1
|
Bajic M, Ravishankar S, Sheth M, Rowe LA, Pacheco MA, Patel DS, Batra D, Loparev V, Olsen C, Escalante AA, Vannberg F, Udhayakumar V, Barnwell JW, Talundzic E. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep 2022; 12:19802. [PMID: 36396703 PMCID: PMC9671904 DOI: 10.1038/s41598-022-20706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.
Collapse
Affiliation(s)
- Marko Bajic
- grid.422961.a0000 0001 0029 6188Association of Public Health Laboratories, Silver Spring, MD USA ,grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - Mili Sheth
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Lori A. Rowe
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA ,grid.265219.b0000 0001 2217 8588Virus Characterization Isolation Production and Sequencing Core, Tulane National Primate Research Center, Covington, LA USA
| | - M. Andreina Pacheco
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Dhruviben S. Patel
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Dhwani Batra
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Vladimir Loparev
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Christian Olsen
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Ananias A. Escalante
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Fredrik Vannberg
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics at Georgia Tech, Georgia Institute of Technology, Atlanta, GA USA
| | - Venkatachalam Udhayakumar
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - John W. Barnwell
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Eldin Talundzic
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
2
|
There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules 2019; 9:biom9080378. [PMID: 31430853 PMCID: PMC6722601 DOI: 10.3390/biom9080378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron–sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
Collapse
|
3
|
Hillebrand A, Matz JM, Almendinger M, Müller K, Matuschewski K, Schmitz-Linneweber C. Identification of clustered organellar short (cos) RNAs and of a conserved family of organellar RNA-binding proteins, the heptatricopeptide repeat proteins, in the malaria parasite. Nucleic Acids Res 2019; 46:10417-10431. [PMID: 30102371 PMCID: PMC6212722 DOI: 10.1093/nar/gky710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Gene expression in mitochondria of Plasmodium falciparum is essential for parasite survival. The molecular mechanisms of Plasmodium organellar gene expression remain poorly understood. This includes the enigmatic assembly of the mitochondrial ribosome from highly fragmented rRNAs. Here, we present the identification of clustered organellar short RNA fragments (cosRNAs) that are possible footprints of RNA-binding proteins (RBPs) in Plasmodium organelles. In plants, RBPs of the pentatricopeptide repeat (PPR) class produce footprints as a consequence of their function in processing organellar RNAs. Intriguingly, many of the Plasmodium cosRNAs overlap with 5'-ends of rRNA fragments. We hypothesize that these are footprints of RBPs involved in assembling the rRNA fragments into a functioning ribosome. A bioinformatics search of the Plasmodium nuclear genome identified a hitherto unrecognized organellar helical-hairpin-repeat protein family that we term heptatricopeptide repeat (HPR) proteins. We demonstrate that selected HPR proteins are targeted to mitochondria in P. berghei and that one of them, PbHPR1, associates with RNA, but not DNA in vitro. A phylogenetic search identified HPR proteins in a wide variety of eukaryotes. We hypothesize that HPR proteins are required for processing and stabilizing RNAs in Apicomplexa and other taxa.
Collapse
Affiliation(s)
- Arne Hillebrand
- Humboldt University Berlin, Molecular Genetics, Berlin, Germany
| | - Joachim M Matz
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | | - Katja Müller
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | - Kai Matuschewski
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | |
Collapse
|
4
|
Gupta K, Gupta A, Habib S. Characterization of a Plasmodium falciparum rRNA methyltransferase. Mol Biochem Parasitol 2018; 223:13-18. [DOI: 10.1016/j.molbiopara.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022]
|
5
|
Rai P, Sharma D, Soni R, Khatoon N, Sharma B, Bhatt TK. Plasmodium falciparum apicoplast and its transcriptional regulation through calcium signaling. J Microbiol 2017; 55:231-236. [DOI: 10.1007/s12275-017-6525-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
|
6
|
McFadden GI, Yeh E. The apicoplast: now you see it, now you don't. Int J Parasitol 2016; 47:137-144. [PMID: 27773518 DOI: 10.1016/j.ijpara.2016.08.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. Here we review the initial discovery of the apicoplast, and recount the major new insights into apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be removed from malaria parasites in vitro, ultimately completing its reduction by chemical supplementation.
Collapse
Affiliation(s)
| | - Ellen Yeh
- Department of Biochemistry, Stanford Medical School, Stanford, CA, USA; Department of Pathology, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
7
|
Nisbet RER, McKenzie JL. Transcription of the apicoplast genome. Mol Biochem Parasitol 2016; 210:5-9. [PMID: 27485555 PMCID: PMC5404108 DOI: 10.1016/j.molbiopara.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Many members of the Apicomplexa contain a remnant chloroplast, known as an apicoplast. The apicoplast encodes numerous genes, and loss of the organelle is lethal. Here, we present a summary of what is known about apicoplast transcription. Unlike plant chloroplasts, there is a single RNA polymerase, and initial transcription is polycistronic. RNA is then cleaved into tRNA, mRNA and rRNA molecules. Significant levels of antisense transcription have been reported, together with a single case of RNA editing. Polycistronic transcription is also observed in the related algae Chromera and Vitrella, which retain a photosynthetic chloroplast. Surprisingly, a polyU tail is added to Chromera and Vitrella transcripts which encode proteins involved in photosynthesis. No such tail is added to Plasmodium transcripts. Transcription in the Apicomplexa is remarkably similar to that seen in the chloroplast of the related peridinin dinoflagellate algae, reflecting the common evolutionary origins of the organelle.
