1
|
Cela M, Théobald-Dietrich A, Rudinger-Thirion J, Wolff P, Geslain R, Frugier M. Identification of host tRNAs preferentially recognized by the Plasmodium surface protein tRip. Nucleic Acids Res 2021; 49:10618-10629. [PMID: 34530443 PMCID: PMC8501954 DOI: 10.1093/nar/gkab769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Malaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface. tRip displays an extracellular domain homologous to the well-characterized OB-fold tRNA-binding domain, a structural motif known to indiscriminately interact with tRNAs. We used MIST (Microarray Identification of Shifted tRNAs), a previously established in vitro approach, to systematically assess the specificity of complexes between native Homo sapiens tRNAs and recombinant Plasmodium falciparum tRip. We demonstrate that tRip unexpectedly binds to host tRNAs with a wide range of affinities, suggesting that only a small subset of human tRNAs is preferentially imported into the parasite. In particular, we show with in vitro transcribed constructs that tRip does not bind specific tRNAs solely based on their primary sequence, hinting that post-transcriptional modifications modulate the formation of our host/parasite molecular complex. Finally, we discuss the potential utilization of the most efficient tRip ligands for the translation of the parasite's genetic information.
Collapse
Affiliation(s)
- Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Anne Théobald-Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, USA
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| |
Collapse
|
2
|
Freund I, Buhl DK, Boutin S, Kotter A, Pichot F, Marchand V, Vierbuchen T, Heine H, Motorin Y, Helm M, Dalpke AH, Eigenbrod T. 2'- O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recognition of whole organisms. RNA (NEW YORK, N.Y.) 2019; 25:869-880. [PMID: 31019095 PMCID: PMC6573781 DOI: 10.1261/rna.070243.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/20/2019] [Indexed: 05/10/2023]
Abstract
Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2'-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm3 in S. cereviase, and CRISPR/Cas9-induced knockout of TARBP1 in H. sapiens results in loss of Gm18 within tRNA. Lack of Gm18 across the kingdoms resulted in increased immunostimulation of peripheral blood mononuclear cells when activated by tRNA preparations. In E. coli, lack of 2'-O-methyltransferase trmH also enhanced immune stimulatory properties by whole cellular RNA. In contrast, lack of Gm18 in yeasts and human cells did not affect immunostimulation by whole RNA preparations. When using live E. coli bacteria, lack of trmH did not affect overall immune stimulation although we detected a defined TLR8/RNA-dependent gene expression signature upon E. coli infection. Together, these results demonstrate that Gm18 is a global immune inhibitory tRNA modification across the kingdoms and contributes to tRNA recognition by innate immune cells, but as an individual modification has insufficient potency to modulate recognition of the investigated microorganisms.
Collapse
Affiliation(s)
- Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel K Buhl
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Florian Pichot
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor, CNRS-Lorraine University-INSERM, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Medical Microbiology and Hygiene, Technical University Dresden, 01307 Dresden, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover. PLoS Biol 2015; 13:e1002291. [PMID: 26544557 PMCID: PMC4636289 DOI: 10.1371/journal.pbio.1002291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that translational fidelity and the ubiquitin-proteasome system are functionally linked to each other and may, therefore, co-evolve in nature. Tolerance to errors during protein synthesis evolves rapidly through acceleration of protein turnover—a process determined by the combined rates of protein synthesis and degradation. However, this adaptation has deleterious side effects due to its energy costs. Although fidelity of information transfer has a substantial impact on cellular survival, many steps in protein production are strikingly error-prone. Such errors during protein synthesis can have a substantial influence on viability and the onset of genetic diseases. These considerations raise the question as to how organisms can tolerate errors during protein synthesis. In this paper, for the first time, we study organisms’ capacity to evolve robustness against mistranslation and explore the underlying cellular mechanisms. A mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). This thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate for the deleterious effects of protein mistranslation. We found that mistranslation led to rapid evolution of genomic rearrangements, including chromosomal duplications and deletions. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduce large phenotypic leaps that enable adaptation to mistranslation. Robustness against mistranslation during laboratory evolution was achieved through acceleration of protein turnover—a process that was determined by the combined rates of protein synthesis and ubiquitin-proteasome system-mediated degradation. However, as both translation and active degradation of proteins are exceptionally energy-consuming cellular processes, accelerated proteome turnover has substantial energy costs.
