1
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
2
|
Sustained CaMKII Delta Gene Expression Is Specifically Required for Long-Lasting Memories in Mice. Mol Neurobiol 2018; 56:1437-1450. [DOI: 10.1007/s12035-018-1144-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 02/02/2023]
|
3
|
Simion V, Nadim WD, Benedetti H, Pichon C, Morisset-Lopez S, Baril P. Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities. Curr Neuropharmacol 2017; 15:276-290. [PMID: 27397479 PMCID: PMC5412696 DOI: 10.2174/1570159x14666160630210422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington's and Parkinson's diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics.
Collapse
Affiliation(s)
- Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Wissem Deraredj Nadim
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Hélène Benedetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Severine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| |
Collapse
|
4
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
5
|
Hagihara S, Kusano S, Lin WC, Chao XG, Hori T, Imoto S, Nagatsugi F. Production of truncated protein by the crosslink formation of mRNA with 2'-OMe oligoribonucleotide containing 2-amino-6-vinylpurine. Bioorg Med Chem Lett 2012; 22:3870-2. [PMID: 22613261 DOI: 10.1016/j.bmcl.2012.04.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 12/29/2022]
Abstract
The development of convenient methods for controlling the protein expression is an important challenge in the postgenomic era. We applied the crosslink forming oligonucleotide (CFO) as a terminator of the ribosomal translation. In this study, we demonstrated that the improved reactivity of our CFO under physiological conditions enabled the sequence-specific introduction of a steric block for a ribosome on mRNAs. In vitro and in cell translation experiments revealed that the crosslinked mRNA can produce the truncated proteins in which the translation terminates at the desired position.
Collapse
Affiliation(s)
- Shinya Hagihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Miyagi 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Cuomo O, Gala R, Pignataro G, Boscia F, Secondo A, Scorziello A, Pannaccione A, Viggiano D, Adornetto A, Molinaro P, Li XF, Lytton J, Di Renzo G, Annunziato L. A critical role for the potassium-dependent sodium-calcium exchanger NCKX2 in protection against focal ischemic brain damage. J Neurosci 2008; 28:2053-63. [PMID: 18305240 PMCID: PMC6671846 DOI: 10.1523/jneurosci.4912-07.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 12/24/2007] [Accepted: 01/06/2008] [Indexed: 11/21/2022] Open
Abstract
The superfamily of cation/Ca2+ plasma-membrane exchangers contains two branches, the K+-independent Na+-Ca2+ exchangers (NCXs) and the K+-dependent Na+-Ca2+ exchangers (NCKXs), widely expressed in mammals. NCKX2 is the major neuronally expressed isoform among NCKX members. Despite its importance in maintaining Na+, Ca2+, and K+ homeostasis in the CNS, the role of NCKX2 during cerebral ischemia, a condition characterized by an alteration of ionic concentrations, has not yet been investigated. The present study examines NCKX2 role in the development of ischemic brain damage in permanent middle cerebral artery occlusion (pMCAO) and transient middle cerebral artery occlusion. Furthermore, to evaluate the effect of nckx2 ablation on neuronal survival, nckx2-/- primary cortical neurons were subjected to oxygen glucose deprivation plus reoxygenation. NCKX2 mRNA and protein expression was evaluated in the ischemic core and surrounding ipsilesional areas, at different time points after pMCAO in rats. In ischemic core and in periinfarctual area, NCKX2 mRNA and protein expression were downregulated. In addition, NCKX2 knock-down by antisense oligodeoxynucleotide and NCKX2 knock-out by genetic disruption dramatically increased infarct volume. Accordingly, nckx2-/- primary cortical neurons displayed a higher vulnerability and a greater [Ca2+]i increase under hypoxic conditions, compared with nckx2+/+ neurons. In addition, NCKX currents both in the forward and reverse mode of operation were significantly reduced in nckx2-/- neurons compared with nckx2+/+ cells. Overall, these results indicate that NCKX2 is involved in brain ischemia, and it may represent a new potential target to be investigated in the study of the molecular mechanisms involved in cerebral ischemia.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Rosaria Gala
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Davide Viggiano
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Annagrazia Adornetto
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Xiao-Fang Li
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jonathan Lytton
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy, and
| |
Collapse
|
7
|
Robinson ESJ, Nutt DJ, Jackson HC, Hudson AL. The uptake of a fluorescently labelled antisense oligonucleotide in vitro and in vivo. J Neurosci Methods 2005; 147:48-54. [PMID: 16054515 DOI: 10.1016/j.jneumeth.2005.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Antisense oligonucleotides have been used to target a range of different gene products in the CNS including neurotransmitter receptors. Previous studies using antisense oligonucleotides to target the rat alpha(2A/D)-adrenoceptor revealed changes in receptor expression in specific brain areas following i.c.v. administration but no reduction was observed following antisense treatment in primary cortical neurones. In order to resolve these discrepant results, the uptake and distribution of the antisense sequence has been determined. In vivo, the fluorescent signal was detected close to the site of injection (2-3 mm) and on the same side of the brain as the injection. Although the oligonucleotides (ODN) were distributed throughout the CSF, the ODN was not widely distributed within the mid or hindbrain parenchyma. In vitro uptake studies revealed the antisense was poorly taken up into primary cortical neurones but a higher level of fluorescence was detected in a small sub-population of cells. These studies demonstrate that antisense is rapidly taken up into cells in vivo but poorly taken up into primary cortical neurones in culture. These data provide further evidence for the uptake and distribution of antisense oligonucleotides in neuronal tissue in vivo.
Collapse
Affiliation(s)
- Emma S J Robinson
- Department of Pharmacology, School of Medical Sciences, University Walk, Clifton, Bristol, UK.
| | | | | | | |
Collapse
|
8
|
Porritt MJ, Batchelor PE, Howells DW. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 2005; 192:226-34. [PMID: 15698637 DOI: 10.1016/j.expneurol.2004.11.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/27/2004] [Accepted: 11/10/2004] [Indexed: 01/09/2023]
Abstract
Brain derived neurotrophic factor (BDNF) expression is significantly reduced in the Parkinson's disease substantia nigra. This neurotrophin has potent affects on dopaminergic neuron survival protecting them from the neurotoxins MPTP and 6-hydroxydopamine (6-OHDA) commonly used to create animal models of Parkinson's disease and also promoting dopaminergic axonal sprouting. In this study, we demonstrate that an antisense oligonucleotide infusion (200 nM for 28 days) to prevent BDNF production in the substantia nigra of rats mimics many features of the classical animal models of Parkinson's disease. 62% of antisense treated rats rotate (P < or = 0.05) in response to dopaminergic receptor stimulation by apomorphine. 40% of substantia nigra pars compacta tyrosine hydroxylase immunoreactive neurons are lost (P < or = 0.00001) and dopamine uptake site density measured by (3)H-mazindol autoradiography is reduced by 34% (P < or = 0.005). Loss of haematoxylin and eosin stained nigral neurons is significant (P < or = 0.0001) but less extensive (34%). These observations indicate that loss of BDNF expression leads both to down regulation of the dopaminergic phenotype and to dopaminergic neuronal death. Therefore, reduced BDNF mRNA expression in Parkinson's disease substantia nigra may contribute directly to the death of nigral dopaminergic neurons and the development of Parkinson's disease.
