacts with serotonergic, dopaminergic, cholinergic, and noradrenergic modulatory systems within that network. FG-7,142 has been shown to induce anxiety-related behavioral and physiological responses in a variety of experimental paradigms across numerous mammalian and non-mammalian species, including humans. FG-7,142 has proconflict actions across anxiety-related behavioral paradigms, modulates attentional processes, and increases cardioacceleratory sympathetic reactivity and neuroendocrine reactivity. Both acute and chronic FG-7,142 treatment are proconvulsive, upregulate cortical adrenoreceptors, decrease subsequent actions of GABA and beta-carboline agonists, and increase the effectiveness of subsequent GABA(A) receptor antagonists and beta-carboline inverse agonists. FG-7,142, as a partial inverse agonist, can help to elucidate individual components of full agonism of benzodiazepine binding sites and may serve to identify the specific GABA(A) receptor subtypes involved in specific behavioral and physiological responses.
Collapse
Affiliation(s)
- Andrew K Evans
- University of Bristol, Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, Bristol, UK.
| | | |
Collapse
|
7
|
Stevenson CW, Marsden CA, Mason R. Early life stress causes FG-7142-induced corticolimbic dysfunction in adulthood. Brain Res 2007; 1193:43-50. [PMID: 18190899 DOI: 10.1016/j.brainres.2007.11.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/24/2007] [Accepted: 11/29/2007] [Indexed: 02/02/2023]
Abstract
Maternal separation (MS) during the neonatal period enhances stress responsivity in adulthood. The medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA) are involved in coordinating various stress responses. Evidence indicates that MS reduces benzodiazepine and GABA(A) receptor expression in these regions, although their effects on neuronal function in the mPFC and the BLA remain unknown. The present study was conducted to assess the effects of MS on neuronal activity in the mPFC and BLA in response to the benzodiazepine receptor partial inverse agonist N-methyl-beta-carboline-3-carboxamide (FG-7142). Rat pups were subjected to MS (360 min), brief handling (H; 15 min) or standard animal facility rearing (AFR) on postnatal days 2-14. In adult males, in vivo electrophysiology under isoflurane anesthesia was used to conduct acute recordings of extracellular unit activity in response to systemic FG-7142 administration. Animals subjected to H showed significantly increased basal mPFC activity compared to MS and AFR animals. There were no differences in basal BLA activity between the early rearing groups. In response to FG-7142, MS animals showed significantly attenuated mPFC activity compared to H animals and a nonsignificant trend towards attenuated mPFC activity compared to AFR animals. In contrast to mPFC, MS animals showed significantly potentiated FG-7142-induced activity in the BLA, compared to both H and AFR animals. These findings indicate that MS induces functionally relevant alterations in corticolimbic GABA(A) receptor signaling. Given that FG-7142 mimics several behavioral and physiological effects of stress, these results may also model stress-induced corticolimbic dysfunction caused by early life stress.
Collapse
Affiliation(s)
- Carl W Stevenson
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
8
|
Stevenson CW, Halliday DM, Marsden CA, Mason R. Systemic administration of the benzodiazepine receptor partial inverse agonist FG-7142 disrupts corticolimbic network interactions. Synapse 2007; 61:646-63. [PMID: 17503486 DOI: 10.1002/syn.20414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) coordinate various stress responses. Although the effects of stressors on mPFC and BLA activity have been previously examined, it remains unclear to what extent stressors affect functional interactions between these regions. In vivo electrophysiology in the anesthetized rat was used to examine mPFC and BLA activity simultaneously in response to FG-7142, a benzodiazepine receptor partial inverse agonist that mimics various stress responses, in an attempt to model the effects of stressors on corticolimbic functional connectivity. Extracellular unit and local field potential (LFP) recordings, using multielectrode arrays positioned in mPFC and BLA, were conducted under basal conditions and in response to systemic FG-7142 administration. This drug increased mPFC and BLA unit firing at the lowest dose tested, whereas higher doses of FG-7142 decreased various burst firing parameters in both regions. Moreover, LFP power was attenuated at lower (<1 Hz) and potentiated at higher frequencies in mPFC (1-12 Hz) and BLA (4-8 Hz). Interestingly, FG-7142 diminished synchronized unit firing, both within and between mPFC and BLA. Finally, FG-7142 decreased LFP synchronization between these regions. In a separate group of animals, pretreatment with the selective benzodiazepine receptor antagonist flumazenil blocked the changes in burst firing, LFP power and synchronized activity induced by FG-7142, confirming direct benzodiazepine receptor-mediated effects. These results indicate that FG-7142 disrupts corticolimbic network interactions via benzodiazepine receptor partial inverse agonism. Perturbation of mPFC-BLA functional connectivity induced by FG-7142 may provide a useful model of corticolimbic dysfunction induced by stressors.
