1
|
Nolden A, Joseph PV, Kober KM, Cooper BA, Paul SM, Hammer MJ, Dunn LB, Conley YP, Levine JD, Miaskowski C. Co-occurring Gastrointestinal Symptoms Are Associated With Taste Changes in Oncology Patients Receiving Chemotherapy. J Pain Symptom Manage 2019; 58:756-765. [PMID: 31349034 PMCID: PMC6823134 DOI: 10.1016/j.jpainsymman.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT Over 80% of patients with cancer report taste changes. Despite the high prevalence of this symptom and its negative effects on health, few studies have assessed its association with other gastrointestinal (GI) symptoms. OBJECTIVES Determine the occurrence, frequency, severity, and distress of patient-reported "change in the way food tastes" (CFT) and identify phenotypic and GI symptoms characteristics associated with its occurrence. METHODS Patients receiving chemotherapy for breast, GI, gynecological, or lung cancer completed demographic and symptom questionnaires prior to their second or third cycle of chemotherapy. CFT was assessed using the Memorial Symptom Assessment Scale. Differences in demographic, clinical, and GI symptom characteristics were evaluated using parametric and nonparametric tests. RESULTS Of the 1329 patients, 49.4% reported experiencing CFT in the week prior to their second or third cycle of chemotherapy. In the univariate analysis, patients who reported CFT had fewer years of education; were more likely to be black or Hispanic, mixed race, or other; and had a lower annual household income. A higher percentage of patients with CFT reported the occurrence of 13 GI symptoms (e.g., constipation, diarrhea, abdominal cramps, feeling bloated). In a multivariable logistic regression analysis, compared with patients with breast cancer, patients with lung cancer (odds ratio = 0.55; P = 0.004) had a decrease in the odds of being in the CFT group. Patients who received a neurokinin-1 receptor antagonist and two other antiemetics were at an increased odds of being in the CFT group (odds ratio = 2.51; P = 0.001). Eight of the 13 GI symptoms evaluated were associated with an increased odds of being in the CFT group. CONCLUSIONS This study provides new evidence on the frequency, severity, and distress of CFT in oncology patients undergoing chemotherapy. These findings suggest that CFT is an important problem that warrants ongoing assessments and nutritional interventions.
Collapse
Affiliation(s)
- Alissa Nolden
- Food Science Department, College of Natural Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Bruce A Cooper
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Steven M Paul
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Marilyn J Hammer
- Department of Nursing, Mount Sinai Medical Center, New York, New York, USA
| | - Laura B Dunn
- School of Medicine, Stanford University, Stanford, California, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
2
|
Kapaun CL, Dando R. Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently. Physiol Behav 2016; 170:54-61. [PMID: 27988249 DOI: 10.1016/j.physbeh.2016.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 12/26/2022]
Abstract
Flavor is an essential, rich and rewarding part of human life. We refer to both physical and chemical heat in similar terms; elevated temperature and capsaicin are both termed hot. Both influence our perception of flavor, however little research exists into the possibly divergent effect of chemical and physical heat on flavor. A human sensory panel was recruited to determine the equivalent level of capsaicin to match the heat of several physical temperatures. In a subsequent session, the intensities of multiple concentrations of tastant solutions were scaled by the same panel. Finally, panelists evaluated tastants plus equivalent chemical or physical "heat". All basic tastes aside from umami were influenced by heat, capsaicin, or both. Interestingly, capsaicin blocked bitter taste input much more powerfully than elevated temperature. This suggests that despite converging percepts, chemical and physical heat have a fundamentally different effect on the perception of flavor.
Collapse
Affiliation(s)
- Camille L Kapaun
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
3
|
Grant J. Tachykinins stimulate a subset of mouse taste cells. PLoS One 2012; 7:e31697. [PMID: 22363709 PMCID: PMC3283679 DOI: 10.1371/journal.pone.0031697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/18/2012] [Indexed: 01/07/2023] Open
Abstract
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.
Collapse
Affiliation(s)
- Jeff Grant
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida, United States of America.
| |
Collapse
|
4
|
Abstract
Gustatory perception is inherently multimodal, since approximately the same time that intra-oral stimuli activate taste receptors, somatosensory information is concurrently sent to the CNS. We review evidence that gustatory perception is intrinsically linked to concurrent somatosensory processing. We will show that processing of multisensory information can occur at the level of the taste cells through to the gustatory cortex. We will also focus on the fact that the same chemical and physical stimuli that activate the taste system also activate the somatosensory system (SS), but they may provide different types of information to guide behavior.