Collapse
Affiliation(s)
- M J Porritt
- Department of Medicine, University of Melbourne, Level 7, Lance Townsend Building, Austin Health, Studley Road, Heidelberg, Vic 3084 Australia
| | | | | |
Collapse
|
9
|
Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of Brain Na+/Ca2+Exchanger: From Molecular Biology to Therapeutic Perspectives. Pharmacol Rev 2004; 56:633-54. [PMID: 15602012 DOI: 10.1124/pr.56.4.5] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the last two decades, there has been a growing interest in unraveling the role that the Na+/Ca2+ exchanger (NCX) plays in the function and regulation of several cellular activities. Molecular biology, electrophysiology, genetically modified mice, and molecular pharmacology have helped to delve deeper and more successfully into the physiological and pathophysiological role of this exchanger. In fact, this nine-transmembrane protein, widely distributed in the brain and in the heart, works in a bidirectional way. Specifically, when it operates in the forward mode of operation, it couples the extrusion of one Ca2+ ion with the influx of three Na+ ions. In contrast, when it operates in the reverse mode of operation, while three Na+ ions are extruded, one Ca2+ enters into the cells. Different isoforms of NCX, named NCX1, NCX2, and NCX3, have been described in the brain, whereas only one, NCX1, has been found in the heart. The hypothesis that NCX can play a relevant role in several pathophysiological conditions, including hypoxia-anoxia, white matter degeneration after spinal cord injury, brain trauma and optical nerve injury, neuronal apoptosis, brain aging, and Alzheimer's disease, stems from the observation that NCX, in parallel with selective ion channels and ATP-dependent pumps, is efficient at maintaining intracellular Ca2+ and Na+ homeostasis. In conclusion, although studies concerning the involvement of NCX in the pathological mechanisms underlying brain injury during neurodegenerative diseases started later than those related to heart disease, the availability of pharmacological agents able to selectively modulate each NCX subtype activity and antiporter mode of operation will provide a better understanding of its pathophysiological role and, consequently, more promising approaches to treat these neurological disorders.
Collapse
Affiliation(s)
- L Annunziato
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Via S. Pansini, 5-80131 Naples, Italy.
| | | | | |
Collapse
|
10
|
Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, Sirabella R, Matrone C, Canitano A, Amoroso S, Di Renzo G, Annunziato L. Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 2004; 35:2566-70. [PMID: 15472108 DOI: 10.1161/01.str.0000143730.29964.93] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The Na+/Ca2+ exchanger, by mediating Ca2+ and Na+ fluxes in a bidirectional way across the synaptic plasma membrane, may play a pivotal role in the events leading to anoxic damage. In the brain, there are 3 different genes coding for 3 different proteins: NCX1, NCX2, and NCX3. The aim of this study was to determine whether NCX1, NCX2, and NCX3 might play a differential role in the development of cerebral injury induced by permanent middle cerebral artery occlusion (pMCAO). METHODS By means of Western blotting, NCX1, NCX2, and NCX3 protein expression was evaluated in the ischemic core and in the remaining nonischemic area of the slice at different time intervals starting from ischemia induction. The role of each isoform was also assessed with antisense oligodeoxynucleotides (ODNs) targeted for each isoform. These ODNs were continuously intracerebroventricularly infused with an osmotic minipump (1 microL/h) for 48 hours, 24 hours before pMCAO. RESULTS The results showed that after pMCAO all 3 NCX proteins were downregulated in ischemic core; NCX3 decreased in periinfarctual area whereas NCX1 and NCX2 were unchanged. The ODNs for NCX1 and NCX3 gene products were capable of inducing an increase in the ischemic lesion and to worsen neurological scores. CONCLUSIONS The results of this study suggest that in the neuroprotective effect exerted by NCX during ischemic injury, the major role is prevalently exerted by NCX1 and NCX3 gene products.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, University of Naples, Federico II Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Van Oekelen D, Luyten WHML, Leysen JE. Ten years of antisense inhibition of brain G-protein-coupled receptor function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:123-42. [PMID: 12738054 DOI: 10.1016/s0165-0173(03)00153-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antisense oligonucleotides (AOs) are widely used as tools for inhibiting gene expression in the mammalian central nervous system. Successful gene suppression has been reported for different targets such as neurotransmitter receptors, neuropeptides, ion channels, trophic factors, cytokines, transporters, and others. This illustrates their potential for studying the expression and function of a wide range of proteins. AOs may even find therapeutic applications and provide an attractive strategy for intervention in diseases of the central nervous system (CNS). However, a lack of effectiveness and/or specificity could be a major drawback for research or clinical applications. Here we provide a critical overview of the literature from the past decade on AOs for the study of G-protein-coupled receptors (GPCRs). The following aspects will be considered: mechanisms by which AOs exert their effects, types of animal model system used, detection of antisense action, effects of AO design and delivery characteristics, non-antisense effects and toxicological properties, controls used in antisense studies to assess specificity, and our results (failures and successes). Although the start codon of the mRNA is the most popular region (46%) to target by AOs, targeting the coding region of GPCRs is almost as common (41%). Moreover, AOs directed to the coding region of the GPCR mRNA induce the highest reductions in receptor levels. To resist degradation by nucleases, the modified phosphorothioate AO (S-AO) is the most widely used and effective oligonucleotide. However, the end-capped phosphorothioate AOs (ECS-AOs) are increasingly used due to possible toxic and non-specific effects of the S-AO. Other parameters affecting the activity of a GPCR-targeting AO are the length (mostly an 18-, 20- or 21-mer) and the GC-content (mostly varying from 30 to 80%). Interestingly, one-third of the AOs successfully targeting GPCRs possess a GC/AT ratio of 61-70%. AO-induced reductions in GPCR expression levels and function range typically from 21 to 40% and 41 to 50%, respectively. In contrast to many antisense reviews, we therefore conclude that the functional activity of a GPCR after AO treatment correlates mostly with the density of the target receptors (maximum factor 2). However, AOs are no simple tools for experimental use in vivo. Despite successful results in GPCR research, no general guidelines exist for designing a GPCR-targeting AO or, in general, for setting up a GPCR antisense experiment. It seems that the correct choice of a GPCR targeting AO can only be ascertained empirically. This disadvantage of antisense approaches results mostly from incomplete knowledge about the internalisation and mechanism of action of AOs. Together with non-specific effects of AOs and the difficulties of assessing target specificity, this makes the use of AOs a complex approach from which conclusions must be drawn with caution. Further antisense research has to be carried out to ensure the adequate use of AOs for studying GPCR function and to develop antisense as a valuable therapeutic modality.