Collapse
Affiliation(s)
- Carl W Stevenson
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Resstel LBM, Joca SRL, Moreira FA, Corrêa FMA, Guimarães FS. Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats. Behav Brain Res 2006; 172:294-8. [PMID: 16780966 DOI: 10.1016/j.bbr.2006.05.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/25/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects similar to diazepam in animal models of innate aversive behavior. However, the effects of CBD contextual conditioned fear have not been studied. Therefore, the aim of this work was to compare the behavioral and cardiovascular effects of CBD and diazepam, a prototype anxiolytic, in animals submitted to a contextual conditioned fear paradigm. Male Wistar rats were submitted to a 10min conditioning session (six footshocks, 2.5 mA, 3s, delivered at pseudo-random intervals). The behavioral and cardiovascular responses to the context were measured 24h later in a 10 min test session. Diazepam (2.5 mg/kg), FG-7142 (8 mg/kg), a benzodiazepine inverse agonist, or CBD (10 mg/kg) were administered i.p. before the test session. Conditioned rats submitted to the aversive context exhibited more freezing behavior and a larger increase in blood pressure and heart rate as compared to non-conditioned animals. These effects were attenuated by CBD and diazepam in the conditioned animals. These drugs did not have any effect in non-conditioned rats. FG-7142 treatment failed to change the behavioral and cardiovascular responses to the aversive context. In conclusion, the results suggest that CBD has anxiolytic-like properties similar to those of diazepam in a rat model of conditioned fear to context.
Collapse
Affiliation(s)
- Leonardo B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14090-090, Brazil
| | | | | | | | | |
Collapse
|
10
|
Laplante F, Nakagawasai O, Srivastava LK, Quirion R. Alterations in behavioral responses to a cholinergic agonist in post-pubertal rats with neonatal ventral hippocampal lesions: relationship to changes in muscarinic receptor levels. Neuropsychopharmacology 2005; 30:1076-87. [PMID: 15637638 DOI: 10.1038/sj.npp.1300640] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitotoxic neonatal ventral hippocampal (NVH) lesion in rats is considered as a putative animal model of schizophrenia as lesioned animals show characteristic post-pubertal emergence of neurochemical and behavioral abnormalities analogous to some of those seen in this disease. Converging evidence points to the involvement of central cholinergic system in this neuropsychiatric disorder, and our previous studies have suggested that cholinergic neurotransmission may be altered in post-pubertal NVH lesioned rats. We investigated here muscarinic receptor reactivity in NVH lesioned animals by measuring the effects of the muscarinic receptor agonist oxotremorine on physiological responses known to be modulated by these receptors such as body temperature, salivation, tremor, pain, and prepulse inhibition of the acoustic startle (PPI). Quantitative receptor autoradiography revealed that post-pubertal NVH lesioned animals display increased levels of [3H]pirenzepine/M1-like and [3H]AFDX-384/M2-like receptor binding sites in the striatum, nucleus accumbens, and in subareas of the dorsal hippocampus. Moreover, in response to the systemic administration of oxotremorine (0.25 mg/kg), post-pubertal NVH lesioned rats exhibited increases in salivation and tremor, and a greater reduction in body temperature compared to sham control animals. Increases in the hot-plate latency were also observed suggesting enhanced antinociceptive effects of oxotremorine in post-pubertal NVH lesioned animals. Finally, oxotremorine (0.1 and 0.25 mg/kg) disrupted PPI in post-pubertal sham control rats while the muscarinic receptor antagonist biperiden (0.5 and 1.0 mg/kg) normalized this behavior in NVH lesioned rats. Taken together, these findings reveal that post-pubertal NVH lesioned rats display enhanced muscarinic receptor responsiveness, which may relate to some behavioral abnormalities reported in this animal model.