Collapse
|
5
|
Ogura T, Margolskee RF, Tallini YN, Shui B, Kotlikoff MI, Lin W. Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell Tissue Res 2007; 330:17-28. [PMID: 17704949 DOI: 10.1007/s00441-007-0470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
Abstract
Acetylcholine (ACh) is well established as a neurotransmitter and/or neuromodulator in various organs. Previously, it has been shown by Ogura (J Neurophysiol 87:2643-2649, 2002) that in both physiological and immunohistochemical studies the muscarinic acetylcholine (ACh) receptor is present in taste receptor cells. However, it has not been determined if ACh is released locally from taste receptor cells and/or surrounding nerve fibers. In this study we investigated the sites of ACh release in mouse taste tissue using the antisera against vesicular ACh transporter (VAChT), a key element of ACh-containing vesicles. Our data show that VAChT-immunoreactivity is present in many taste receptor cells, including cells expressing the transient receptor potential channel M5 (TRPM5). In taste cells, VAChT-immunoreactivity was colocalized with the immunoreactivity to choline-acetyltransferase (ChAT), which synthesizes ACh. Additionally, enhanced green fluorescent protein (eGFP) was detected in the taste cells of BAC-transgenic mice, in which eGFP was placed under the control of endogenous ChAT transcriptional regulatory elements (ChAT(BAC)-eGFP mice). Furthermore, many ChAT-immunolabeled taste cells also reacted to an antibody against the vesicle-associated membrane protein synaptobrevin-2. These data suggest that ACh-containing vesicles are present in taste receptor cells and ACh release from taste cells may play a role in autocrine and/or paracrine cell-to-cell communication. In addition, certain nerve fibers surrounding or within taste buds were immunoreactive for the VAChT antibody. Some of these fibers were also immunolabeled with antibody against calcitonin gene-related peptide (CGRP), a marker for trigeminal peptidergic fibers. Thus, functions of taste receptor cells could be modulated by trigeminal fibers via ACh release as well.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Taste bud cells communicate with sensory afferent fibers and may also exchange information with adjacent cells. Indeed, communication between taste cells via conventional and/or novel synaptic interactions may occur prior to signal output to primary afferent fibers. This review discusses synaptic processing in taste buds and summarizes results showing that it is now possible to measure real-time release of synaptic transmitters during taste stimulation using cellular biosensors. There is strong evidence that serotonin and ATP play a role in cell-to-cell signaling and sensory output in the gustatory end organs.
Collapse
Affiliation(s)
- S D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Simon SA, Liu L, Erickson RP. Neuropeptides modulate rat chorda tympani responses. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1494-505. [PMID: 12736181 DOI: 10.1152/ajpregu.00544.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuropeptide leptin has been shown to selectively modulate rat chorda tympani (CT) responses to sweet tastants. To explore whether other neuropeptides can modulate such responses, rat whole nerve CT responses to NaCl, HCl, quinine HCl, and sucrose were measured while administering cholecystokinin-8 (CCK-8), substance P(4-11) (SP(4-11)), or calcitonin gene-related peptide (CGRP). To avoid possible confounding effects on CT responses that take long times to develop, such as those that arise from intraperitoneal injections, we investigated the effects of the above peptides injected into the ipsilateral lingual artery (LA) on CT nerve responses during the initial seconds after a tastant was placed on the tongue. We found that CT responses to NaCl and HCl were increased by CCK-8 and decreased by CGRP. SP(4-11) had no noticeable effect. Peptide-induced CT responses to quinine HCl or sucrose were too small to accurately detect. These data suggest that at short latencies, after local infusion via the LA, neuropeptides can alter CT responses in a peptide-specific manner.
Collapse
Affiliation(s)
- S A Simon
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
8
|
Abstract
Because intraoral capsaicin is reported to reduce the perceived intensity of certain taste qualities, we investigated whether it affects the central processing of gustatory information. The responses of gustatory neurons in the nucleus tractus solitarius (NTS) to tastant stimuli were recorded before and after lingual application of capsaicin in anesthetized rats. Thirty-four NTS units were characterized as responding best to sucrose (0.3 m), NaCl (0.1 m), citric acid (0.03 m), monosodium glutamate (0.2 m), or quinine (0.001 m). During lingual application of 330 microm capsaicin for 7 min, the firing rate increased for five units and decreased for four units; the remainder were unaffected. Immediately after capsaicin, responses to each tastant were in nearly all cases depressed (mean, 61.5% of control), followed by recovery in most cases. NTS tastant-evoked unit responses were unaffected by lingual application of vehicle (5% ethanol). Capsaicin elicited an equivalent reduction (to 64.5%) in tastant-evoked responses of nine additional NTS units recorded in rats with bilateral trigeminal ganglionectomy, arguing against a trigeminally mediated central effect. Furthermore, capsaicin elicited a puncate pattern of plasma extravasation in the tongue that matched the distribution of fungiform papillae. These results support a peripheral site of capsaicin suppression of taste possibly via direct or indirect effects on taste transduction or taste receptor cell excitability. The depressant effect of capsaicin on gustatory transmission might underlie its ability to reduce the perceived intensity of some taste qualities.