Collapse
Affiliation(s)
- Dirk Van Oekelen
- Discovery Research, Janssen Research Foundation, B-2340 Beerse, Belgium
| | | | | |
Collapse
|
12
|
Sharif RN, Osborne M, Coderre TJ, Fundytus ME. Attenuation of morphine tolerance after antisense oligonucleotide knock-down of spinal mGluR1. Br J Pharmacol 2002; 136:865-72. [PMID: 12110611 PMCID: PMC1573421 DOI: 10.1038/sj.bjp.0704792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Chronic systemic treatment of rats with morphine leads to the development of opioid tolerance. This study was designed to examine the effects of intrathecal (i.t.) infusion of a metabotropic glutamate receptor 1 (mGluR1) antisense oligonucleotide, concomitant with chronic morphine treatment, on the development of tolerance to morphine's antinociceptive effects. 2. All rats received chronic (6 day) s.c. administration of morphine to induce opioid tolerance. Additionally, rats were treated with either mGluR1 antisense (AS), missense (MIS) or artificial cerebrospinal fluid (ACSF) by i.t. infusion via chronically implanted i.t. catheters connected to osmotic mini-pumps. The effects of acute i.t. or s.c. morphine on tail-flick latencies were assessed prior to and following chronic s.c. morphine treatment for all chronic i.t. infusion groups. mGluR1 protein level in the spinal cord was determined by Western blot analysis for all treatments, assessing the efficiency of knock-down with AS treatment. 3. Acute i.t. morphine dose-dependently produced antinociception in the tail-flick test in naïve rats. Systemic morphine-treated rats administered i.t. ACSF or MIS developed tolerance to i.t. morphine. Chronic i.t. infusion with mGluR1 AS significantly reduced the development of tolerance to i.t. morphine. 4. In contrast to i.t. morphine, tolerance developed to the antinociceptive effects of s.c. morphine, in all i.t. infusion groups, including the mGluR1 AS group. 5. The spinal mGluR1 protein level was dramatically decreased after mGluR1 AS infusion when compared to control animals (naïve and ACSF-treated animals). 6. These findings suggest that the spinal mGluR1 is involved in the development of tolerance to the antinociceptive effects of morphine. Selective blockade of mGluR1 may be beneficial in preventing the development of opioid analgesic tolerance.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Blotting, Western
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Synergism
- Drug Tolerance
- Injections, Spinal
- Injections, Subcutaneous
- Male
- Morphine/administration & dosage
- Morphine/pharmacology
- Oligonucleotides, Antisense/pharmacology
- Pain Measurement
- Rats
- Rats, Long-Evans
- Reaction Time
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Time Factors
Collapse
Affiliation(s)
- Reza N Sharif
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, Université de Montréal
| | - Michael Osborne
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Terence J Coderre
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre Research Institute, Montreal, Quebec, Canada
- Author for correspondence:
| | - Marian E Fundytus
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, Quebec, Canada
- Department of Oncology (Division of Palliative Care), McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- ASTRA Research Centre Montreal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Shamir A, Shaltiel G, Agam G. Intracerebroventricular antisense to inositol monophosphatase-1 reduces enzyme activity but does not affect Li-sensitive behavior. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:103-6. [PMID: 11853098 DOI: 10.1016/s0278-5846(01)00226-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inositol monophosphatase (IMPase) inhibition is a hypothesized mechanism of action of lithium (Li). To test this hypothesis, the authors used the approach of antisense administration. Three days of an intracerebroventricular (icv) administration of 5 microg/20 microl 3'-phosphorothioated IMPA-1 antisense oligonucleotide sequence resulted in 20% reduction of rat periventricular IMPase activity. Li potentiates pilocarpine-induced seizures, because inhibition of IMPase leads to reduction in brain inositol levels. However, antisense-induced reduction in IMPase activity was not followed by seizures induced by subconvulsive pilocarpine doses.
Collapse
Affiliation(s)
- Alon Shamir
- Stanley Foundation Research Center and Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
14
|
Ho SP, Takahashi LK, Livanov V, Spencer K, Lesher T, Maciag C, Smith MA, Rohrbach KW, Hartig PR, Arneric SP. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor-2 receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 89:29-40. [PMID: 11311973 DOI: 10.1016/s0169-328x(01)00050-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Corticotropin releasing factor (CRF) is an important regulator of the endocrine, behavioral, autonomic and immune responses to stress. Two high affinity CRF receptors have been identified, which are distributed in distinct anatomical regions. CRF(1) receptors have been relatively well characterized and antagonists to this receptor effectively block stress-induced behaviors in rodents. The function of CRF(2) receptors, which are highly expressed in limbic brain regions, is less well understood. Therefore, an antisense oligonucleotide approach was used to study the role of CRF(2) receptors in the lateral septum in rats. An antisense oligonucleotide directed against the CRF(2) receptor mRNA reduced expression of CRF(2) receptors by 60--80%. In shock-induced freezing tests, animals administered the antisense oligonucleotide exhibited a significant reduction in freezing duration. However, pain sensitivity and locomotor activity were unaltered. A four-base mismatch of the antisense sequence had no significant effects on CRF(2) receptor density and on freezing behavior. These data support the involvement of CRF(2) receptors in fear conditioning. CRF(1) receptor antagonists also reduce freezing in this test. Additional studies to determine the effects of simultaneous inhibition of both receptor subtypes show that rats receiving both CRF(2) receptor antisense oligonucleotide and CRF(1) receptor antagonist froze significantly less than animals treated with either agent alone. These results provide additional evidence for the role of CRF(2) receptors in mediating the stress-induced actions of endogenous CRF.
Collapse
Affiliation(s)
- S P Ho
- CNS Diseases Research, DuPont Pharmaceuticals, Experimental Station E400, Wilmington, DE 19880-0400, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- K Yufu
- Department of Anesthesiology, Okayama University School of Medicine, Japan
| | | | | |
Collapse
|
16
|
Hecker JG, Hall LL, Irion VR. Nonviral gene delivery to the lateral ventricles in rat brain: initial evidence for widespread distribution and expression in the central nervous system. Mol Ther 2001; 3:375-84. [PMID: 11273780 DOI: 10.1006/mthe.2001.0272] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of DNA for nonviral gene expression depends on several factors. These include (i) delivery and accessibility to the targeted tissue, (ii) protection from extracellular degradation, (iii) sufficient uptake by cells of interest, and (iv) protection from intracellular degradation to allow translation of adequate levels of intracellular or secreted proteins. As an initial step in demonstrating the feasibility of nonviral, cationic lipid-mediated gene therapy, we present evidence for the successful delivery and expression of heat shock protein Hsp70 and reporter gene enzymes in the central nervous system (CNS) of the rat after injection into the lateral ventricle. Gene delivery is accomplished using optimized formulations of plasmid DNA, which have been complexed with the cationic lipid MLRI. Results from DNA vectors encoding for green fluorescent protein (GFP), luciferase, and Hsp70 are reported. Standard immunofluorescent methods were used to demonstrate widespread expression of the reporter proteins and of Hsp70. Stereology analysis has been completed on three coronal sections, which illustrates the distribution of expression along the longitudinal axis. These initial findings support the further development of nonviral, lipid-mediated gene delivery technology for transient expression of protective, intracellular proteins and represent an important step leading to in vivo studies to identify potential clinical benefits.