Collapse
|
4
|
Miranda I, Rocha R, Santos MC, Mateus DD, Moura GR, Carreto L, Santos MAS. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans. PLoS One 2007; 2:e996. [PMID: 17912373 PMCID: PMC1991585 DOI: 10.1371/journal.pone.0000996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG)(Ser)). We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.
Collapse
Affiliation(s)
- Isabel Miranda
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rita Rocha
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Maria C. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Denisa D. Mateus
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Laura Carreto
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Kolesnikova O, Entelis N, Kazakova H, Brandina I, Martin RP, Tarassov I. Targeting of tRNA into yeast and human mitochondria: the role of anticodon nucleotides. Mitochondrion 2005; 2:95-107. [PMID: 16120312 DOI: 10.1016/s1567-7249(02)00013-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/29/2002] [Accepted: 03/29/2002] [Indexed: 12/27/2022]
Abstract
In vivo, yeast mitochondria import a single cytoplasmic tRNA, tRNA(CUU)Lys, while human mitochondria do not import any cytoplasmic tRNA. We have previously demonstrated that both yeast and human isolated mitochondria can specifically internalize tRNA(CUU)Lys, several of its mutant versions and some mutant versions of yeast cytosolic tRNA(UUU)Lys (not imported in vivo). Aminoacylation of tRNA(CUU)Lys by the cytoplasmic lysyl-tRNA synthetase was a prerequisite for its import. Here we are studying the influence of one-base replacements in the anticodon of tRNAs(Lys) on their aminoacylation, on binding to the precursor of the mitochondrial lysyl-tRNA synthetase (carrier protein directing the import), and on the efficiency of import into isolated yeast and human mitochondria. We show that the base U35 is the main identity element for the yeast cytoplasmic lysyl-tRNA synthetase. The single replacement that abolished import was C34G, while all the others only modulated the import efficiency. The need of aminoacylation for import and for interaction with the carrier protein was shown only for a subset of mutant versions, while the others could be recognized and internalized without aminoacylation or in misacylated forms.
Collapse
Affiliation(s)
- O Kolesnikova
- FRE 2375 CNRS Modèles Levures de Pathologies Humaines, Institut de Physiologie et Chimie Biologique, 21 rue René Descartes 67084, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
6
|
Kazakova HA, Entelis NS, Martin RP, Tarassov IA. The aminoacceptor stem of the yeast tRNA(Lys) contains determinants of mitochondrial import selectivity. FEBS Lett 1999; 442:193-7. [PMID: 9929000 DOI: 10.1016/s0014-5793(98)01653-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Yeast tRNA(Lys)CUU is nucleus-encoded and is partially imported into the mitochondria. Another lysine isoacceptor, tRNA(Lys)SUU, is also nucleus-encoded but is not imported. These two tRNAs differ in 21 bases. We have previously localised import selectivity determinants in the anticodon arm. By in vitro import of mutant transcripts and by expression of mutant tRNA genes in vivo we show here that the first base pair (1:72) and the discriminator base 73 are also relevant to import selectivity. Replacement of bases 1:72 in tRNA(Lys)SUU by those of tRNA(Lys)CUU makes it importable with a transport efficiency similar to natural.