Collapse
Affiliation(s)
- François Laplante
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
11
|
Parent MB, Baxter MG. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 2004; 11:9-20. [PMID: 14747512 PMCID: PMC1668717 DOI: 10.1101/lm.69104] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal projections is largely without effect on hippocampal-dependent learning and memory processes. We consider the evidence underlying each of these statements, and the contradictions they pose for understanding the functional role of hippocampal ACh in memory. We suggest that although hippocampal ACh is involved in memory in the intact brain, it is not necessary for many aspects of hippocampal memory function.
Collapse
Affiliation(s)
- Marise B Parent
- Department of Psychology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA.
| | | |
Collapse
|
12
|
Berntson GG, Sarter M, Cacioppo JT. Ascending visceral regulation of cortical affective information processing. Eur J Neurosci 2003; 18:2103-9. [PMID: 14622171 DOI: 10.1046/j.1460-9568.2003.02967.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over a century ago, William James proposed that strong emotions represent the perceptual consequences of somato-visceral feedback. Although the strong form of this conception is no longer viable, considerable evidence has accumulated indicating a range of visceral influences on higher neurobehavioural processes. This literature has only recently begun to consolidate, because earlier reports generally remained at the demonstration level, and pathways and mechanisms for such influences were uncertain. Recently, specific effects of visceral feedback have become apparent on cortical activity, cerebral auditory-evoked responses, anxiety, memory and behavioural aspects of immunological sickness. Moreover, considerable progress has been made recently in determining the specific neural pathways and systems underlying these actions, especially the role of noradrenergic projections from the nucleus of the tractus solitarius and the locus coeruleus to the amygdala in memory processes, and to the basal forebrain in the processing of anxiety-related information. The present paper highlights selected recent findings in this area, and outlines relevant structures and pathways involved in the ascending visceral influence on higher neurobehavioural processes.
Collapse
Affiliation(s)
- Gary G Berntson
- Ohio State University, 1885 Neil Avenue, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
13
|
Berntson GG, Shafi R, Knox D, Sarter M. Blockade of epinephrine priming of the cerebral auditory evoked response by cortical cholinergic deafferentation. Neuroscience 2003; 116:179-86. [PMID: 12535951 DOI: 10.1016/s0306-4522(02)00702-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study tested hypotheses derived from a neurobehavioral model of anxiety that posits an important role of the basal forebrain cholinergic system in the cortical processing of anxiety-associated stimuli and contexts. We hypothesized that visceral afferent activity induced by systemic administration of epinephrine would enhance the processing of auditory stimuli as evidenced by the cerebral auditory evoked response. We further predicted that selective lesions of the basal forebrain cortical cholinergic projection system would disrupt this processing, and would further block the effects of epinephrine. Results confirmed these hypotheses. Epinephrine was found to enhance the amplitude of the P70 component of the auditory evoked response in rats. Selective lesions of the basal forebrain corticopetal cholinergic projection, by intrabasalis infusions of 192 IgG saporin, delayed and reduced the amplitude of the P70 component, and blocked the potentiating effects of epinephrine on the auditory evoked response. The present results are consistent with the view that visceral afferent input may modulate cortical processing of sensory signals via the basal forebrain cholinergic system. These considerations emphasize the potential importance of ascending, bottom-up modulation of processing by telencephalic circuits that may impact on a wide range of behavioral functions.
