1
|
Keeping the eIF2 alpha kinase Gcn2 in check. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1948-68. [PMID: 24732012 DOI: 10.1016/j.bbamcr.2014.04.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
The protein kinase Gcn2 is present in virtually all eukaryotes and is of increasing interest due to its involvement in a large array of crucial biological processes. Some of these are universally conserved from yeast to humans, such as coping with nutrient starvation and oxidative stress. In mammals, Gcn2 is important for e.g. long-term memory formation, feeding behaviour and immune system regulation. Gcn2 has been also implicated in diseases such as cancer and Alzheimer's disease. Studies on Gcn2 have been conducted most extensively in Saccharomyces cerevisiae, where the mechanism of its activation by amino acid starvation has been revealed in most detail. Uncharged tRNAs stimulate Gcn2 which subsequently phosphorylates its substrate, eIF2α, leading to reduced global protein synthesis and simultaneously to increased translation of specific mRNAs, e.g. those coding for Gcn4 in yeast and ATF4 in mammals. Both proteins are transcription factors that regulate the expression of a myriad of genes, thereby enabling the cell to initiate a survival response to the initial activating cue. Given that Gcn2 participates in many diverse processes, Gcn2 itself must be tightly controlled. Indeed, Gcn2 is regulated by a vast network of proteins and RNAs, the list of which is still growing. Deciphering molecular mechanisms underlying Gcn2 regulation by effectors and inhibitors is fundamental for understanding how the cell keeps Gcn2 in check ensuring normal organismal function, and how Gcn2-associated diseases may develop or may be treated. This review provides a critical evaluation of the current knowledge on mechanisms controlling Gcn2 activation or activity.
Collapse
|
2
|
Liao H, Zhang F, Hu X, Liao X. Effects of high-pressure carbon dioxide on proteins and DNA in Escherichia coli. MICROBIOLOGY-SGM 2010; 157:709-720. [PMID: 21178167 DOI: 10.1099/mic.0.046623-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein changes in Escherichia coli, when subjected to high-pressure carbon dioxide (HPCD) at 10 MPa and 3 °C for 5-75 min, were assessed using the Bradford method, 2D electrophoresis (2-DE) and liquid chromatography-electrospray ionization-MS-MS (LC-ESI-MS-MS). The changes in DNA in E. coli under the same conditions were also investigated by using flow cytometry with propidium iodide and acridine orange, agarose gel electrophoresis (AGE) and the comet assay. The results showed that HPCD induced leakage loss of the proteins and DNA of E. coli as a function of treatment time. With regard to the protein changes, 182 proteins in the 2-DE profile were not found in the HPCD-treated E. coli. Among 20 selected protein spots exhibiting significant changes in intensity, 18 protein spots were identified as 15 known proteins and two as hypothetical proteins. These proteins were involved in cell composition, energy metabolism pathways, nucleic acid metabolism, global stress regulation and general metabolism. The DNA denaturation of E. coli induced by HPCD was demonstrated in this study for the first time to our knowledge, and the denaturation was enhanced by increasing treatment time. However, HPCD did not cause DNA degradation, as suggested by both AGE analysis and the comet assay.
Collapse
Affiliation(s)
- Hongmei Liao
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, PR China
- Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, PR China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Fusheng Zhang
- Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, PR China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, PR China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiaosong Hu
- Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, PR China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, PR China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiaojun Liao
- Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, PR China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, PR China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
3
|
Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 2005; 6:R26. [PMID: 15774027 PMCID: PMC1088945 DOI: 10.1186/gb-2005-6-3-r26] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/31/2004] [Accepted: 01/28/2005] [Indexed: 11/24/2022] Open
Abstract
Bioinformatic and expression analyses attribute putative functions to transporters and channels encoded by the Plasmodium falciparum genome. The malaria parasite has substantially more membrane transport proteins than previously thought. Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen.
Collapse
Affiliation(s)
- Rowena E Martin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Roselani I Henry
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Janice L Abbey
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - John D Clements
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
- Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Kiaran Kirk
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
4
|
Przyborski JM, Lanzer M. Protein transport and trafficking inPlasmodium falciparum-infected erythrocytes. Parasitology 2004; 130:373-88. [PMID: 15830811 DOI: 10.1017/s0031182004006729] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The human malarial parasitePlasmodium falciparumextensively modifies its host erythrocyte, and to this end, is faced with an interesting challenge. It must not only sort proteins to common organelles such as endoplasmic reticulum, Golgi and mitochondria, but also target proteins across the ‘extracellular’ cytosol of its host cell. Furthermore, as a member of the phylum Apicomplexa, the parasite has to sort proteins to novel organelles such as the apicoplast, micronemes and rhoptries. In order to overcome these difficulties, the parasite has created a novel secretory system, which has been characterized in ever-increasing detail in the past decade. Along with the ‘hardware’ for a secretory system, the parasite also needs to ‘program’ proteins to enable high fidelity sorting to their correct subcellular location. The nature of these sorting signals has remained until relatively recently, enigmatic. Experimental work has now begun to dissect the sorting signals responsible for correct subcellular targeting of parasite-encoded proteins. In this review we summarize the current understanding of such signals, and comment on their role in protein sorting in this organism, which may become a model for the study of novel protein trafficking mechanisms.