Collapse
Affiliation(s)
- R E R Nisbet
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - J L McKenzie
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
8
|
Nisbet RER, Kurniawan DP, Bowers HD, Howe CJ. Transcripts in the Plasmodium Apicoplast Undergo Cleavage at tRNAs and Editing, and Include Antisense Sequences. Protist 2016; 167:377-388. [PMID: 27458998 PMCID: PMC4995348 DOI: 10.1016/j.protis.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022]
Abstract
The apicoplast, an organelle found in Plasmodium and many other parasitic apicomplexan species, is a remnant chloroplast that is no longer able to carry out photosynthesis. Very little is known about primary transcripts and RNA processing in the Plasmodium apicoplast, although processing in chloroplasts of some related organisms (chromerids and dinoflagellate algae) shows a number of unusual features, including RNA editing and the addition of 3′ poly(U) tails. Here, we show that many apicoplast transcripts are polycistronic and that there is extensive RNA processing, often involving the excision of tRNA molecules. We have identified major RNA processing sites, and have shown that these are associated with a conserved sequence motif. We provide the first evidence for the presence of RNA editing in the Plasmodium apicoplast, which has evolved independently from editing in dinoflagellates. We also present evidence for long, polycistronic antisense transcripts, and show that in some cases these are processed at the same sites as sense transcripts. Together, this research has significantly enhanced our understanding of the evolution of chloroplast RNA processing in the Apicomplexa and dinoflagellate algae.
Collapse
Affiliation(s)
- R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| | - Davy P Kurniawan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Harrison D Bowers
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| |
Collapse
|
9
|
Mailu BM, Li L, Arthur J, Nelson TM, Ramasamy G, Fritz-Wolf K, Becker K, Gardner MJ. Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites. J Biol Chem 2015; 290:29629-41. [PMID: 26318454 DOI: 10.1074/jbc.m115.655100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 01/25/2023] Open
Abstract
The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNA(Gln) and a glutaminyl-tRNA amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln). Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNA(Gln) to Gln-tRNA(Gln) in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.
Collapse
Affiliation(s)
- Boniface M Mailu
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Ling Li
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Jen Arthur
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Todd M Nelson
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Gowthaman Ramasamy
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Karin Fritz-Wolf
- the Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen 35392 Germany, and the Max-Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Katja Becker
- the Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen 35392 Germany, and
| | - Malcolm J Gardner
- From the Center for Infectious Disease Research, Seattle, Washington 98109, the Department of Global Health, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
10
|
Mailu BM, Ramasamay G, Mudeppa DG, Li L, Lindner SE, Peterson MJ, DeRocher AE, Kappe SHI, Rathod PK, Gardner MJ. A nondiscriminating glutamyl-tRNA synthetase in the plasmodium apicoplast: the first enzyme in an indirect aminoacylation pathway. J Biol Chem 2013; 288:32539-32552. [PMID: 24072705 PMCID: PMC3820887 DOI: 10.1074/jbc.m113.507467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/23/2013] [Indexed: 11/06/2022] Open
Abstract
The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.
Collapse
Affiliation(s)
- Boniface M Mailu
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | | | - Devaraja G Mudeppa
- the Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| | - Ling Li
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Scott E Lindner
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Megan J Peterson
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Amy E DeRocher
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109,; the Department of Global Health, University of Washington, Seattle, Washington 98195
| | - Pradipsinh K Rathod
- the Department of Chemistry, University of Washington, Seattle, Washington 98195-1700; the Department of Global Health, University of Washington, Seattle, Washington 98195
| | - Malcolm J Gardner
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109,; the Department of Global Health, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
11
|
Abstract
Ciprofloxacin (CP) is a fluoroquinolone that is highly active against diverse microorganisms. At concentrations less than 1 µg/ml it is active against a diverse types of bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Bacillius subtilius, Escherichia coli and Mycobacterium tuberculosis. In addition, it has shown to be effective against other diseases such as malaria, cancer and AIDS. The extended antimicrobial activity, lack of plasmid-mediated resistance, large volume of distribution and minimal adverse effects of CP are therapeutically advantageous. In the pursuit of increasing their effectiveness against these diseases and prevent unwanted resistance, researchers have begun to synthesize a class of organic, inorganic and organometallic derivatives, which have displayed interesting activities. This review describes the development and recent advances on the evaluation of CP and its derivatives as a new class of drugs with potential for clinical development.
Collapse
|
12
|
Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One 2012; 7:e38320. [PMID: 22761677 PMCID: PMC3382252 DOI: 10.1371/journal.pone.0038320] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.
Collapse
Affiliation(s)
- Jean E Feagin
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Parasites like malaria and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of plants. The plastid (known as the apicoplast) is non-photosynthetic but retains many hallmarks of its ancestry including a circular genome that it synthesises proteins from and a suite of biosynthetic pathways of cyanobacterial origin. In this review, the discovery of the apicoplast and its integration, function and purpose are explored. New insights into the apicoplast fatty acid biosynthesis pathway and some novel roles of the apicoplast in vaccine development are reviewed.
Collapse
|
14
|
Abstract
This article is an attempt to identify the most significant highlights of Toxoplasma research over the last 25 years. It has been a period of enormous progress and the top 25 most significant advances, in the view of this author, are described. These range from the bench to the bedside and represent a tremendous body of work from countless investigators. And, having laid out so much that has been discovered, it is impossible not to also reflect on the challenges that lie ahead. These, too, are briefly discussed. Finally, while every effort has been made to view the field as a whole, the molecular biology background of the author almost certainly will have skewed the relative importance attached to past and future advances. Despite this, it is hoped that the reader will agree with, or at least not disagree too strongly with, most of the choices presented here.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA.
| |
Collapse
|
15
|
Dahl EL, Rosenthal PJ. Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 2008; 24:279-84. [PMID: 18450512 DOI: 10.1016/j.pt.2008.03.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 11/29/2022]
Abstract
Several antibiotics possess antimalarial properties, although the mechanisms by which they kill malaria parasites have been poorly understood. Recent data suggest that the target for multiple antimalarial antibiotics is the apicoplast, a chloroplast-like organelle of uncertain function. Translation inhibitors (such as tetracyclines, clindamycin and macrolides) and gyrase inhibitors (such as ciprofloxacin) cause modest antimalarial effects initially but are much more potent against the progeny of treated parasites. These progeny inherit nonfunctional apicoplasts, suggesting that blocking production of apicoplast proteins causes the 'delayed-death effect'. Interestingly, the antibiotics thiostrepton and rifampin are fast acting and might target additional processes outside the apicoplast.