Collapse
Affiliation(s)
- J G Hecker
- Department of Anesthesiology, University of California-Davis, Davis, California 95616, USA.
| | | | | |
Collapse
|
17
|
Fundytus ME, Yashpal K, Chabot JG, Osborne MG, Lefebvre CD, Dray A, Henry JL, Coderre TJ. Knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) alleviates pain and restores opioid efficacy after nerve injury in rats. Br J Pharmacol 2001; 132:354-67. [PMID: 11156596 PMCID: PMC1572554 DOI: 10.1038/sj.bjp.0703810] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2000] [Revised: 10/16/2000] [Accepted: 10/26/2000] [Indexed: 11/08/2022] Open
Abstract
1. Nerve injury often produces long-lasting spontaneous pain, hyperalgesia and allodynia that are refractory to treatment, being only partially relieved by clinical analgesics, and often insensitive to morphine. With the aim of assessing its therapeutic potential, we examined the effect of antisense oligonucleotide knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) in neuropathic rats. 2. We chronically infused rats intrathecally with either vehicle, or 50 microg day(-1) antisense or missense oligonucleotides beginning either 3 days prior to or 5 days after nerve injury. Cold, heat and mechanical sensitivity was assessed prior to any treatment and again every few days after nerve injury. 3. Here we show that knockdown of mGluR(1) significantly reduces cold hyperalgesia, heat hyperalgesia and mechanical allodynia in the ipsilateral (injured) hindpaw of neuropathic rats. 4. Moreover, we show that morphine analgesia is reduced in neuropathic rats, but not in sham-operated rats, and that knockdown of mGluR(1) restores the analgesic efficacy of morphine. 5. We also show that neuropathic rats are more sensitive to the excitatory effects of intrathecally injected N-methyl-D-aspartate (NMDA), and have elevated protein kinase C (PKC) activity in the spinal cord dorsal horn, two effects that are reversed by knockdown of mGluR(1). 6. These results suggest that activity at mGluR(1) contributes to neuropathic pain through interactions with spinal NMDA receptors and PKC, and that knockdown of mGluR(1) may be a useful therapy for neuropathic pain in humans, both to alleviate pain directly, and as an adjunct to opioid analgesic treatment.
Collapse
Affiliation(s)
- M E Fundytus
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Karle J, Woldbye DP, Diemer NH. GABAA receptor antisense epilepsy: histological changes following infusion of antisense oligodeoxynucleotide to GABAA receptor gamma 2 subunit into rat hippocampus. Neurol Res 2001; 23:39-46. [PMID: 11210428 DOI: 10.1179/016164101101198262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A deficiency of neuronal inhibition mediated by gamma-aminobutyric acid (GABA) via the GABAA receptor complex has been hypothesised to be a central factor in epileptogenesis. Intrahippocampal infusion of antisense oligodeoxynucleotide (ODN) to the GABAA receptor gamma 2 subunit in rats leads to electrographic limbic status epilepticus. In this model, epileptic phenomena are accompanied by loss of hippocampal neurones. The purpose of the present study was to investigate the time-course of morphological changes following hippocampal antisense 'knockdown' of the GABAA receptor gamma 2 subunit. gamma 2 subunit antisense ODN was infused continuously into the right hippocampus for periods between 1 and 5 days. After about 4 days of infusion, pronounced neurodegenerative changes were consistently observed within the ipsilateral hippocampus. In general, marked loss of CA3 pyramidal cells was found. The notion that the histological changes induced by the antisense ODN were specific to the applied ODN sequence was supported by the finding that a mismatch control ODN did not induce neurodegenerative changes, except for a small lesion in the immediate vicinity of the infusion site. Extensive ipsilateral hippocampal infiltration with monocytes and macrophages was a feature of antisense ODN infusion, but was considerably less pronounced after the infusion of control ODN. Immunocytochemistry using an antibody labeling glial fibrillary acidic protein (GFAP), revealed marked astroglial hypertrophy/proliferation after 4 days of antisense treatment, i.e., coincident with the development of neurodegeneration, in the ipsilateral hippocampus. At this time GFAP-immunoreactivity was also evident in the contralateral hippocampus, indicating contralateral spread of seizure activity.
Collapse
Affiliation(s)
- J Karle
- Department of Psychiatry, Rigshospitalet, (National Hospital), DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
Robinson ES, Nutt DJ, Jackson HC, Hudson AL. Behavioural and physiological effects induced by an infusion of antisense to alpha(2D)-adrenoceptors in the rat. Br J Pharmacol 2000; 130:153-9. [PMID: 10781011 PMCID: PMC1572045 DOI: 10.1038/sj.bjp.0703296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1999] [Revised: 02/11/2000] [Accepted: 02/11/2000] [Indexed: 11/09/2022] Open
Abstract
1. The aim of this study was to investigate the behavioural and physiological effects of an i.c.v. infusion of antisense oligonucleotide to the alpha(2D)-adrenoceptor subtype. Behavioural and physiological parameters were monitored for 2 days before the infusion, throughout the 3-day infusion period and for 3 days following the end of the infusion. 2. The antisense infusion resulted in a significant increase in behavioural activity characterized by increased locomotion and grooming scores. Behavioural activity scores of rats treated with antisense to alpha(2D)-adrenoceptors were significantly higher than those of rats treated with vehicle (H(2)O) or the mismatch toxicity control on day 4 and day 5 and, significantly higher than vehicle controls on day 6. 3. Body weight gain was significantly reduced in the antisense-treated rats at the end of the study compared to the vehicle (34%) and mismatch groups (30%), although daily food and water intakes were not significantly different at any time point. 4. Pupil diameters of rats infused with antisense to alpha(2D)-adrenoceptors were significantly greater than those of animals treated either with vehicle or mismatch oligonucleotide on day 5 of the study. On day 6, the pupil diameters of these animals were still significantly greater than the mismatch group. 5. In conclusion, an i.c.v. infusion of antisense to the alpha(2D)-adrenoceptor induced behavioural activation in rats, increased pupil diameter and reduced total weight gain. These effects were specific to the antisense-treated group and were fully reversed post-infusion.
Collapse
Affiliation(s)
- E S Robinson
- Psychopharmacology Unit, School of Medical Sciences, University Walk, Bristol
| | | | | | | |
Collapse
|
20
|
Karle J, Nielsen M. Targeting brain GABAA receptors with antisense oligonucleotides: implications for epilepsy. Methods Enzymol 1999; 314:20-32. [PMID: 10565002 DOI: 10.1016/s0076-6879(99)14092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- J Karle
- Department of Psychiatry, Rigshospitalet (National Hospital), Copenhagen, Denmark
| | | |
Collapse
|
21
|
Robinson ES, Hudson AL. In vitro and in vivo effects of antisense on alpha 2-adrenoceptor expression. Methods Enzymol 1999; 314:61-76. [PMID: 10565005 DOI: 10.1016/s0076-6879(99)14095-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- E S Robinson
- Psychopharmacology Unit, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
22
|
Knockdown of AMPA receptor GluR2 expression causes delayed neurodegeneration and increases damage by sublethal ischemia in hippocampal CA1 and CA3 neurons. J Neurosci 1999. [PMID: 10531425 DOI: 10.1523/jneurosci.19-21-09218.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Considerable evidence suggests that Ca(2+)-permeable AMPA receptors are critical mediators of the delayed, selective neuronal death associated with transient global ischemia and sustained seizures. Global ischemia suppresses mRNA and protein expression of the glutamate receptor subunit GluR2 and increases AMPA receptor-mediated Ca(2+) influx into vulnerable neurons of the hippocampal CA1 before the onset of neurodegeneration. Status epilepticus suppresses GluR2 mRNA and protein in CA3 before neurodegeneration in this region. To examine whether acute downregulation of the GluR2 subunit, even in the absence of a neurological insult, can cause neuronal cell death, we performed GluR2 "knockdown" experiments. Intracerebral injection of antisense oligodeoxynucleotides targeted to GluR2 mRNA induced delayed death of pyramidal neurons in CA1 and CA3. Antisense-induced neurodegeneration was preceded by a reduction in GluR2 mRNA, as indicated by in situ hybridization, and in GluR2 protein, as indicated by Western blot analysis. GluR2 antisense suppressed GluR2 mRNA in the dentate gyrus but did not cause cell death. The AMPA receptor antagonist 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) and the Ca(2+)-permeable AMPA receptor channel blocker 1-naphthyl acetyl spermine protected against antisense-induced cell death. This result indicates that antisense-induced cell death is mediated by Ca(2+)-permeable AMPA receptors. GluR2 antisense and brief sublethal global ischemia acted synergistically to cause degeneration of pyramidal neurons, consistent with action by a common mechanism. These findings demonstrate that downregulation of GluR2 is sufficient to induce delayed death of specific neuronal populations.