Collapse
Affiliation(s)
- J M Przyborski
- Hygiene Institute, Department of Parasitology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
5
|
Sauvage V, Aubert D, Bonhomme A, Pinon JM, Millot JM. P-glycoprotein inhibitors modulate accumulation and efflux of xenobiotics in extra and intracellular Toxoplasma gondii. Mol Biochem Parasitol 2004; 134:89-95. [PMID: 14747146 DOI: 10.1016/j.molbiopara.2003.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We examined xenobiotic transport and the effects of P-glycoprotein (Pgp) inhibitors on efflux function in Toxoplasma gondii tachyzoites. The fluorescence emission of JC-1 and daunorubicin (Pgp substrates) was determined in both extracellular tachyzoites and T. gondii-infected human KB cells. Dye accumulation and efflux were modulated by verapamil (Vp) and cyclosporin A (CsA), both of which are Pgp inhibitors. Red JC-1 emission was measured from 10(6) extracellular tachyzoites, using spectrofluorometry. The increase in red emission was significant from 1 microM concentration of both drugs and was higher with CsA than with Vp. Compared with untreated tachyzoites, JC-1 efflux was inhibited by 3 microM CsA and 3 microM Vp. With intracellular tachyzoites, the fluorescence distribution of daunorubicin (DNR) between the parasitophorous vacuole and the host cell was modulated by Vp and CsA. In media free of CsA and Vp, DNR emission inside intracellular tachyzoites was very weak, as observed by confocal microscopy. In the presence of CsA or Vp, DNR emission was markedly enhanced in tachyzoites but not in the whole vacuole. The modulation of DNR uptake seems to involve the tachyzoite membrane rather than the parasitophorous vacuole or host cell membranes. It suggests that Vp would inhibit the DNR efflux from intracellular tachyzoites through a transitory effect. In conclusion, these two Pgp inhibitors increase both extracellular and intracellular dye accumulation in living T. gondii, pointing to the existence of a transmembrane transport mediated by a Pgp homologue located on the parasite membrane complex.
Collapse
Affiliation(s)
- Virginie Sauvage
- Laboratoire de Parasitologie-Mycologie, UFR de Médecine, UPRES EA 2070, IFR53 CHU, 51 rue Cognacq Jay, Reims 51096, France
| | | | | | | | | |
Collapse
|
6
|
Abstract
The malaria parasite is a unicellular eukaryotic organism which, during the course of its complex life cycle, invades the red blood cells of its vertebrate host. As it grows and multiplies within its host blood cell, the parasite modifies the membrane permeability and cytosolic composition of the host cell. The intracellular parasite is enclosed within a so-called parasitophorous vacuolar membrane, tubular extensions of which radiate out into the host cell compartment. Like all eukaryote cells, the parasite has at its surface a plasma membrane, as well as having a variety of internal membrane-bound organelles that perform a range of functions. This review focuses on the transport properties of the different membranes of the malaria-infected erythrocyte, as well as on the role played by the various membrane transport systems in the uptake of solutes from the extracellular medium, the disposal of metabolic wastes, and the origin and maintenance of electrochemical ion gradients. Such systems are of considerable interest from the point of view of antimalarial chemotherapy, both as drug targets in their own right and as routes for targeting cytotoxic agents into the intracellular parasite.
Collapse
Affiliation(s)
- K Kirk
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
7
|
Abstract
The seminal observations that (a) chloroquine-resistant Plasmodium falciparum strains accumulate less drug than more sensitive parasites, and (b) chloroquine resistance could be modulated in vitro by the classic multidrug-resistance (MDR) modulator verapamil, suggested not only that parasite resistance to multiple drugs may be similar to the MDR phenotype described in mammalian cancer cells, but that homologous proteins may be involved. These findings prompted search for MDR-like genes in the parasite. To date, three full-length ABC transporter genes have been isolated from P. falciparum: two P-glycoprotein-like homologues, pfmdr1 and pfmdr2, and a homologue of the yeast GCN20 gene, pfgcn20.