Collapse
Affiliation(s)
- Erica L Dahl
- Department of Medicine, Division of Infectious Disease, Box 0811, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
16
|
Köhler S. Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res 2005; 96:258-72. [PMID: 15895255 DOI: 10.1007/s00436-005-1338-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Apicomplexan parasites carry a plastid-like organelle termed apicoplast. The previous documentation of four membranes bordering the Toxoplasma gondii apicoplast suggested a secondary endosymbiotic ancestry of this organelle. However, a four-membraned apicoplast wall could not be confirmed for all Apicomplexa including the malarial agents. The latter reportedly possesses a mostly tri-laminar plastid wall but also displays two multi-laminar wall partitions. Since these sectors apparently evolved from regional wall membrane infoldings, the malarial plastid could have lost one secondary wall membrane in the course of evolution. Such wall construction was however not unambiguously resolved. To examine whether the wall of the T. gondii apicoplast is comparably complex, serial ultra-thin sections of tachyzoites were analyzed. This investigation revealed a single pocket-like invagination within a four-laminar wall segment but also disclosed that four individual membranes do not surround the entire T. gondii apicoplast. Instead, this organelle possesses an extensive sector that is bordered by two membranes. Such heterogeneous wall construction could be explained if the inner two membranes of a formerly four-membraned endosymbiont are partially lost. However, our findings are more consistent with an essentially dual-membraned organelle that creates four-laminar wall sectors by expansive infoldings of its interior border. Given this architecture, the T. gondii apicoplast depicts a residual primary plastid not a secondary one as presently proposed.
Collapse
Affiliation(s)
- Sabine Köhler
- Institute for Zoomorphology, Cell Biology and Parasitology, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2005; 2:203-16. [PMID: 15083156 DOI: 10.1038/nrmicro843] [Citation(s) in RCA: 441] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stuart A Ralph
- Institut Pasteur, Biology of Host-Parasite Interactions, 25 Rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Maga JA, Cermakian N, Cedergren R, Feagin JE. Identification and characterization of a Plasmodium falciparum RNA polymerase gene with similarity to mitochondrial RNA polymerases. Mol Biochem Parasitol 2001; 113:261-9. [PMID: 11295180 DOI: 10.1016/s0166-6851(01)00223-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nearly all mitochondrial RNA polymerase genes identified to date are encoded in the nucleus and have similarities to T3 and T7 bacteriophage RNA polymerases. Some chloroplast genes are also transcribed by T3/T7 phage-like RNA polymerases, raising the possibility that the apicomplexan parasites, which have both a mitochondrion and a plastid, might have two such genes. As part of an investigation of Plasmodium falciparum organelle transcription, we initiated a search for T3/T7 bacteriophage-like RNA polymerase genes. We employed degenerate primers based on highly conserved plant, animal and fungal mitochondrial RNA polymerase sequences to amplify corresponding P. falciparum sequences by polymerase chain reaction (PCR). Less well-conserved flanking sequences were obtained by inverse PCR. The resulting sequence predicts a 1503 amino acid open reading frame with similarity to other T3/T7 phage-like RNA polymerases. Essential amino acids that have been identified in T7 mutant analyses are conserved in the P. falciparum RNA polymerase gene. Comparison of the sequence with preliminary data from the P. falciparum genome sequencing project revealed strain heterogeneity within two regions of the gene. The amino-terminal predicted amino acid sequence of the RNA polymerase gene has similarities to mitochondrial targeting sequences. Taken together, these points suggest that we have identified the P. falciparum mitochondrial RNA polymerase gene.
Collapse
Affiliation(s)
- J Li
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.
Collapse
Affiliation(s)
- M T Gleeson
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Westbourne Street, Gore Hill NSW 2065, Sydney, Australia.
| |
Collapse
|
20
|
Abstract
Both the chromosomal and extrachromosomal components of the apicomplexan genome have been supplemented by genes from a plastid-bearing endocytobiont: probably an algal cell. The sequence of the apicomplexan plastid's vestigial genome indicates that a large number (>100) of genes of endocytobiotic origin must have transferred laterally to the host cell nucleus where they control maintenance of the plastid organelle and supply its functional components by means of post-translational protein trafficking. Should the nuclear genes prove to be less divergent phylogenetically than those left on the plastid genome, they might give better clues than we have at present to the origin of the plastid-bearing endocytobiont. Most of these nuclear genes still await discovery, but the on-going genome sequencing project will reveal the function of the organelle, as well as many "housekeeping" processes of interest on a wider front. The plastid's own protein synthetic machinery, being cyanobacterial in origin, offers conventional targets for antibiotic intervention, and this is discussed here using a structural model of elongation factor Tu. Uncovering the vital function(s) of the plastid organelle will provide new drug targets.
Collapse
Affiliation(s)
- S Sato
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
21
|
Gillespie DE, Salazar NA, Rehkopf DH, Feagin JE. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum have short A tails. Nucleic Acids Res 1999; 27:2416-22. [PMID: 10325433 PMCID: PMC148810 DOI: 10.1093/nar/27.11.2416] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genome of Plasmodium falciparum encodes highly fragmented rRNAs. Twenty small RNAs which are putative rRNA fragments have been found and 15 of them have been identified as corresponding to specific regions of rRNA sequence. To investigate the possible interactions between the fragmented rRNAs in the ribosome, we have mapped the ends of many of the small transcripts using primer extension and RNase protection analysis. Results obtained from these studies revealed that some of the rRNA transcripts were longer than the sequences which encode them. To investigate these size discrepancies, we performed 3' RACE PCR analysis and RNase H mapping. These analyses revealed non-encoded oligo(A) tails on some but not all of these small rRNAs. The approximate length of the oligo(A) tail appears to be transcript-specific, with some rRNAs consistently showing longer oligo(A) tails than others. The oligoadenylation of the rRNAs may provide a buffer zone against 3' exonucleolytic attack, thereby preserving the encoded sequences necessary for secondary structure interactions in the ribosome.