Collapse
Affiliation(s)
- G G Berntson
- The Ohio State University, 1885 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
We have previously shown that the ventromedial prefrontal cortex (vmPFC) is involved in spontaneous working memory and anxiety-related behaviour in CD-1 mice. Specifically, pretrial microinjection of the kappa(1) agonist, U-69,593, in the infralimbic (IL) area of the vmPFC produced a robust anxiolytic behavioural profile in the elevated plus-maze and enhanced spontaneous working memory in the Y-maze. In the present study we sought to determine whether these effects were specific to IL kappa receptors. We hypothesized that microinjection of the kappa antagonist, norBNI, in the IL cortex would influence anxiety and spontaneous memory in an opposite direction to the effects produced by the kappa(1) agonist. In week 1, transfer-latency reference memory and anxiety were tested in the elevated plus-maze in two separate trials with an intertrial interval of 24 h. In week 2, spontaneous working memory was tested in the Y-maze followed immediately by defensive/withdrawal anxiety in the open field for one half of the animals in each group, and the other half was tested in reverse order. Pretreatment with one injection of vehicle, 1, 5 or 10 nmol/0.5 microl norBNI in the IL cortex dose-dependently reduced transfer-latencies and produced an anxiogenic behavioural profile in the first elevated plus-maze trial. Following a 24 h delay, transfer-latency reference memory was not influenced, but a robust anxiogenic behavioural profile was observed in the second no-injection anxiety trial in the elevated plus-maze relative to control animals. In week 2, the same groups of mice were again pretreated with one injection of the same doses of norBNI in the IL cortex and tested in the open field and Y-maze. NorBNI pretreatment was anxiogenic in the defensive/withdrawal anxiety test and disrupted spontaneous working memory regardless of testing order. The present results show the influence of kappa receptor modulation on anxiety induction and spontaneous working memory. These results also support the hypothesis that immediate memory processing may modulate the induction of anxiety-related behaviours.
Collapse
Affiliation(s)
- P M Wall
- School of Psychology, University of Ottawa, Vanier: Room 215, Ottawa, Canada.
| | | |
Collapse
|
15
|
Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000; 95:933-52. [PMID: 10682701 DOI: 10.1016/s0306-4522(99)00487-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basal forebrain corticopetal neurons participate in the mediation of arousal, specific attentional functions and rapid eye movement sleep-associated dreaming. Recent studies on the afferent regulation of basal forebrain neurons by telencephalic and brainstem inputs have provided the basis for hypotheses which, collectively, propose that the involvement of basal forebrain corticopetal projections in arousal, attention and dreaming can be dissociated on the basis of their regulation via major afferent projections. While the processing underlying sustained, selective and divided attention performance depends on the integrity of the telencephalic afferent regulation of basal forebrain corticopetal neurons, arousal-induced attentional processing (i.e. stimulus detection, selection and processing as a result of a novel, highly salient, aversive or incentive stimuli) is mediated via the ability of brainstem ascending noradrenergic projections to the basal forebrain to activate or "recruit" these telencephalic afferent circuits of the basal forebrain. In rapid eye movement sleep, both the basal forebrain and thalamic cortiocopetal projections are stimulated by cholinergic afferents originating mainly from the pedunculopontine and laterodorsal tegmenta in the brainstem. Rapid eye movement sleep-associated dreaming is described as a form of hyperattentional processing, mediated by increased activity of cortical cholinergic inputs and their cortical interactions with activated thalamic efferents. In this context, long-standing speculations about the similarities between dreaming and psychotic cognition are substantiated by describing the role of an over(re)active cortical cholinergic input system in either condition. Finally, while determination of the afferent regulation of basal forebrain corticopetal neurons in different behavioral/cognitive states assists in defining the general cognitive functions of cortical acetylcholine, this research requires a specification of the precise anatomical organization of basal forebrain afferents and their interactions in the basal forebrain. Furthermore, the present hypotheses remain incomplete because of the paucity of data concerning the regulation and role of basal forebrain non-cholinergic, particularly GABAergic, efferents.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
16
|
Sarter M, Bruno JP, Miner LA, McGaughy J. Development of a method for intraparenchymal infusions of 192 IgG-saporin: a comment on Pizzo et al. (1999). J Neurosci Methods 2000; 96:169-70. [PMID: 10720682 DOI: 10.1016/s0165-0270(99)00196-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Hart S, Sarter M, Berntson GG. Cholinergic inputs to the rat medial prefrontal cortex mediate potentiation of the cardiovascular defensive response by the anxiogenic benzodiazephine receptor partial inverse agonist FG 7142. Neuroscience 2000; 94:1029-38. [PMID: 10625045 DOI: 10.1016/s0306-4522(99)00269-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Consistent with its putative anxiogenic actions, administration of the benzodiazepine receptor partial inverse agonist FG 7142 has been shown to potentiate defensive-like cardiovascular reactivity to an acoustic stimulus in the rat, an effect that appears to be mediated by the basal forebrain cholinergic system. The present studies tested the hypothesis that the basal forebrain cholinergic projections to the medial prefrontal cortex, an area that has been implicated in both anxiety and autonomic control, may be a relevant pathway underlying this response potentiation. Infusions of the muscarinic receptor agonist carbachol into the medial prefrontal cortex, but not into the lateral prefrontal cortex or the basolateral amygdala, mimicked the effects of systemically administered FG 7142 on the cardioacceleratory response. Infusions of the muscarinic antagonist atropine blocked this effect, as well as the response-potentiating actions of FG 7142. The effects of FG 7142 were also blocked by lesions of the cholinergic inputs to the medial prefrontal cortex produced by local infusions of the immunotoxin 192 immunoglobulin G-saporin into this area. These findings indicate that cholinergic activation of the medial prefrontal cortex is sufficient to enhance the cardioacceleratory defensive response, and that cholinergic inputs to the medial prefrontal cortex are necessary for the response-potentiating effects of FG 7142. These results are consistent with a recent neurobiological model of anxiety and autonomic control that attributes the enhanced processing of anxiety-related stimuli and contexts to increases in activity in cortical cholinergic inputs.