Collapse
Affiliation(s)
- S A Peel
- Department of Molecular Diagnostics and Pathogenesis, Division of Retrovirology Walter Reed Army Institute of Research, Rockville, MD, USA.
| |
Collapse
|
8
|
Albano FR, Foley M, Tilley L. Export of parasite proteins to the erythrocyte cytoplasm: secretory machinery and traffic signals. NOVARTIS FOUNDATION SYMPOSIUM 2000; 226:157-72; discussion 173-5. [PMID: 10645545 DOI: 10.1002/9780470515730.ch12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
To the malaria parasite, the prospect of setting up residence within a human erythrocyte represents a formidable challenge. The mature human erythrocyte is essentially a bag of haemoglobin with no internal organelles and no protein synthesis machinery. The parasite needs, therefore, to assemble all the essential amenities--foundations, plumbing and furnishings--from scratch. The parasite remodels its adopted home by exporting proteins to the erythrocyte membrane. To reach their final destinations, the exported proteins must cross the parasite plasma membrane, the parasitophorous vacuole membrane and the erythrocyte cytosol. To further understand this unusual and complex trafficking pathway, we have searched for proteins that may form part of the trafficking machinery of the infected erythrocyte. We have identified an ER-located, calcium-binding homologue of reticulocalbin (PfERC) that co-localizes with the ER molecular chaperone, PfGRP. We have also identified a homologue of the GTP-binding protein, Sar1p, a small GTPase that, in other eukaryotic cells, is thought to play a crucial role in trafficking proteins between the ER and the Golgi. PfSar1p is located in discrete structures near the periphery of the parasite cytoplasm that may represent specialized export compartments. PfSar1p is exported to structures outside the parasite in the erythrocyte cytoplasm. The malaria parasite appears to be capable of elaborating components of the 'classical' vesicle mediated trafficking machinery outside the boundaries of its own plasma membrane.
Collapse
Affiliation(s)
- F R Albano
- Department of Biochemistry, La Trobe University, Bundoora, Australia
| | | | | |
Collapse
|
9
|
Bozdech Z, Schurr E. Protein transport in the host cell cytoplasm and ATP-binding cassette proteins in Plasmodium falciparum-infected erythrocytes. NOVARTIS FOUNDATION SYMPOSIUM 2000; 226:231-41; discussion 241-5. [PMID: 10645549 DOI: 10.1002/9780470515730.ch16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The main interest of our experiments is the study of ATP-binding cassette (ABC) proteins in Plasmodium parasites and their infected host cells. Here, we report on results obtained by studying the plasmodial PfGCN20 ABC protein. Employing immunomicroscopy and cell fractionation techniques, we found that PfGCN20 is localized to multiple regions of the infected erythrocyte, including membranous and non-membranous compartments inside and outside of the parasite cell. PfGCN20 was found to complement the function of its yeast homologue Gcn20p by acting as part of the yeast translation regulatory pathway. These results open up several hypotheses about a possible biological function of PfGCN20, such as being a component of plasmodial translation regulation, or functioning as an ATP-binding subunit of a multimeric ABC transporter, or acting as a molecular chaperone-like enzyme contributing to the protein translocation across multiple membranes in infected erythrocytes. More experiments are presently being performed to fully understand the biological function of this protein, abundant in multiple compartments of erythrocytes infected with the Plasmodium falciparum malaria parasite.
Collapse
Affiliation(s)
- Z Bozdech
- McGill Centre for the Study of Host Resistance, Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
10
|
Albano FR, Berman A, La Greca N, Hibbs AR, Wickham M, Foley M, Tilley L. A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. Eur J Cell Biol 1999; 78:453-62. [PMID: 10472798 DOI: 10.1016/s0171-9335(99)80072-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have identified a homologue of the GTP-binding protein, Sar1p, in Plasmodium falciparum. Sar1p is a small GTPase that is thought to play a crucial role in trafficking of proteins between the endoplasmic reticulum and the Golgi. The P.falciparum SAR1 gene is located on chromosome 4 and comprises two exons separated by a 508 bp intron. The deduced amino acid sequence of PfSar1p (GenBank accession number AF104306) shows 71% similarity (58% identity) to Sar1p from Saccharomyces cerevisiae. Expression of PfSar1p in erythrocytic stages of P. falciparum was confirmed by sequencing of a tryptic peptide derived from a polypeptide excised from an SDS-polyacrylamide gel. A recombinant protein corresponding to approximately 70% of the PfSar1p sequence was used to raise antibodies. The affinity-purified antiserum recognised a protein with an apparent molecular weight of 23 K in Western blots of malaria-infected erythrocytes but not in uninfected erythrocytes. PfSar1p was shown to be largely insoluble in non-ionic detergent and a low ionic strength buffer. Confocal immunofluorescence microscopy of malaria-infected erythrocytes was used to show that PfSar1p is located near the periphery of the parasite in discrete compartments, which appear to be distinct from the parasite endoplasmic reticulum. In addition, PfSar1p appears to be exported to structures outside the parasite in the erythrocyte cytoplasm. The export of PfSar1p to the erythrocyte cytosol is inhibited by treatment with brefeldin A. This provides the first evidence that the malaria parasite is capable of elaborating components of the classical vesicle-mediated trafficking machinery outside the boundaries of its own plasma membrane.