Collapse
Affiliation(s)
- D E Gillespie
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | |
Collapse
|
22
|
Lang-Unnasch N, Reith ME, Munholland J, Barta JR. Plastids are widespread and ancient in parasites of the phylum Apicomplexa. Int J Parasitol 1998; 28:1743-54. [PMID: 9846612 DOI: 10.1016/s0020-7519(98)00136-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Current evidence supports the presence of a non-photosynthetic chloroplast-like organelle in several apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii. This apicomplexan organelle, referred to here as the "plastid", may have been acquired through a primary or secondary endosymbiosis of a photosynthetic organism. Alternatively, apicomplexan plastids may have been acquired through several independent endosymbiotic events, as appears to be the case for the acquisition of chloroplasts by dinoflagellates. The likelihood of multiple origins of an apicomplexan plastid is enhanced by the close evolutionary relatedness of apicomplexan and dinoflagellate taxa. In this study, we have tested the hypothesis that apicomplexan plastids are derived from a single ancient ancestor. Two lines of evidence supporting this hypothesis are presented. First, this study supports the widespread presence of plastid DNA in apicomplexan species. Second, the topologies of the phylogenetic trees derived from plastid and nuclear-encoded rRNA gene sequences suggest the co-evolution of the DNAs localised in these two compartments. Taken together, these data support a single ancient lineage for the plastids of parasites in the phylum Apicomplexa.
Collapse
Affiliation(s)
- N Lang-Unnasch
- Department of Medicine, University of Alabama at Birmingham 35294-2170, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
It has recently emerged that malarial, toxoplasmodial and related parasites contain a vestigial plastid (the organelle in which photosynthesis occurs in plants and algae). The function of the plastid in these obligate intracellular parasites has not been established. It seems likely that modern apicomplexans derive from photosynthetic predecessors, which perhaps formed associations with protists and invertebrates and abandoned autotrophy in favour of parasitism. Recognition of a third genetic compartment in these parasites proffers alternative strategies for combating a host of important human and animal diseases. It also poses some fascinating questions about the evolutionary biology of this important group of pathogens.
Collapse
Affiliation(s)
- G I McFadden
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
24
|
Nicolas E, Goodyer ID, Taraschi TF. An additional mechanism of ribosome-inactivating protein cytotoxicity: degradation of extrachromosomal DNA. Biochem J 1997; 327 ( Pt 2):413-7. [PMID: 9359409 PMCID: PMC1218809 DOI: 10.1042/bj3270413] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibition of protein synthesis by cleavage of the N-glycosidic bond of a specific adenine of 28 S rRNA has been accepted as the mechanism by which plant ribosome-inactivating proteins (RIPs) cause cytotoxicity. The cytotoxic action of gelonin on Plasmodium falciparum malaria parasites appears to occur by a different mechanism. Parasite intoxication, which is manifested by mitochondrial dysfunction and lack of nucleic acid synthesis in the erythrocytic cycle following exposure to the toxin, is caused by the elimination of the parasite 6 kb extrachromosomal (mitochondrial) DNA. This is the first report which demonstrates that the DNA-damaging activities of RIPs observed in vitro can contribute to their cytotoxicity.
Collapse
Affiliation(s)
- E Nicolas
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, 1020 Locust St., Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
25
|
Abstract
Genomes comprising a pair of separated inverted repeats and called 'amphimers' are reviewed. Amphimeric genomes are observed in a large variety of different organisms, ranging from archaebacteria to mammals. The widespread existence of amphimeric genomes in nature could be due to their particular dynamic structure. Amphimeric genomes containing long inverted segments may provide the only form in which a duplicated segment is stably retained in genomes. Amphimers are often found in amplified subgenomes, indicating that they could promote a special mechanism of DNA replication and amplification. The possible mechanisms of generation, isomerization and replication/amplification of different types of amphimeric genomes are discussed. The study of amphimeric mitochondrial petite genomes of yeast could be a good model system for the study of the role of inverted repeat sequences in genome dynamics.
Collapse
Affiliation(s)
- E Rayko
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, Paris, France.
| |
Collapse
|
26
|
Abstract
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.
Collapse
Affiliation(s)
- R J Wilson
- National Institute for Medical Research, London, United Kingdom.
| | | |
Collapse
|
27
|
McConkey GA, Rogers MJ, McCutchan TF. Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 1997; 272:2046-9. [PMID: 8999899 DOI: 10.1074/jbc.272.4.2046] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum has two extrachromosomal DNAs associated with organelles whose function is unclear. Both genomes encode ribosomal RNAs (rRNAs) that are distinct from the nuclear-encoded rRNAs. Secondary structure analysis of all the P. falciparum rRNAs indicates that only the large subunit (LSU) rRNA encoded by the plastid-like genome is the target for thiostrepton. Indeed we find that thiostrepton inhibits growth of the parasite in the micromolar range which is 10-fold below concentrations with observable effects on total protein synthesis. We have further examined selective effects of thiostrepton on the plastid function by comparing differential effects of the drug on cytoplasmic and organellar encoded transcripts. Treatment with either thiostrepton or rifampin, an inhibitor of organellar and eubacterial RNA polymerase, both showed disappearance of organellar-encoded RNA transcripts within 6 h of treatment while transcripts of a nuclear-encoded mRNA remained constant for at least 8 h of treatment. Hence, we show a selective effect on organelle function that is suggestive of interference in the protein synthesis apparatus of the plastid. Sensitivity of P. falciparum to thiostrepton confirms that the plastid-like genome is essential for the erythrocytic cycle and presents a novel therapeutic site for this class of antibiotics.
Collapse
Affiliation(s)
- G A McConkey
- Growth and Development Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
28
|
Feagin JE, Mericle BL, Werner E, Morris M. Identification of additional rRNA fragments encoded by the Plasmodium falciparum 6 kb element. Nucleic Acids Res 1997; 25:438-46. [PMID: 9016576 PMCID: PMC146428 DOI: 10.1093/nar/25.2.438] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sequences similar to mitochondrial large and small subunit rRNAs are found as small scattered fragments on a tandemly reiterated 6 kb element in the human malaria parasite Plasmodium falciparum. The rDNA sequences previously identified include strongly conserved portions of rRNA, suggesting that fragmented rRNAs derived from them are able to associate into functional ribosomes. However, sequences corresponding to other expected rRNA regions were not found. We here report that 10 of the 13 previously described rDNA regions have abundant small transcripts. An additional 10 transcripts were found from regions not previously known to contain genes. Five of the latter have been identified as rRNA fragments, including those corresponding to the 5'end and 790 loop sequences of small subunit rRNA and the sarcin/ ricin loop of large subunit rRNA. Demonstration that most of the previously described rDNA regions have abundant transcripts and the identification of new transcripts with other portions of conventional rRNAs provide support for the hypothesis that these small transcripts comprise functional rRNAs.