Collapse
|
23
|
Robinson ESJ, Nutt DJ, Hall L, Jackson HC, Hudson AL. Autoradiographical and behavioural effects of a chronic infusion of antisense to the alpha2D-adrenoceptor in the rat. Br J Pharmacol 1999; 128:515-22. [PMID: 10516627 PMCID: PMC1571666 DOI: 10.1038/sj.bjp.0702823] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1998] [Revised: 02/16/1999] [Accepted: 07/20/1999] [Indexed: 11/09/2022] Open
Abstract
1. The aims of this study were, firstly to use receptor autoradiography to investigate the effect of antisense oligonucleotides to the alpha2D-adrenoceptor on receptor binding and, secondly to measure behavioural and physiological parameters to determine whether the chronic antisense infusion had any effect on alpha2-adrenoceptor function in vivo. 2. A 3 day infusion of antisense to the alpha2D-adrenoceptor significantly reduced specific [3H]-RX821002 binding in the septum (20 - 30%) and anterior hypothalamic area (20 - 30%). beta-Adrenoceptor expression was unaffected in those brain areas examined, indicating the antisense knockdown was specific to the alpha2-adrenoceptors. 3. On the second day of the infusion, the hypothermic response to UK 14,304 was significantly attenuated in the antisense-treated group compared with both vehicle and mismatch controls. The effect was fully reversible and a similar decrease in body temperature was observed in all the treatment groups 4 days after the end of infusion. 4. During the second day of the infusion, the effects of UK 14,304 on behaviour were reduced in the antisense-treated rats, but were not significantly lower than those of the vehicle and mismatch, UK 14, 304 controls. These trends were not observed 4 days after the end of the infusion. 5. In conclusion, antisense has been shown to selectively knockdown alpha2-adrenoceptor expression in specific brain areas. The consequence of this knockdown is a significant attenuation of UK 14,304-induced hypothermia and a reduction in its sedative actions. These changes were fully reversed 4 days after the end of the infusion.
Collapse
Affiliation(s)
- E S J Robinson
- Psychopharmacology Unit, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | - D J Nutt
- Psychopharmacology Unit, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | - L Hall
- Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | - H C Jackson
- Knoll Pharmaceuticals Research and Development, Nottingham, NG1 1GF, UK
| | - A L Hudson
- Psychopharmacology Unit, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Otano A, Frechilla D, Cobreros A, Cruz-Orive LM, Insausti A, Insausti R, Hamon M, Del Rio J. Anxiogenic-like effects and reduced stereological counting of immunolabelled 5-hydroxytryptamine6 receptors in rat nucleus accumbens by antisense oligonucleotides. Neuroscience 1999; 92:1001-9. [PMID: 10426540 DOI: 10.1016/s0306-4522(99)00066-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The physiological role of 5-hydroxytryptamine6 receptors in the central nervous system has not yet been elucidated. The high affinity of various psychotropic drugs for 5-hydroxytryptamine6 receptors has led to the suggestion that this receptor type may be a novel target in neuropsychiatry. We have found that continuous intracerebroventricular administration of a 5-hydroxytryptamine6 receptor antisense oligonucleotide, but not of a missense oligonucleotide, produced an anxiogenic-like response in rats using two different models of anxiety, the social interaction test and the elevated plus-maze. Neither oligonucleotide treatment modified locomotor activity, rectal temperature or food intake, suggesting a low or null neurotoxicity. The effectiveness of the treatment with the designed antisense oligonucleotide to block the synthesis of the protein encoded by the target mRNA was assessed by immunolabelling 5-hydroxytryptamine6 receptors in the nucleus accumbens, where this receptor is highly expressed, using previously characterized specific antibodies. The density of the immunostaining was quantified by means of an unbiased three-dimensional stereologic procedure, which revealed a significant reduction (-25%) in the number of immunolabelled neuronal elements. These results suggest that, in addition to other 5-hydroxytryptamine receptor subtypes, 5-hydroxytryptamine6 receptors in the nucleus accumbens may participate in anxiety-related neurobiological mechanisms.
Collapse
Affiliation(s)
- A Otano
- Department of Pharmacology, University of Navarra Medical School, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Widmayer MA, Zhang B, Cui JK, Baskin DS. Suppression of post-ischemic-induced fos protein expression by an antisense oligonucleotide to c-fos mRNA leads to increased tissue damage. Brain Res 1999; 832:112-7. [PMID: 10375656 DOI: 10.1016/s0006-8993(99)01459-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of c-fos, an immediate early gene, and the subsequent upregulation of Fos protein expression occur following neural injury, including focal cerebral ischemia (fci). Fos and Jun form a heterodimer known as activator protein 1, which regulates the expression of many late effector genes. To study the downstream effects of c-fos expression following ischemia, we suppressed the translation of c-fos by administering an antisense oligonucleotide (AO) to c-fos mRNA. Eighteen hours prior to fci, male, Long Evans (LE) rats received intraventricular injections of AO, mismatched AO (MS) or artificial cerebrospinal fluid (aCSF). Fci was induced by permanent right middle cerebral artery occlusion. At 24-h post-occlusion, neurological function was assessed, and the animals were sacrificed. The brains were removed and stained with triphenyltetrazolium chloride for infarct volume determination. Fos immunohistochemistry was performed in separate animals to determine the effects of treatment on Fos expression number of Fos positive cells. AO administration reduced the number of cells with fci-induced Fos expression by approximately 75%. No differences in neurological scores existed between any of the groups. AO-treated LE developed larger infarcts (40.1+/-1.0%, mean+/-S.D., p<0.001) than MS- or aCSF-treated controls (34.3+/-1.0%, 34.6+/-1.0%, respectively). These results suggest that c-fos activation and subsequent Fos protein expression exerts a neuroprotective effect, which is likely via upregulation of neurotrophins, following focal cerebral ischemia. This response, among others, may contribute to brain adaptation to injury that underlies functional recovery after stroke.