Collapse
|
9
|
Ogura T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J Neurophysiol 2002; 87:2643-9. [PMID: 12037167 DOI: 10.1152/jn.2002.87.6.2643] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies suggest that acetylcholine (ACh) is a transmitter released from taste cells as well as a transmitter in cholinergic efferent neurons innervating taste buds. However, the physiological effects on taste cells have not been established. I examined effects of ACh on taste-receptor cells by monitoring [Ca2+]i. ACh increased [Ca2+]i in both rat and mudpuppy taste cells. Atropine blocked the ACh response, but D-tubocurarine did not. U73122, a phospholipase C inhibitor, and thapsigargin, a Ca2+-ATPase inhibitor that depletes intracellular Ca2+ stores, blocked the ACh response. These results suggest that ACh binds to M1/M3/M5-like subtypes of muscarinic ACh receptors, causing an increase in inositol 1,4,5-trisphosphate and subsequent release of Ca2+ from the intracellular stores. A long incubation with ACh induced a transient response followed by a sustained phase of [Ca2+]i increase. In Ca2+-free solution, the sustained phases disappeared, suggesting that Ca2+ influx is involved in the sustained phase. Depletion of Ca2+ stores by thapsigargin alone induced Ca2+ influx. These findings suggest that Ca2+ store-operated channels may be present in taste cells and that they may participate in the sustained phase of [Ca2+]i increase. Immunocytochemical experiments indicated that the M1 subtype of muscarinic receptors is present in both rat and mudpuppy taste cells.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA.
| |
Collapse
|
10
|
Kopp UC, Matsushita K, Sigmund RD, Smith LA, Watanabe S, Stokes JB. Amiloride-sensitive Na+ channels in pelvic uroepithelium involved in renal sensory receptor activation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R1780-92. [PMID: 9843867 DOI: 10.1152/ajpregu.1998.275.6.r1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretching the renal pelvic wall increases ipsilateral afferent renal nerve activity (ARNA). This response is enhanced by inhibiting Na+-K+-ATPase with ouabain, suggesting a modulatory role for intracellular Na+ in the activation of mechanosensitive neurons. The messenger RNA for alpha-, beta-, and gamma-subunits of epithelial Na+ channels (ENaC) is found in collecting duct cells. Because ENaC subunits show homology with genes involved in mechanosensation, we examined whether ENaC mRNA could be found in the pelvic wall and whether the ARNA response to increased renal pelvic pressure was modulated by blockers of the Na+ channel. alpha-, beta-, and gamma-subunits are present in the pelvis. The messenger RNA for the beta- and gamma-subunits is readily detected by in situ hybridization throughout the uroepithelium. The ARNA response to increased renal pelvic pressure was reduced by 53 +/- 10% and 40 +/- 10% (P < 0.01) by renal pelvic perfusion with the inhibitors amiloride and benzamil, respectively. Amiloride inhibited the ouabain-induced enhancement of the ARNA response to increased renal pelvic pressure. The magnitude of this inhibition was inversely correlated with the magnitude of the amiloride-mediated blockade of the ARNA response to increased renal pelvic pressure (P < 0.001). Amiloride also reduced the ARNA response to renal pelvic administration of substance P, a mediator of the ARNA response to increased renal pelvic pressure. We conclude that the ENaC complex in the pelvic uroepithelium participates in the activation of renal pelvic mechanosensitive neurons.
Collapse
Affiliation(s)
- U C Kopp
- Department of Internal Medicine, Department of Veterans Affairs Medical Center and University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Taste buds are the anatomical structures that mediate the sense of taste. They comprise taste cells and nerve fibers within specialized epithelial structures. Taste cells are traditionally described by histologic methods as basal, dark, intermediate, and light cells, with the nerve fibers surrounding and infiltrating the taste buds. By means of immunohistochemical methods, taste cells and gustatory nerve fibers can be classified in functional groups based on the expression of various cell adhesion molecules and other proteins. When taste buds become damaged, the loss of the ability to taste results. This loss is not uncommon and can impact health and quality of life. Patients who receive radiation therapy for head and neck cancer often experience taste loss, which leads to compromised nutritional intake and a worse outcome than patients who do not experience taste loss. The mode of radiation damage to taste cells and nerve fibers has been investigated using cell adhesion molecules, synaptic vesicle proteins, and other cell markers. The light and intermediate cells are preferentially affected by ionizing radiation, whereas the nerve fibers remain structurally intact. Experimental studies of radiation-induced taste loss are performed via a unique animal/human model.
Collapse
Affiliation(s)
- G M Nelson
- University of Colorado Health Sciences Center, USA
| |
Collapse
|