Collapse
Affiliation(s)
- H A Kazakova
- Division of Molecular Biology, Biology Faculty, Moscow State University, Russia
| | | | | | | |
Collapse
|
7
|
Entelis NS, Kieffer S, Kolesnikova OA, Martin RP, Tarassov IA. Structural requirements of tRNALys for its import into yeast mitochondria. Proc Natl Acad Sci U S A 1998; 95:2838-43. [PMID: 9501177 PMCID: PMC19656 DOI: 10.1073/pnas.95.6.2838] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, one of the two cytoplasmic lysine tRNAs, tRNACUULys, is partially associated with the mitochondrial matrix. Mitochondrial import of this tRNA requires binding to the precursor of the mitochondrial lysyl-tRNA synthetase, pre-MSK, and aminoacylation by the cytoplasmic lysyl-tRNA synthetase, KRS, appears to be a prerequisite for this binding. The second lysine isoacceptor tRNAmnmLys5s2UUU [where 5-[(methylamino)-methyl]-2-thiouridine is mnm5s2U] is exclusively localized in the cytoplasm. To study import determinants within the tRNACUULys molecule, we introduced a panel of replacements in the original sequences of the imported and nonimported lysine tRNAs that correspond to domains or individual residues that differ between these two isoacceptors. The mutant transcripts were tested for import, aminoacylation, and binding to pre-MSK. Import and aminoacylation efficiencies correlate well for the majority of mutant transcripts. However, some poorly aminoacylated transcripts were rather efficiently imported. Surprisingly, these transcripts retained binding capacity to pre-MSK. In fact, all imported transcripts retained pre-MSK binding capacity but nonimported versions did not, suggesting that this binding, rather than aminoacylation, is essential for import. Substitution of the anticodon arm of tRNACUULys with that of tRNAmnmLys5s2UUU abolished import without affecting aminoacylation. A version of tRNAmnmLys5s2UUU with an anticodon CUU was efficiently imported in vitro and was also found to be imported in vivo. This implies that the anticodon arm, especially position 34, is important for recognition by the import machinery. A nicked tRNACUULys transcript is still imported but its import requires reannealing of the two tRNA moieties, which implies that tRNACUULys is imported as a folded molecule.
Collapse
Affiliation(s)
- N S Entelis
- Unité Propre de Recherche 9005 du Centre National de la Recherche Scientifique, Mécanismes Moléculaires de la Division Cellulaire et du Développement, Strasbourg, France
| | | | | | | | | |
Collapse
|
8
|
Isel C, Ehresmann C, Keith G, Ehresmann B, Marquet R. Two step synthesis of (-) strong-stop DNA by avian and murine reverse transcriptases in vitro. Nucleic Acids Res 1997; 25:545-52. [PMID: 9016594 PMCID: PMC146480 DOI: 10.1093/nar/25.3.545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Retroviral reverses transcriptases (RTs) are RNA- and DNA-dependent DNA polymerases that use a tRNA bound at the so-called primer binding site (PBS) located near the 5'end of the genomic RNA as primer. Thus, RTs must be able to accommodate both RNA and DNA in the primer strand. To test whether the natural primer confers some advantages to the priming process, we compared initiation of reverse transcription of avian and murine retroviral RNAs, using either their natural tRNA primer, tRNATrp and tRNAPro, respectively, or synthetic 18mer oligodeoxyribonucleotides (ODNs) and oligoribonucleotides (ORNs) complementary to their PBS. In both retroviral systems, the initial extension of ODNs was fast and processive. The initial extension of ORNs, tRNATrp and tRNAPro was much slower and distributive, giving rise to the transient accumulation of short pausing products. Synthesis of (-) strong-stop DNA was delayed when using ORNs and tRNAs, compared to ODNs. Even though ORNs and tRNAs were initially extended at the same rate, the short pausing products were more rapidly extended when using the tRNA primers. As a consequence, synthesis of (-) strong-stop DNA was much more efficient with tRNA primers, compared to ORNs. Taken together, these results suggest that the tRNA-primed synthesis of (-) strong-stop DNA is a two-step process, as already observed for HIV-1. The initiation mode corresponds to the initial non-processive nucleotide addition and extension of the short pausing products. It is more efficient with the natural primers than with ORNs. Initiation is followed by a more processive and unspecific elongation mode. Elongation is observed when the primer strand is DNA, i.e. when using the ODNs as primers or when the ORN and tRNA primers have been extended by a sufficient number (depending on the retroviral system) of deoxyribonucleotides.