Collapse
Affiliation(s)
- J E Feagin
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Organisms in the phylum Apicomplexa possess, in addition to their mitochondrial genome, an extrachromosomal DNA that possesses significant similarities with the extrachromosomal genomes of plastids. To date, the majority of data on these plastid-like DNAs have been obtained from the human malarial organism, Plasmodium falciparum. In common with plastid DNAs, the plastid-like DNA of P. falciparum possesses genes for DNA-dependent RNA polymerase subunits beta and beta 1 and for organellar-like large- and small-subunits ribosomal RNAs. Both the polymerase subunit and ribosomal RNA gene sequences share a number of features with those from plastid DNAs. In addition, the ribosomal RNA genes are organised in an inverted repeat arrangement, reminiscent of plastid DNAs. Additional molecular features shared between the 2 genomes are discussed. Plastid-like DNAs have also been identified in other Plasmodium species as well as Toxoplasma gondii, Eimeria tenella, Babesia bovis and a number of Sarcocystis species. A cryptic organelle often observed in apicomplexans has been proposed as the organelle that harbours the plastid-like DNAs, but conclusive evidence for this has not yet been obtained. Although approximately 1/2 of the plastid-like DNA of P. falciparum has been sequenced to date, no function has yet been ascribed to this DNA or its putative organelle. Phylogenetic inferences based on sequence data from this DNA have indicated an evolutionary origin from photosynthetic organisms, but the true provenance of the plastid-like DNAs remains to be determined. Because of the specific nature of the plastid-like DNAs, they may prove useful as effective targets for chemotherapeutics.
Collapse
Affiliation(s)
- A C Jeffries
- Department of Cell and Molecular Biology, University of Technology Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Ji YE, Mericle BL, Rehkopf DH, Anderson JD, Feagin JE. The Plasmodium falciparum 6 kb element is polycistronically transcribed. Mol Biochem Parasitol 1996; 81:211-23. [PMID: 8898336 DOI: 10.1016/0166-6851(96)02712-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Plasmodium falciparum 6 kb element encodes three protein coding genes and highly fragmented large and small subunit rRNAs; its gene content makes it the probable mitochondrial genome. Many of the genes are encoded so close to each other that there is insufficient room for specific promoters upstream of each gene. RNase protection analysis of two rRNA fragments whose genes are adjacent provided evidence for a polycistronic transcript containing sequences from both, as well as separate small RNAs. To evaluate the possibility of further polycistronic transcription, several sets of oligonucleotide primers located in different regions of the 6 kb element were employed to amplify cDNAs. These analyses have revealed the existence of 6 kb element transcripts as long as 5.9 kb. Both mRNA and rRNA sequences are included on these putative precursor transcripts. Since these types of RNA are known to have different patterns of abundance changes during the erythrocytic portion of the parasite life cycle, RNA stability is presumably an important feature in regulating mitochondrial transcript abundance.
Collapse
Affiliation(s)
- Y E Ji
- Seattle Biomedical Research Institute, WA 98109-1651, USA
| | | | | | | | | |
Collapse
|
31
|
Preiser P, Williamson DH, Wilson RJ. tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. Nucleic Acids Res 1995; 23:4329-36. [PMID: 7501453 PMCID: PMC307387 DOI: 10.1093/nar/23.21.4329] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Besides their mitochondrial genome, malarial parasites contain a second organellar DNA. This 35 kb circular molecule has a number of features reminiscent of plastid DNAs. Sequence analysis shows that along with other genes the circle codes for 25 different tRNAs all of which are transcribed. Six of the tRNAs have some unusual features, and one has an intron, the only one found so far on the circle. Comparison of codon and anticodon usage indicates that the 25 tRNAs are sufficient to decode all the protein genes present on the circle. The maintenance of such a parsimonious but complete translation system is further evidence for the functionality of the circle.
Collapse
Affiliation(s)
- P Preiser
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
32
|
Egea N, Lang-Unnasch N. Phylogeny of the large extrachromosomal DNA of organisms in the phylum Apicomplexa. J Eukaryot Microbiol 1995; 42:679-84. [PMID: 8520581 DOI: 10.1111/j.1550-7408.1995.tb01615.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organisms in the phylum Apicomplexa appear to have a large extrachromosomal DNA which is unrelated to the mitochondrial DNA. Based on the apparent gene content of the large (35 kb) extrachromosomal DNA of Plasmodium falciparum, it has been suggested that it is a plastid-like DNA, which may be related to the plastid DNA of rhodophytes. However, phylogenetic analyses have been inconclusive. It has been suggested that this is due to the unusually high A+T content of the Plasmodium falciparum large extrachromosomal DNA. To further investigate the evolution of the apicomplexan large extrachromosomal DNA, the DNA sequence of the organellar ribosomal RNA gene from Toxoplasma gondii, was determined. The Toxoplasma gondii rDNA sequence was most similar to the large extrachromosomal rDNA of Plasmodium falciparum, but was much less A+T rich. Phylogenetic analyses were carried out using the LogDet transformation to minimize the impact of nucleotide bias. These studies support the evolutionary relatedness of the Toxoplasma gondii rDNA with the large extrachromosomal rDNA of Plasmodium falciparum and with the organellar rDNA of another parasite in the phylum Apicomplexa, Babesia bovis. These analyses also suggest that the apicomplexan large extrachromosomal DNA may be more closely related to the plastid DNA of euglenoids than those of rhodophytes.
Collapse
Affiliation(s)
- N Egea
- Department of Medicine, University of Alabama at Birmingham 35294-2170, USA
| | | |
Collapse
|
33
|
Gozar MM, Bagnara AS. An organelle-like small subunit ribosomal RNA gene from Babesia bovis: nucleotide sequence, secondary structure of the transcript and preliminary phylogenetic analysis. Int J Parasitol 1995; 25:929-38. [PMID: 8550293 DOI: 10.1016/0020-7519(95)00022-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Investigations aimed at identifying the mitochondrial genome of Babesia bovis using the polymerase chain reaction (PCR) have established the existence of an organelle-like small subunit ribosomal RNA (SSU rRNA) gene in the parasite. The sequence, compiled from three main PCR products, was 1448 bp in length (including the primer regions), had a 73% A+T content and showed significant similarity (68% sequence identity) to the "organellar" SSU rRNA gene from Plasmodium falciparum. The proposed secondary structure of the transcript showed several features which were consistent with a eubacterial origin for the organelle-like gene. The presence of putative binding sites for streptomycin and tetracycline also supported an "organellar" location for the gene and suggested that the SSU rRNA transcript is functional in protein synthesis because tetracycline has anti-babesial activity. Phylogenetic analyses based on the conserved regions of the SSU-like rRNA genes from a wide variety of organisms showed only a weak association of the babesial sequence with its mitochondrial homologues and an even weaker association with the corresponding genes of plastid origin. The origin of this organelle-like gene in B. bovis therefore remains unresolved, as is the case for its homologue from P. falciparum.