Collapse
Affiliation(s)
- S Hart
- Department of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
18
|
Sarter M, Bruno JP. Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 1999; 22:67-74. [PMID: 10092046 DOI: 10.1016/s0166-2236(98)01289-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cholinergic neurons originating in the basal forebrain innervate all cortical areas and participate in the gating of cortical information processing. Aberrations in the excitability of cortical cholinergic inputs fundamentally alter the processing of sensory stimuli and higher processes, thereby advancing the development of major neuropsychiatric disorders. Cortical cholinergic deafferentation has been considered to be a major neuropathological variable that contributes to the development of age- and dementia-associated impairments in cognition. Conversely, it has been suggested that increases in the excitability of cortical cholinergic inputs mediate the abnormal cognitive processes that escalate into psychotic symptoms and contribute to addictive-drug-seeking behavior, anxiety and phobia. Abnormal regulation of the excitability of cortical cholinergic afferents represents a 'final common pathway' that mediates the manifestation of major neuropsychiatric disorders.
Collapse
Affiliation(s)
- M Sarter
- Dept of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
19
|
Berntson GG, Sarter M, Cacioppo JT. Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behav Brain Res 1998; 94:225-48. [PMID: 9722275 DOI: 10.1016/s0166-4328(98)00041-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The relations between anxiety states and autonomic functions are considered from the vantage of a model of the neural systems underlying anxiety and autonomic control. An important component of this model is the involvement of the basal forebrain cortical cholinergic system that is seen to play a crucial role in the cognitive aspects of anxiety, and the links between anxiety and autonomic regulation. An additional aspect of the model is the detailing of the routes by which autonomic reactivity and associated visceral afference can modulate more rostral components of the system. The proposed model offers a more comprehensive framework for research on the neurobiology of anxiety and autonomic control.
Collapse
Affiliation(s)
- G G Berntson
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
20
|
Hart S, Sarter M, Berntson GG. Cardiovascular and somatic startle and defense: concordant and discordant actions of benzodiazepine receptor agonists and inverse agonists. Behav Brain Res 1998; 90:175-86. [PMID: 9521549 DOI: 10.1016/s0166-4328(97)00097-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Benzodiazepine receptor (BZR) agonists and inverse agonists yield generally opposing effects on GABAergic transmission, and the functional consequences of these ligands are often bidirectional. BZR agonists exert anxiolytic effects, whereas the BZR partial inverse agonist FG 7142 has been reported to have anxiogenic actions in a variety of paradigms. In keeping with this literature, we found that the cardioacceleratory defensive response is enhanced by FG 7142, and attenuated by the BZR agonist chlordiazepoxide. In contrast, both compounds attenuated basal and fear-potentiated somatic startle responses. This did not appear to reflect a global reduction of startle reactivity, however, as the cardiac startle response was not significantly altered. These findings support the view that multiple substrates underlie distinct aspects or features of fear and anxiety. The results are consistent with the suggestion that FG 7142 may selectively enhance those aspects of anxiety that depend on cortical-cognitive processing.