Collapse
Affiliation(s)
- F R Albano
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Bozdech Z, VanWye J, Haldar K, Schurr E. The human malaria parasite Plasmodium falciparum exports the ATP-binding cassette protein PFGCN20 to membrane structures in the host red blood cell. Mol Biochem Parasitol 1998; 97:81-95. [PMID: 9879889 DOI: 10.1016/s0166-6851(98)00135-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFGCN20 is a member of the ATP-binding cassette family of proteins that is closely related to the yeast translational regulator Gcn20p. We have generated a polyclonal antibody against the N-terminal region of PFGCN20 and studied the cellular localization of PFGCN20 throughout the erythrocytic life cycle of Plasmodium falciparum. PFGCN20 was found to be present at all stages and a pronounced export of PFGCN20 into the erythrocyte was observed in the trophozoite and schizont stages. In the indirect immunofluorescence assay, PFGCN20 was found to display significant colocalization with antigens detected by the monoclonal antibody 41E11. In contrast, there was only a minimal overlap of PFGCN20 localization with EMP2 and HRP2. Immunoelectron microscopy demonstrated a pronounced accumulation of PFGCN20 in the lumen of the parasitophorous vacuole and deconvolution fluorescence microscopy showed membrane association with selective regions of a tubovesicular network in the red cell. We also observed a concentration of PFGCN20 in electron-dense plaques just underneath the parasite's plasma membrane and an association of PFGCN20 with cytoplasmic vesicular structures within the parasite. The observed export of PFGCN20 and its association with the tubovesicular network in host red cells, may be indicative of the fact that PFGCN20 functions as ATP-binding subunit of an unknown multimeric ABC-transporter. The cytoplasmic localization of PFGCN20 in the parasite, however, suggests that the involvement of PFGCN20 in translational regulation or other cytoplasmic biological functions cannot be ruled out.
Collapse
Affiliation(s)
- Z Bozdech
- McGill Centre for the Study of Host Resistance, Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
12
|
Chow LM, Volkman SK. Plasmodium and Leishmania: the role of mdr genes in mediating drug resistance. Exp Parasitol 1998; 90:135-41. [PMID: 9709040 DOI: 10.1006/expr.1998.4311] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L M Chow
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, 02115, USA.
| | | |
Collapse
|
13
|
El Solh N, Allignet J. Staphylococcal resistance to streptogramins and related antibiotics. Drug Resist Updat 1998; 1:169-75. [PMID: 17092802 DOI: 10.1016/s1368-7646(98)80036-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1998] [Revised: 03/05/1998] [Accepted: 03/17/1998] [Indexed: 11/23/2022]
Abstract
Streptogramin and related antibiotics are mixtures of two compounds, A and B (e.g. Dalfopristin and Quinupristin), particularly against Gram-positive bacteria. Staphylococci resistant to these mixtures are always resistant to the A compounds but are not necessarily resistant to the B compounds. Resistance to A compounds and to the mixtures is conferred by acetyltransferases or ATP-binding proteins via unknown mechanisms. Several genes encoding each of the two categories of protein have been characterized and regularly detected on plasmids. Genes encoding lactonases, which inactivate B compounds, have been occasionally detected on these plasmids. Staphylococci which harbour plasmids conferring resistance to A compounds should not be treated with the mixtures even if they appear susceptible in vitro. Indeed, susceptibility to the mixtures of staphylococci carrying resistance to A compounds has often been attributed to partial loss of the plasmids conferring this resistance. When staphylococci are constitutively resistant to B compounds, the in vitro activities of the mixtures should be evaluated, because they are better correlated than MICs with their efficacy in therapy.
Collapse
Affiliation(s)
- N El Solh
- National Reference Center for Staphylococci, Unité des Staphylocoques, Institut Pasteur, Paris, France.
| | | |
Collapse
|
14
|
Trager W, Jensen JB. Continuous culture of Plasmodium falciparum: its impact on malaria research. Int J Parasitol 1997; 27:989-1006. [PMID: 9363481 DOI: 10.1016/s0020-7519(97)00080-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The methods developed by us in 1976 for the continuous culture of the erythrocytic stages of Plasmodium falciparum make this organism available to a large variety of scientists. As a result, much has been learned about P. falciparum during the past 20 years. Here we attempt to emphasize recent developments in the diverse aspects for which the culture method has been particularly useful: chemotherapy; drug resistance; vaccine development; pathogenesis; export of proteins into the host cell; cell biology, the mitochondrion and the plastid; innate resistance involving mutant human erythrocytes; gametocytogenesis; genetics, transfection; molecular biology; biochemistry; extracellular cultivation.
Collapse
Affiliation(s)
- W Trager
- Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|