Collapse
Affiliation(s)
- M M Gozar
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
34
|
Fichera ME, Bhopale MK, Roos DS. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents Chemother 1995; 39:1530-7. [PMID: 7492099 PMCID: PMC162776 DOI: 10.1128/aac.39.7.1530] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In order to characterize the delayed effect of clindamycin and macrolide antibiotics against Toxoplasma gondii tachyzoites (E. R. Pfefferkorn and S. E. Borotz, Antimicrob. Agents Chemother. 38:31-37, 1994), we have carefully examined the replication of parasites as a function of time after drug addition. Intracellular tachyzoites treated with up to 20 microM clindamycin (> 1,000 times the 50% inhibitory concentration) exhibit doubling times indistinguishable from those of controls (approximately 7 h). Drug-treated parasites emerge from infected cells and establish parasitophorous vacuoles inside new host cells as efficiently as untreated controls, but replication within the second vacuole is dramatically slowed. Growth inhibition in the second vacuole does not require continued presence of drug, but it is dependent solely on the concentration and duration of drug treatment in the first (previous) vacuole. The susceptibility of intracellular parasites to nanomolar concentrations of clindamycin contrasts with that of extracellular tachyzoites, which are completely resistant to treatment, even through several cycles of subsequent intracellular replication. This peculiar phenotype, in which drug effects are observed only in the second infectious cycle, also characterizes azithromycin and chloramphenicol treatment, but not treatment with cycloheximide, tetracycline, or anisomycin. These findings provide new insights into the mode of clindamycin and macrolide action against T. gondii, although the relevant target for their action remains unknown.
Collapse
Affiliation(s)
- M E Fichera
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | | | |
Collapse
|
35
|
|
36
|
Beckers CJ, Roos DS, Donald RG, Luft BJ, Schwab JC, Cao Y, Joiner KA. Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest 1995; 95:367-76. [PMID: 7814637 PMCID: PMC295440 DOI: 10.1172/jci117665] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We investigated potential targets for the activity of protein synthesis inhibitors against the protozoan parasite Toxoplasma gondii. Although nanomolar concentrations of azithromycin and clindamycin prevent replication of T. gondii in both cell culture and in vivo assays, no inhibition of protein labeling was observed in either extracellular or intracellular parasites treated with up to 100 microM drug for up to 24 h. Quantitative analysis of > 300 individual spots on two-dimensional gels revealed no proteins selectively depleted by 100 microM azithromycin. In contrast, cycloheximide inhibited protein synthesis in a dose-dependent manner. Nucleotide sequence analysis of the peptidyl transferase region from genes encoding the large subunit of the parasite's ribosomal RNA predict that the cytoplasmic ribosomes of T. gondii, like other eukaryotic ribosomes, should be resistant to macrolide antibiotics. Combining cycloheximide treatment with two-dimensional gel analysis revealed a small subset of parasite proteins likely to be synthesized on mitochondrial ribosomes. Synthesis of these proteins was inhibited by 100 microM tetracycline, but not by 100 microM azithromycin or clindamycin. Ribosomal DNA sequences believed to be derived from the T. gondii mitochondrial genome predict macrolide/lincosamide resistance. PCR amplification of total T. gondii DNA identified an additional class of prokaryotic-type ribosomal genes, similar to the plastid-like ribosomal genes of the Plasmodium falciparum. Ribosomes encoded by these genes are predicted to be sensitive to the lincosamide/macrolide class of antibiotics, and may serve as the functional target for azithromycin, clindamycin, and other protein synthesis inhibitors in Toxoplasma and related parasites.
Collapse
Affiliation(s)
- C J Beckers
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
38
|
Smeijsters LJ, Zijlstra NM, de Vries E, Franssen FF, Janse CJ, Overdulve JP. The effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine on nuclear and organellar DNA synthesis in erythrocytic schizogony in malaria. Mol Biochem Parasitol 1994; 67:115-24. [PMID: 7838172 DOI: 10.1016/0166-6851(94)90101-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The very effective (ID50 = 47 nM) and selective antimalarial compound (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine (HPMPA) abruptly arrests Plasmodium falciparum-cultured schizonts at concentrations between 1 and 10 x ID50 as soon as their DNA content reaches 8 times that of the haploid ringform stage. Even very high HPMPA concentrations do not inhibit the first 2-3 rounds of schizogonic DNA replication. Also, in the presence of HPMPA, replication of the 6-kb mitochondrial and 35-kb chloroplast-like DNA proceeds normally and in close concert with each other, both to a 16-fold amount within 5 h during the trophozoite stage. Hence the in in vitro assays HPMPApp-sensitive plasmodial DNA polymerase gamma-like enzyme (IC50 = 1 microM)--assumed to be involved in mitochondrial DNA replication--is not the target of HPMPA in vivo (living parasites), nor seems to be the DNA polymerization activities of the--in vitro also HPMPA-sensitive (IC50 = 38 microM)--DNA polymerase alpha or of any other nuclear DNA polymerase of Plasmodium. In vitro assays demonstrated that HPMPApp does not act as an alternative substrate for plasmodial polymerases, contradicting the suggestion that the observed delayed inhibition of plasmodial schizogony might be the result of DNA strand breakage caused by HPMPApp incorporation. Neither do results support the idea that the HPMPA-induced arrest of DNA replication might be due to chain termination as a result of such incorporation. We investigated whether arrest of DNA replication by HPMPA in schizonts could be explained by inhibition of the DNA synthesis rate limiting ribonucleotide reductase enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L J Smeijsters
- Department of Parasitology, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Gardner MJ, Goldman N, Barnett P, Moore PW, Rangachari K, Strath M, Whyte A, Williamson DH, Wilson RJ. Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parasitol 1994; 66:221-31. [PMID: 7808472 DOI: 10.1016/0166-6851(94)90149-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Malaria and other Apicomplexan parasites harbour two extrachromosomal DNAs. One is mitochondrial and the other is a 35-kb circle with some plastid-like features but whose provenance and function is unknown. In addition to genes for rRNAs, tRNAs and ribosomal proteins, the 35-kb circular DNA of Plasmodium falciparum carries an rpoBC operon which encodes subunits of a eubacteria-like RNA polymerase. The phylogenetic analysis of the complete rpoB sequence presented here supports our inference that the 35-kb circle is the remnant of a plastid genome.