Collapse
Affiliation(s)
- S Hart
- Department of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
21
|
Berntson GG, Hart S, Sarter M. The cardiovascular startle response: anxiety and the benzodiazepine receptor complex. Psychophysiology 1997; 34:348-57. [PMID: 9175449 DOI: 10.1111/j.1469-8986.1997.tb02405.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Benzodiazepine receptor (BZR) agonists are prototypic anxiolytic agents, whereas BZR inverse agonists exert anxiogenic effects. The effects of these compounds offer a potentially important pharmacological model system to examine the central mechanisms of anxiety. In accord with its putative anxiogenic properties, we previously found that the BZR partial inverse agonist, FG 7142, enhances the cardiovascular defensive response to a nonsignal acoustic stimulus in rats. In contrast, we found in the present study that this agent attenuates both the somatic and cardiovascular components of the acoustic startle response. BZR agonists and inverse agonists are known to modulate the basal forebrain cortical cholinergic system, and we consider the potential involvement of this system in the disparate psychophysiological actions of FG 7142 and in anxiety states in general.
Collapse
Affiliation(s)
- G G Berntson
- Deprtment of Psychology, Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
22
|
Berntson G, Sarter M, Ruland S, Hart S, Ronis V. Benzodiazepine receptor agonists and inverse agonists yield concordant rather than opposing effects on startle responses. J Psychopharmacol 1996; 10:309-12. [PMID: 22302979 DOI: 10.1177/026988119601000409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Benzodiazepine receptor agonists and inverse agonists exert generally opposite actions at both the cellular and behavioural levels. The present study, however, reveals that both the benzodiazepine receptor agonist, chlordiazepoxide and the partial inverse agonist, FG7142, yield a dose-dependent (2-16 mg/kg, i.p) reduction in the amplitude of the acoustic startle response in the rat. The similarity in drug effects on startle was not attributable to congruent effects on basal somatic activity, as chlordiazepoxide resulted in a dose-dependent decrease in activity whereas FG7142 was associated with a small but non-significant increase in activity. As these results contrast with the bidirectional actions of benzodiazepine receptor agonists and inverse agonists in behavioural tests of fear or anxiety, the neuronal mechanisms mediating the effects of benzodiazepine receptor ligands on the acoustic startle response may be distinct from those that underlie the specific fear- attenuating and potentiating actions, respectively, of benzodiazepine receptor agonists and inverse agonists.
Collapse
Affiliation(s)
- G Berntson
- Department of Psychology and Neuroscience Program, The Ohio State University, 48 Townshend Hall, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
23
|
Holley LA, Turchi J, Apple C, Sarter M. Dissociation between the attentional effects of infusions of a benzodiazepine receptor agonist and an inverse agonist into the basal forebrain. Psychopharmacology (Berl) 1995; 120:99-108. [PMID: 7480541 DOI: 10.1007/bf02246150] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of infusions of the benzodiazepine receptor (BZR) full agonist chlordiazepoxide (CDP) or the full inverse agonist beta-CCM into the basal forebrain on behavioral vigilance were tested. Vigilance was measured by using a previously characterized task that requires the animals to discriminate between visual signals of variable length and non-signal events. Measures of performance included hits, misses, correct rejections, false alarms, side bias, and errors of omission. Following the infusion of saline (0.5 microliters/hemisphere), the relative number of hits varied with signal length. In response to shorter signals, the number of hits decreased over time, indicating a vigilance decrement. Infusions of CDP (20, 40 micrograms/hemisphere) initially decreased the relative number of hits in response to shorter signals and, later in the course of the test sessions, to longer signals as well. CDP did not affect the relative number of correct rejections. In contrast, infusions of the inverse agonist beta-CCM (1.5, 3.0 micrograms/hemisphere) did not affect the relative number of hits but decreased the relative number of correct rejections (i.e., increased the number of false alarms). These data suggest that the basal forebrain mediates the attentional effects of BZR ligands. As systemic or intrabasalis administration of BZR agonists and inverse agonists was previously demonstrated to decrease and augment, respectively, activated cortical acetylcholine (ACh) efflux, their effects on behavioral vigilance are hypothesized to be mediated via their effects on cortical ACh.
Collapse
Affiliation(s)
- L A Holley
- Department of Psychology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|