Collapse
Affiliation(s)
- Y Zhang
- Department of Neurosurgery, Baylor College of Medicine, Suite 944, 6560 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Myers RD, Robinson DE. Mmu and D2 receptor antisense oligonucleotides injected in nucleus accumbens suppress high alcohol intake in genetic drinking HEP rats. Alcohol 1999; 18:225-33. [PMID: 10456575 DOI: 10.1016/s0741-8329(99)00015-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous pharmacological and other studies have implicated both Mmu and dopamine receptor subtypes in alcohol consumption. In the genetic drinking rat as well as those chemically induced to drink, evidence has accrued that the abnormal intake of alcohol is underpined by these receptors in the brain. The purpose of this investigation was to demonstrate unequivocally that a biological impairment by antisense oligodeoxynucleotide (ODN) targeted specifically to these two receptor subtypes would disrupt ongoing alcohol drinking. In this project, a new strain of female and male high-ethanol preferring (HEP) rats was used that had free access to preferred concentrations of alcohol over water in a two choice paradigm. A guide cannula for a microinjection needle was first implanted bilaterally above the nucleus accumbens (NAC) of each rat. Following recovery, a dose of either 250 or 500 ng of the Mmu ODN or 500 ng D2ODN was microinjected into the NAC of the rat in a volume of 0.8-1.0 microl. A standard temporal sequence was used in which microinjections were given four times at successive 12-h intervals over a 2-day interval. The control mismatch ODNs corresponding to both the Mmu or D2 receptor antisense were microinjected identically at homologous sites in the NAC. Following the experiments, the brain of each rat was removed and sectioned in the coronal plane for histological analysis so that each microinjection site was identified. The results showed that the Mmu receptor antisense caused a significant dose dependent fall in free access alcohol drinking within 12 to 24 h following the initial microinjection. This decline often persisted for 1 to 2 days in terms of both g/kg intake and proportion of alcohol to water consumed. Similarly, the D2 receptor ODN likewise induced an intense and significant decline in both g/kg and proportion measures of alcohol intake. Since the corresponding mismatch ODN for both Mmu and D2 receptors exerted no effect on either of these measures of alcohol consumption, the specificity of molecular action of the respective antisense molecules on drinking behavior of the HEP rats was confirmed. Thus, these results provide the first unequivocal evidence that the genes for D2 and Mmu receptors are fundamentally involved in abnormal alcohol drinking in the genetically predisposed individual. Finally, important new anatomical evidence is introduced for the critical role of the NAC in the genetic basis of aberrant drinking of alcohol.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
27
|
Kitaichi K, Hori T, Srivastava LK, Quirion R. Antisense oligodeoxynucleotides against the muscarinic m2, but not m4, receptor supports its role as autoreceptors in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:98-106. [PMID: 10101237 DOI: 10.1016/s0169-328x(99)00047-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antisense oligodeoxynucleotides against muscarinic m2 and m4 receptors were used to investigate the role of these receptor subtypes as negative autoreceptors in the regulation of acetylcholine (ACh) release in the rat hippocampus. Following the continuous infusion of antisenses into the third ventricle (1 microgram microliter-1 h-1, 3 days), 3H-AF-DX 384/muscarinic M2-like binding was significantly decreased in the medial septum by the antisense against the m2 receptor whereas M2-like binding in the dorsal striatum was decreased by the antisense against the m4 receptor. In contrast, 3H-pirenzepine/muscarinic M1-like binding was unaffected by either antisense treatment in any of the brain areas investigated. When perfused into the hippocampus via a dialysis probe, the purported muscarinic M2 receptor antagonist AF-DX 384 (100 nM) increased hippocampal ACh release in freely moving rats. This effect of AF-DX 384 was significantly attenuated by the m2, but not the m4, receptor antisense treatment. Hippocampal choline acetyltransferase activity was not affected by either antisense treatments. Taken together, these results suggest that the molecularly defined muscarinic m2 receptor regulates hippocampal ACh release by acting as a negative autoreceptor. In contrast, the molecularly defined m4 receptor is unlikely to be directly involved in the negative regulation of ACh release in the rat hippocampus. Therefore, inhibiting muscarinic m2 receptor function may be an alternative approach to regulate the release of ACh in neurodegenerative diseases associated with impaired cholinergic functions.
Collapse
Affiliation(s)
- K Kitaichi
- Douglas Hospital Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
28
|
Szklarczyk AW, Kaczmarek L. Brain as a unique antisense environment. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:105-16. [PMID: 10192296 DOI: 10.1089/oli.1.1999.9.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the last few years, antisense oligodeoxyribonucleotides (asODN) have become a commonly used tool for blocking of gene expression in the mammalian central nervous system. Successful gene inhibition has been reported for such diverse targets as those encoding neurotransmitter receptors, neuropeptides, trophic factors, transcription factors, cytokines, transporters, ion channels, and others. This review presents a discussion of recent studies on ODN in the brain, with a focus on specific approaches taken by the researchers in this field and especially on peculiar features of this organ as a milieu for asODN action. It is concluded that from the presented literature survey no coherent view on how to rationally design ODN for brain studies has emerged.
Collapse
Affiliation(s)
- A W Szklarczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | | |
Collapse
|
29
|
Grzanna R, Dubin JR, Dent GW, Ji Z, Zhang W, Ho SP, Hartig PR. Intrastriatal and intraventricular injections of oligodeoxynucleotides in the rat brain: tissue penetration, intracellular distribution and c-fos antisense effects. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 63:35-52. [PMID: 9838035 DOI: 10.1016/s0169-328x(98)00238-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have determined the time course, the spatial spread in brain tissue, and the intracellular distribution of biotin- and fluorescein-labeled phosphorothioate oligodeoxynucleotides (ODNs) following single injections into the rat striatum or the lateral ventricle. These time and space parameters were correlated with the ability of c-fos phosphorothioate antisense ODNs to suppress the induction of Fos protein by cocaine. A rapid and dose-dependent tissue penetration of labeled ODNs was observed following either intrastriatal or intraventricular injections of a constant sample volume. Inspection of tissue sections by confocal microscopy uncovered a distinct change in the intracellular disposition of labeled ODNs during the 24 h post-injection period. At 1, 6 and 12 h, the vast majority of the fluorescent signal was confined to the interstitial spaces throughout the zone penetrated by ODNs. Neuronal nuclei displayed faint labeling along the outer portion of the nucleus at 1 and 6 h post-injection. At these time-points, ODNs were not detected in the cytoplasm. By 16 h, ODNs were barely detectable in the extracellular space and absent from neuronal nuclei. Instead, ODNs were seen in large cytoplasmic granules of neurons throughout the tissue zone penetrated by the ODNs. Experiments with intrastriatal injections of antisense ODNs to c-fos mRNA revealed Fos suppression between 3 and 12 h, but not at 16 and 24 h. This combined analysis has revealed that (1) restricted tissue penetration by ODNs limits their antisense effects on protein expression, and (2) depletion of extracellular ODNs and sequestration of c-fos antisense ODNs into large intracellular granules coincides with the loss of their biological activity.