Collapse
Affiliation(s)
- C Isel
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue R. Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
9
|
Païs de Barros JP, Keith G, El Adlouni C, Glasser AL, Mack G, Dirheimer G, Desgrès J. 2'-O-methyl-5-formylcytidine (f5Cm), a new modified nucleotide at the 'wobble' of two cytoplasmic tRNAs Leu (NAA) from bovine liver. Nucleic Acids Res 1996; 24:1489-96. [PMID: 8628682 PMCID: PMC145814 DOI: 10.1093/nar/24.8.1489] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nucleotide analysis of a cytoplasmic tRNA(Leu) isolated from bovine liver revealed the presence of an unknown modified nucleotide N. The corresponding N nucleoside was isolated by different enzymatic and chromatographic protocols from a partially purified preparation of this tRNA(Leu). Its chemical characterization was determined from its chromatographic properties, UV-absorption spectroscopy and mass spectrometric measurements, as well as from those of the borohydride reduced N nucleoside and its etheno-trimethylsilyl derivative. The structure of N was established as 2'-O-methyl-5-formylcytidine (f5CM), and its reduced derivative as 2'-O-methyl-5-hydroxy-methylcytidine (om5Cm). By sequencing the bovine liver tRNA(Leu), the structure of the anticodon was determined as f5CmAA. In addition, the nucleotide sequence showed two primary structures differing only by the nucleotide 47c which is either uridine or adenosine. The two slightly differing bovine liver tRNAs-Leu(f5CmAA) are the only tRNAs so far sequenced which contain f5Cm. The role of such a modified cytidine at the first position of the anticodon is discussed in terms of decoding properties for the UUG and UUA leucine codons. Recently, precise evidence was obtained for the presence of f5Cm at the same position in tRNAs(Leu)(NAA) isolated from rabbit and lamb liver. Therefore, the 2'-O-methyl-5-formyl modification of cytidine at position 34 could be a general feature of cytoplasmic tRNAs(Leu)(NAA) in mammals.
Collapse
Affiliation(s)
- J P Païs de Barros
- Laboratoire de Biochimie Medicale, Equipe de Recherche Biochimie-Biologie Cellulaire, Faculte de Medecine et Centre Hospitalier Universitaire, Universite de Bourgogne, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
We have isolated and sequenced chloroplast (chl) and cytoplasmic (cyt) cysteine tRNAs from Nicotiana rustica. Both tRNAs carry a GCA anticodon but beyond that differ considerably in their nucleotide sequences. One obvious distinction resides in the presence of N6-isopentenyladenosine (i6A) and 1-methylguanosine (m1G) at position 37 in chl and cyt tRNA(Cys) respectively. In order to study the potential suppressor activity of tRNAs(Cys) we used in vitro synthesized zein mRNA transcripts in which an internal UGA stop codon had been placed in either the tobacco rattle virus (TRV)- or tobacco mosaic virus (TMV)-specific codon context. In vitro translation was carried out in a messenger- and tRNA-dependent wheat germ extract. Both tRNA(Cys) isoacceptors stimulate read-through over the UGA stop codon, however, chl tRNA(GCA)Cys is more efficient than the cytoplasmic counterpart. The UGA in the two viral codon contexts is suppressed to about the same extent by either of the two tRNAs(Cys), whereas UGA in the beta-globin context is not recognized at all. The interaction of tRNA(GCA)Cys with UGA requires an unconventional G:A base pair in the wobble position, as postulated earlier for plant tRNA(G psi A)Tyr misreading the UAA stop codon. This is the first case that a cysteine-accepting tRNA has been characterized as a natural UGA suppressor.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon
- Base Composition
- Base Sequence
- Chloroplasts/metabolism
- Codon/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Plant Viruses/genetics
- Plants, Toxic
- RNA, Messenger/biosynthesis
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/metabolism
- Suppression, Genetic
- Nicotiana/metabolism
- Tobacco Mosaic Virus/genetics
- Transcription, Genetic
- Zein/biosynthesis
Collapse
Affiliation(s)
- C Urban
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
11
|
Marechal-Drouard L, Small I, Weil JH, Dietrich A. Transfer RNA import into plant mitochondria. Methods Enzymol 1995; 260:310-27. [PMID: 8592456 DOI: 10.1016/0076-6879(95)60148-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
MESH Headings
- Biological Transport
- Cell Fractionation/methods
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA, Mitochondrial/isolation & purification
- DNA, Mitochondrial/metabolism
- DNA, Plant/isolation & purification