Collapse
Affiliation(s)
- M J Gardner
- Parasitology Division, National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gardner MJ, Preiser P, Rangachari K, Moore D, Feagin JE, Williamson DH, Wilson RJ. Nine duplicated tRNA genes on the plastid-like DNA of the malaria parasite Plasmodium falciparum. Gene 1994; 144:307-8. [PMID: 8039718 DOI: 10.1016/0378-1119(94)90395-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A major feature of the plastid-like circular DNA of Plasmodium falciparum is an inverted repeat comprising duplicated genes for rRNA (rrn) and tRNA (trn). We have identified nine putative trn genes in each arm of the repeat on the basis of their potential clover-leaf structures and conserved residues. Northern blots indicate that these trn genes are expressed.
Collapse
Affiliation(s)
- M J Gardner
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJ. The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:249-52. [PMID: 8177222 DOI: 10.1007/bf00280323] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In common with other Apicomplexan parasites, Plasmodium falciparum carries two extrachromosomal DNAs, one of which, the 6 kb element, is undoubtedly mitochondrial. The second, generally referred to as the 35 kb circle, is of unknown provenance, but the nature and organization of its genetic content makes a mitochondrial association unlikely and the molecule has features reminiscent of plastid genomes. We now report the occurrence on the circle of an open reading frame specifying a predicted 470 amino acid protein that shares more than 50% identity with a gene currently known only on the plastome of red algae. This high degree of conservation confirms the 35 kb circle's plastid ancestry, and we speculate that it may have originated from the rhodoplast of an ancient red algal endosymbiont in the progenitor of the Apicomplexa.
Collapse
Affiliation(s)
- D H Williamson
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | | | |
Collapse
|
42
|
Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Mol Cell Biol 1994. [PMID: 8246955 DOI: 10.1128/mcb.13.12.7349] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malarial parasites have two highly conserved cytoplasmic DNA molecules: a 6-kb tandemly arrayed DNA that has characteristics of a mitochondrial genome, and a 35-kb circular DNA that encodes functions commonly found in chloroplasts. We examined the inheritance pattern of these elements in two genetic crosses of Plasmodium falciparum clones. Parent-specific oligonucleotide probes and single-strand conformation polymorphism analysis identified single nucleotide changes that distinguished the parental 6- and 35-kb DNA molecules in the progeny. In all 16 independent recombinant progeny of a cross between a Central American clone, HB3, and a Southeast Asian clone, Dd2, the 6- and 35-kb DNAs were inherited from the Dd2 parent. In all nine independent recombinant progeny of a cross between clone HB3 and a likely African clone, 3D7, the 6-kb DNA was inherited from the 3D7 parent. Inheritance of cytoplasmic genomes of the Dd2 and 3D7 parents was, therefore, dominant over that of the HB3 parent. Cytoplasmic DNA molecules were found almost exclusively in the female gametes of malarial parasites; hence, clone HB3 did not appear to have served as a maternal parent for the progeny of two crosses. Defective differentiation into male gametes by clone Dd2 is likely to be a reason for the cytoplasmic inheritance pattern seen in the HB3 x Dd2 cross. However, incompetence of male or female gametes is unlikely to explain the uniparental dominance in recombinant progeny of the HB3 x 3D7 cross, since both parents readily self-fertilized and completed the malaria life cycle on their own. Instead, the data suggest unidirectional parental incompatibility in cross-fertilization of these malarial parasites, where a usually cosexual parental clone can participate only as a male or as a female. Such an incompatibility may be speculated as indicating an early phase of reproductive isolation of P. falciparum clones from different geographical regions.
Collapse
|
43
|
Affiliation(s)
- A P Waters
- Department voor Parasitologie, Rijksuniversiteit te Leiden, The Netherlands
| |
Collapse
|
44
|
Vaidya AB, Morrisey J, Plowe CV, Kaslow DC, Wellems TE. Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Mol Cell Biol 1993; 13:7349-57. [PMID: 8246955 PMCID: PMC364805 DOI: 10.1128/mcb.13.12.7349-7357.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Malarial parasites have two highly conserved cytoplasmic DNA molecules: a 6-kb tandemly arrayed DNA that has characteristics of a mitochondrial genome, and a 35-kb circular DNA that encodes functions commonly found in chloroplasts. We examined the inheritance pattern of these elements in two genetic crosses of Plasmodium falciparum clones. Parent-specific oligonucleotide probes and single-strand conformation polymorphism analysis identified single nucleotide changes that distinguished the parental 6- and 35-kb DNA molecules in the progeny. In all 16 independent recombinant progeny of a cross between a Central American clone, HB3, and a Southeast Asian clone, Dd2, the 6- and 35-kb DNAs were inherited from the Dd2 parent. In all nine independent recombinant progeny of a cross between clone HB3 and a likely African clone, 3D7, the 6-kb DNA was inherited from the 3D7 parent. Inheritance of cytoplasmic genomes of the Dd2 and 3D7 parents was, therefore, dominant over that of the HB3 parent. Cytoplasmic DNA molecules were found almost exclusively in the female gametes of malarial parasites; hence, clone HB3 did not appear to have served as a maternal parent for the progeny of two crosses. Defective differentiation into male gametes by clone Dd2 is likely to be a reason for the cytoplasmic inheritance pattern seen in the HB3 x Dd2 cross. However, incompetence of male or female gametes is unlikely to explain the uniparental dominance in recombinant progeny of the HB3 x 3D7 cross, since both parents readily self-fertilized and completed the malaria life cycle on their own. Instead, the data suggest unidirectional parental incompatibility in cross-fertilization of these malarial parasites, where a usually cosexual parental clone can participate only as a male or as a female. Such an incompatibility may be speculated as indicating an early phase of reproductive isolation of P. falciparum clones from different geographical regions.