Collapse
Affiliation(s)
- R Grzanna
- The DuPont Pharmaceuticals Company, Central Nervous System Diseases Research, Experimental Station E-400-4430, Wilmington, DE 19880-0400, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Peng Ho S, Livanov V, Zhang W, Li J, Lesher T. Modification of phosphorothioate oligonucleotides yields potent analogs with minimal toxicity for antisense experiments in the CNS. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 62:1-11. [PMID: 9795101 DOI: 10.1016/s0169-328x(98)00185-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There is increasing evidence that phosphorothioate oligonucleotides infused into the brain can cause a host of undesired side effects which compromise the antisense experiment. In studies on the corticotropin releasing factor type-2 receptor, several phosphorothioate oligonucleotides administered intraventricularly produced significant weight loss in rats. Four different phosphodiester and phosphorothioate oligonucleotide analogs were examined to identify molecules which could eliminate these side effects while maintaining good potency for antisense inhibition. Of these, chimeric oligonucleotides consisting of a mixed phosphodiester-phosphorothioate backbone, and having 2'-methoxyribonucleotide modifications in 60% of the oligonucleotide were the most optimal. Rats treated with these chimeric oligonucleotides gained weight at rates identical to that of saline-treated controls. In addition, the antisense oligonucleotide but not the mismatch control sequence reduced corticotropin releasing factor type-2 receptor binding of 125iodo-sauvagine in the lateral septum by 40-60% after 5 daily injections. Increasing the dosing period to 9 days reduced receptor binding by 78%. Reductions in protein binding were accompanied by comparable reductions in the in situ hybridization signal of the corticotropin releasing factor type-2 receptor mRNA. However, when an oligonucleotide analog incapable of supporting ribonuclease H activity was used, neither protein nor RNA binding levels were changed compared to saline-treated controls. These results suggest that ribonuclease H or enzymes with similar activity are critical to the antisense inhibition observed in the lateral septum.
Collapse
MESH Headings
- Amphibian Proteins
- Animals
- Brain/drug effects
- Brain/pathology
- Central Nervous System/drug effects
- Drug-Related Side Effects and Adverse Reactions/prevention & control
- Fever/prevention & control
- In Situ Hybridization
- Injections, Intraventricular
- Iodine Radioisotopes
- Male
- Molecular Structure
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/pharmacology
- Peptide Hormones
- Peptides/analysis
- Peptides/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/analysis
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/genetics
- Ribonuclease H/metabolism
- Thionucleotides/adverse effects
- Thionucleotides/chemistry
- Thionucleotides/pharmacology
- Weight Loss/drug effects
Collapse
Affiliation(s)
- S Peng Ho
- CNS Department, DuPont Pharmaceuticals Research Laboratories, PO Box 80400 Experimental Station, Wilmington, DE 19880-0400, USA.
| | | | | | | | | |
Collapse
|
31
|
Sommer W, Cui X, Erdmann B, Wiklund L, Bricca G, Heilig M, Fuxe K. The spread and uptake pattern of intracerebrally administered oligonucleotides in nerve and glial cell populations of the rat brain. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:75-85. [PMID: 9593045 DOI: 10.1089/oli.1.1998.8.75] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The fate of 15-mer phosphorothioate-modified antisense oligonucleotides to c-fos was followed after their microinjection into rat brain. Using radiolabeled oligonucleotides, it was demonstrated that the bulk of the material stays in the injected region but that a minor part is transported with the projection pathways to regions far away from the site of injection. Using tetramethylrhodamine-isothiocyanate (TRITC) labeling as well as fluorescein isothiocyanate (FITC) labeling, it was found that the oligonucleotides were taken up by a great number of cells within 30 minutes after the injection. A diffuse cytoplasmic staining and also nuclear staining were observed in these cells, which could be identified exclusively as neurons by double labeling for the neuron-specific protein NeuN. At later times (6, 24, and 48 hours), the appearance of the oligonucleotides changed gradually to a punctate cytoplasmic staining, which by electron microscopic analysis was shown to be caused by the presence of the oligonucleotides in intracellular vesicles. The pattern of intracellular fluorescence was changed when the oligonucleotides were injected together with the cationic lipid 1,2-bis(oleoyloxy)-3-(trimethylammonio)propane (DOTAP). A small number of astrocytes and microglial cells were found to be labeled by the oligonucleotides, but only at later times after the injection and exclusively in a punctate cytoplasmic manner. Thus, the uptake of oligonucleotides in the nerve and glial cell populations of the brain might involve different mechanisms, the one in the neurons appearing to be very rapid and potent.
Collapse
Affiliation(s)
- W Sommer
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Engelhard HH. Antisense Oligodeoxynucleotide Technology: Potential Use for the Treatment of Malignant Brain Tumors. Cancer Control 1998; 5:163-170. [PMID: 10761027 DOI: 10.1177/107327489800500207] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Antisense oligodeoxynucleotides (ODNs) have been proposed as a new therapy for patients with cancer, including malignant brain tumors. Antisense ODNs are taken up by tumor cells and selectively block gene expression. Use of ODNs for brain tumors is attractive due to their theoretical specificity, relative ease of production and, to date, paucity of reported adverse effects. This article presents current information regarding antisense ODNs and their possible future use for the treatment of brain tumors. METHODS: The available published experimental and clinical information regarding antisense ODN treatment of glioblastoma cells and administration into the central nervous system (CNS) was reviewed. Other clinically relevant information pertaining to the molecular biology of antisense ODNs was also collected and summarized. RESULTS: Targets for antisense ODN therapy in malignant glioma cells have included c-myc, c-myb, c-sis, c-erb B, CD44, p34cdc2, bFGF, PDGF, TGF-beta, IGF-1, PKC-alpha tumor necrosis factor, urokinase, and S100beta protein. Few in vivo studies of ODN treatment of brain tumors have yet been reported. Systemically administered ODNs enter the brain only in extremely small quantities; therefore, microinfusion into the brain has been recommended. CONCLUSIONS: Antisense ODNs have been used successfully to block glioblastoma gene expression in vitro and expression of multiple genes within the CNS of experimental animals. Upcoming clinical trials will address the safety of antisense ODN use against malignant brain tumors.
Collapse
Affiliation(s)
- HH Engelhard
- Division of Neurological Surgery, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
33
|
Rocha L, Kaufman DL. In vivo administration of c-Fos antisense oligonucleotides accelerates amygdala kindling. Neurosci Lett 1998; 241:111-4. [PMID: 9507933 DOI: 10.1016/s0304-3940(98)00002-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Repeated subconvulsive electrical stimulation of the amygdala leads to generalized seizures and provides an experimental model of epileptogenesis. Following electrical kindling stimulation the expression of c-Fos is rapidly induced. To evaluate the role of FOS protein in epileptogenesis, we used an antisense oligonucleotide strategy designed to inhibit its expression in the brain. Experimental and control oligonucleotides were delivered directly into the amygdala just prior to electrical stimulation. Immunocytochemical analysis showed that the administration of c-Fos antisense (but not sense) oligonucleotides inhibited expression of FOS in the amygdala following electrical stimulation. Behaviorally, treatment with c-Fos antisense oligonucleotides significantly accelerated the development of fully kindled (stage V) seizures. These data suggest that the increased FOS expression following electrical stimulation may be part of a protective mechanism which acts to inhibit epileptogenesis in the amygdala.