- DNA, Plant/metabolism
- Electrophoresis, Gel, Two-Dimensional/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Electroporation/methods
- Gene Expression
- Genes, Plant
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Plants/metabolism
- Plants, Genetically Modified
- RNA/isolation & purification
- RNA/metabolism
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Plant/isolation & purification
- RNA, Plant/metabolism
- RNA, Ribosomal/isolation & purification
- RNA, Ribosomal/metabolism
- RNA, Transfer/isolation & purification
- RNA, Transfer/metabolism
- Solanum tuberosum/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- L Marechal-Drouard
- Institut de Biologie Moléculaire des Plante du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
12
|
Blanc-Potard AB, Bossi L. Phenotypic suppression of DNA gyrase deficiencies by a deletion lowering the gene dosage of a major tRNA in Salmonella typhimurium. J Bacteriol 1994; 176:2216-26. [PMID: 7512550 PMCID: PMC205342 DOI: 10.1128/jb.176.8.2216-2226.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
One of the pleiotropic phenotypes of mutations affecting DNA gyrase activity in Salmonella typhimurium is the constitutive deattenuation of the histidine operon. In the present work, we isolated and characterized a suppressor mutation which restores his attenuation in the presence of a defective gyrase. Such a suppressor, initially named sgdA1 (for suppressor gyrase deficiency), was found to correct additional phenotypes associated with defective gyrase function. These include the aberrant nucleoid partitioning of a gyrB mutant and the conditional lethality of a gyrA mutation. Furthermore, the sgdA1 mutation was found to confer low-level resistance to nalidixic acid. The last phenotype permitted isolation of a number of additional sgdA mutants. Genetic analysis established the recessive character of these alleles as well as the position of the sgdA locus at 57 U on the Salmonella genetic map. All of the sgdA mutants result from the same molecular event: a deletion removing three of the four tandemly repeated copies of argV, the gene which specifies tRNA(2Arg), the major arginine isoacceptor tRNA. These findings, combined with the observation of some Sgd-like phenotypes in a tRNA modification mutant (hisT mutant), lead us to propose that protein synthesis contributes, directly or indirectly, to the pathology of gyrase alterations in growing bacteria. We discuss plausible mechanisms which may be responsible for these effects.
Collapse
MESH Headings
- Base Sequence
- DNA Topoisomerases, Type II/genetics
- Gene Deletion
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Genes, Suppressor/genetics
- Genes, Suppressor/physiology
- Histidine/genetics
- Histidine/metabolism
- Molecular Sequence Data
- Mutation/drug effects
- Mutation/genetics
- Mutation/physiology
- Nalidixic Acid/pharmacology
- Phenotype
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/physiology
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
Collapse
Affiliation(s)
- A B Blanc-Potard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | |
Collapse
|
13
|
Pochart P, Agoutin B, Fix C, Keith G, Heyman T. A very poorly expressed tRNA(Ser) is highly concentrated together with replication primer initiator tRNA(Met) in the yeast Ty1 virus-like particles. Nucleic Acids Res 1993; 21:1517-21. [PMID: 8386834 PMCID: PMC309356 DOI: 10.1093/nar/21.7.1517] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The analysis of the tRNAs associated to the virus-like particles produced by the Ty1 element revealed the specific packaging of three major tRNA species, in about equal amounts: the replication primer initiator tRNA(Met), the tRNA(Ser)AGA and a tRNA undetected until now as an expressed species in yeast. The latter tRNA is coded by the already described tDNA(Ser)GCT. This tRNA is enriched more than 150 fold in the particles as compared to its content in total cellular tRNA where it represents less than 0.1% (initiator tRNA(Met) and tRNA(Ser)AGA being 11 and 4 fold enriched respectively). This tRNA is the only species coded by the tDNA(Ser)GCT gene which is found in three copies per genome since no other corresponding expressed tRNA could be detected. This gene is thus very poorly expressed. The high concentration of tRNA(Ser)GCU in the particles compared to its very low cellular content led us to consider its possible implication in Ty specific processes.
Collapse
Affiliation(s)
- P Pochart
- Institut Curie-Biologie, Centre Universitaire, Orsay, France
| | | | | | | | | |
Collapse
|