Collapse
Affiliation(s)
- A B Vaidya
- Department of Microbiology and Immunology, Hahnemann University, Philadelphia, Pennsylvania 19102
| | | | | | | | | |
Collapse
|
45
|
Abstract
RNA processing in malarial parasites is a relatively new focus o f scientific research. Although only a few transcripts have been characterized in depth, a few patterns are beginning to emerge. Alexandra Levitt here reviews post-transcriptional processing in Plasmodium.
Collapse
Affiliation(s)
- A Levitt
- New York University Medical Center, Department of Medical and Molecular Parasitology, NY 10010, USA
| |
Collapse
|
46
|
Kim K, Soldati D, Boothroyd JC. Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science 1993; 262:911-4. [PMID: 8235614 DOI: 10.1126/science.8235614] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A system for stable transformation of Toxoplasma gondii tachyzoites was developed that exploited the susceptibility of Toxoplasma to chloramphenicol. Introduction of the chloramphenicol acetyltransferase (CAT) gene fused to Toxoplasma flanking sequences followed by chloramphenicol selection resulted in parasites stably expressing CAT. A construct incorporating the tandemly repeated gene, B1, targeted efficiently to its homologous chromosomal locus. Knockout of the single-copy gene, ROP1, was also successful. Stable transformation should permit the identification and analysis of Toxoplasma genes important in the interaction of this opportunistic parasite with its host.
Collapse
Affiliation(s)
- K Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine 94305
| | | | | |
Collapse
|
47
|
Gutell RR, Gray MW, Schnare MN. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res 1993; 21:3055-74. [PMID: 8332527 PMCID: PMC309733 DOI: 10.1093/nar/21.13.3055] [Citation(s) in RCA: 297] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- R R Gutell
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
48
|
Gardner MJ, Feagin JE, Moore DJ, Rangachari K, Williamson DH, Wilson RJ. Sequence and organization of large subunit rRNA genes from the extrachromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum. Nucleic Acids Res 1993; 21:1067-71. [PMID: 8464693 PMCID: PMC309264 DOI: 10.1093/nar/21.5.1067] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The malaria parasite Plasmodium falciparum carries an extrachromosomal 35 kb circular DNA molecule of unknown provenance. A striking feature of the circle is a palindromic sequence of genes for subunit rRNAs and several tRNAs, spanning ca. 10.5 kb. The palindrome has an intriguing resemblance to the inverted repeat of plastid genomes, and the sequence and putative secondary structure of the malarial large subunit (LSU) rRNA described in this report were used as the basis of a phylogenetic study. The malarial rRNA was found to be highly divergent in comparison with a selected group of chloroplast LSU rRNAs but was more closely related to them than to mitochondrial LSU rRNA genes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- DNA, Circular/genetics
- DNA, Protozoan/genetics
- DNA, Ribosomal/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Plasmodium falciparum/classification
- Plasmodium falciparum/genetics
- RNA, Protozoan/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/classification
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- M J Gardner
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | |
Collapse
|
49
|
Jin T, Horgen PA. Further characterization of a large inverted repeat in the mitochondrial genomes of Agaricus bisporus (= A. brunnescens) and related species. Curr Genet 1993; 23:228-33. [PMID: 8435852 DOI: 10.1007/bf00351501] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mitochondrial (mt) genome of Agaricus bisporus Ag50 (a heterokaryon) is a 136-kilobase (kb) circular molecule which contains a pair of large inverted repeats (IRs). Two large BAMHI fragments (B1 and B2) which contain the IR regions were further mapped. The repeated regions were determined to be approximately 7.7 kb in length. The mt small ribosomal RNA (S rRNA) gene is located adjacent to one of the repeated regions. Orientational isomers, generated by homologous recombination between the repeated regions, were not observed in mtDNA extractions from Ag50 mycelium (liquid culture) or from Ag50 fruit bodies. We also did not observe any orientational isomers in Ag50HA or Ag50HB, two homokaryons somatically isolated from Ag50. DNA homologous to the Ag50 mt repeated regions was observed in ten other isolates of Agaricus including four isolates of A. bisporus, two isolates of A. subperonatus, two isolates of A. subfloccosus, one isolate of A. bitorquis, and one isolate of A. pattersonae. The repeated regions and the small unique regions in two other heterokaryotic strains of A. bisporus, Ag2 and Ag85, were physically mapped. The repeated regions in these two strains are also in the inverted forms. Restriction endonuclease mapping indicated that the two copies of the IR in Ag85 were not identical.
Collapse
Affiliation(s)
- T Jin
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada
| | | |
Collapse
|
50
|
Gozar MM, Bagnara AS. Identification of a Babesia bovis gene with homology to the small subunit ribosomal RNA gene from the 35-kilobase circular DNA of Plasmodium falciparum. Int J Parasitol 1993; 23:145-8. [PMID: 8468131 DOI: 10.1016/0020-7519(93)90109-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Isolation of a 552-base pair (bp) fragment of a putative extrachromosomal small subunit ribosomal RNA (SSrRNA) gene from Babesia bovis was achieved using the polymerase chain reaction (PCR) followed by cloning and sequencing of the PCR product. The sequences of the oligonucleotide primers used for the PCR were derived from selected known sequences in the organellar SSrRNA gene which is encoded within the 35-kilobase (kb) circular DNA from Plasmodium falciparum. Comparison of the sequence of the 552-bp fragment from B. bovis with gene sequences from other organisms showed 71% identity with the organellar SSrRNA gene from P. falciparum and up to 65% identity with the plastid SSrRNA gene sequences from various other organisms. We conclude that the 552-bp fragment amplified by PCR from B. bovis is possibly derived from an organellar genome of this parasite.
Collapse
Affiliation(s)
- M M Gozar
- School of Biochemistry and Molecular Genetics, University of New South Wales, Kensington, Australia
| | | |
Collapse
|