Collapse
Affiliation(s)
- L Rocha
- Instituto Mexicano de Psiquiatría, Mexico City, Mexico
| | | |
Collapse
|
34
|
Karle J, Witt MR, Nielsen M. The use of in vivo antisense oligonucleotide technology for the investigation of brain GABA receptors. Neurochem Int 1997; 31:437-46. [PMID: 9246685 DOI: 10.1016/s0197-0186(96)00113-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antisense oligodeoxynucleotides (ODN) can be used as selective inhibitors of in vivo gene expression in the central nervous system (CNS) of experimental animals. The gamma-aminobutyric acid type A (GABAA) receptor is a member of the ligand-gated ion channel superfamily of neurotransmitter receptors. GABAA receptor function is allosterically modulated by several clinically important compounds, e.g. 1,4-benzodiazepines, barbiturates and certain neurosteroids, which recognize binding sites within the receptor complex. GABAA receptor chloride channel complexes are probably pentamers of different polypeptide subunits. The number of known subunit families and isoforms (six alpha s, four beta s, three gamma s, one delta and two rho s) indicates an extensive heterogeneity of GABAA receptors. The gamma 2 subunit is a functionally integral part of the GABAA receptor, necessary for the high affinity binding of benzodiazepines. The infusion of phosphorothioate ODN antisense to the gamma 2 subunit mRNA, but not control sense or mismatch ODN, into the lateral cerebral ventricle or into the hippocampus of rats leads to significant decreases in benzodiazepine receptor radioligand binding. In the hippocampus this is accompanied by a decrease in the number of GABAA receptors and by a loss of neurones, the latter possibly being due to reduced GABAergic inhibitory neurotransmission. Autoradiographic analysis following continuous intrahippocampal infusion of antisense ODN shows the regional extent of the effect on [3H]flunitrazepam binding. The continuous infusion of antisense ODN, but not of mismatch control ODN, into the right lateral cerebral ventricle induced a significant decrease in benzodiazepine binding and [3H]muscimol binding to membranes of the right cortex. Antisense ODN infused into the striatum decreased benzodiazepine binding and binding to the GABA binding site of the GABAA receptor to an extent similar to that found in the hippocampus. It is concluded that the preferred route of administration of antisense ODN for in vivo studies of the GABAA receptor may be by infusion into defined rat brain regions. The reported data support the idea that antisense ODN can be used as a valuable tool for the investigation of the contribution of individual GABAA receptor subunits to the properties of the receptor complex and of mechanisms of receptor subunit assembly.
Collapse
Affiliation(s)
- J Karle
- Research Institute of Biological Psychiatry, St. Hans Hospital, Roskilde, Denmark
| | | | | |
Collapse
|
35
|
Le Corre SM, Burnet PW, Meller R, Sharp T, Harrison PJ. Critical issues in the antisense inhibition of brain gene expression in vivo: experiences targetting the 5-HT1A receptor. Neurochem Int 1997; 31:349-62. [PMID: 9246678 DOI: 10.1016/s0197-0186(96)00106-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There have been many recent reports of receptor down-regulation in the brain by antisense oligodeoxynucleotides (ODNs) administered in vivo. However, the literature is inconsistent regarding the experimental criteria that are necessary or sufficient to demonstrate a true antisense effect. Here we review some of the critical conceptual and methodological issues. We highlight the problems of specificity and toxicity encountered in our attempts to down-regulate the 5-HT1A receptor using a phosphorothioate-modified ODN. We also present preliminary data suggestive of a decreased hippocampal 5-HT1AR expression induced by the antisense ODN, but it is a reduction which is of limited extent and which does not provide unequivocal evidence for an antisense-mediated effect. We conclude that antisense ODNs are not yet suitable as tools for routine in vivo neuropharmacological use, although they show considerable promise.
Collapse
Affiliation(s)
- S M Le Corre
- Department of Psychiatry, University of Oxford, U.K
| | | | | | | | | |
Collapse
|
36
|
Karle J, Witt MR, Nielsen M. Diazepam protects against rat hippocampal neuronal cell death induced by antisense oligodeoxynucleotide to GABA(A) receptor gamma2 subunit. Brain Res 1997; 765:21-9. [PMID: 9310390 DOI: 10.1016/s0006-8993(97)00463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antisense oligodeoxynucleotides (ODNs) are used for the selective inhibition of gene expression. Antisense ODNs are promising tools for the investigation of physiological implications of proteins in the central nervous system of rodents in vivo. We have previously demonstrated that a phosphorothioate antisense ODN to the GABA(A) receptor gamma2 subunit, but not sense or mismatch control ODNs, induces a decrease in ex vivo benzodiazepine receptor radioligand binding in rat hippocampus when infused into the hippocampus in vivo [Karle et al., Neurosci. Lett., 202 (1995) 97-100]. This effect is parallelled by a decrease in the number of GABA(A) receptors and an extensive loss of hippocampal neurones. There is increasing awareness of risks of toxic 'non-antisense' effects induced by ODNs, and in particular phosphorothioate ODNs. The present experiments were designed to investigate the specificity of effects induced by the gamma2 subunit antisense ODN. The temporal development of changes in [3H]flunitrazepam and [3H]quinuclidinyl benzilate binding as well as in tissue protein levels supports the notion that the antisense ODN primarily acts by blocking the expression of the targeted receptor subunit protein. Furthermore, it is shown that a threshold for the elicitation of neurodegenerative changes exists. Finally, it is demonstrated that diazepam treatment of rats protects against the development of neuronal cell death induced by the antisense ODN. Collectively, the results support the hypothesis that the neurodegeneration induced by the antisense ODN is a consequence of diminished GABAergic inhibitory tonus following a selective down-regulation of gamma2 subunit-containing GABA(A) receptor complexes.
Collapse
Affiliation(s)
- J Karle
- Research Institute of Biological Psychiatry, St. Hans Hospital, Roskilde, Denmark.
| | | | | |
Collapse
|
37
|
Abraham WC, Logan B, Thompson VL, Williams JM, Tate WP. Sequence-independent effects of phosphorothiolated oligonucleotides on synaptic transmission and excitability in the hippocampus in vivo. Neuropharmacology 1997; 36:345-52. [PMID: 9175613 DOI: 10.1016/s0028-3908(97)00013-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antisense oligodeoxynucleotides (ODNs) have the potential to be a powerful tool for regulating gene expression and mRNA translation in spatially and temporally restricted domains. Prior to investigating the effects of antisense ODNs on hippocampal long-term potentiation, we investigated whether there are any non-specific effects of ODNs on perforant path synaptic transmission in the dentate gyrus of both pentobarbital-anaesthetized and awake, freely moving rats. Single injections of phosphorothioated antisense ODNs (4 nmol) to the immediate early gene zif/268 caused a rapid (within minutes) and long-lasting (>24 hr) profound depression of the perforant path evoked field potentials. This depressive effect was due to the phosphorothioate modification since a depression was not seen with unmodified antisense ODNs, relative to saline controls. Furthermore, the effect was not sequence-specific since modified sense ODNs caused the same degree of depression. The depression caused by the modified antisense ODNs was dose-dependent and specific to synaptic transmission, since antidromic population spikes elicited by mossy fibre stimulation were relatively unaffected compared to the orthodromic responses. A second unexpected side-effect of the modified ODNs was cellular hyperexcitability, such that bursts of epileptiform spikes in the EEG occurred both spontaneously and as a result of synaptic stimulation. While the mechanism of the synaptic depression remains unknown, these results indicate that phosphorothioate-modified ODNs exert profound non-specific effects on synaptic transmission in the hippocampus, that have the potential to seriously compromise any corresponding behavioural or electrophysiological studies.
Collapse
Affiliation(s)
- W C Abraham
- Department of Psychology, Neuroscience Research Centre, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|