1
|
Abdoul-Zabar J, Sorel I, Hélaine V, Charmantray F, Devamani T, Yi D, de Berardinis V, Louis D, Marlière P, Fessner WD, Hecquet L. Thermostable Transketolase fromGeobacillus stearothermophilus:Characterization and Catalytic Properties. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
LILLY MD, CHAUHAN R, FRENCH C, GYAMERAH M, HOBBS GR, HUMPHREY A, ISUPOV M, LITTLECHILD JA, MITRA RK, MORRIS KG, RUPPRECHT M, TURNER NJ, WARD JM, WILLETTS AJ, WOODLEY JM. Carbon-Carbon Bond Synthesis: The Impact of rDNA Technology on the Production and Use of E. coli Transketolase. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1996.tb40589.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW. Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 2001; 123:10173-82. [PMID: 11603966 DOI: 10.1021/ja0109444] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expense and limited availability of shikimic acid isolated from plants has impeded utilization of this hydroaromatic as a synthetic starting material. Although recombinant Escherichia coli catalysts have been constructed that synthesize shikimic acid from glucose, the yield, titer, and purity of shikimic acid are reduced by the sizable concentrations of quinic acid and 3-dehydroshikimic acid that are formed as byproducts. The 28.0 g/L of shikimic acid synthesized in 14% yield by E. coli SP1.1/pKD12.138 in 48 h as a 1.6:1.0:0.65 (mol/mol/mol) shikimate/quinate/dehydroshikimate mixture is typical of synthesized product mixtures. Quinic acid formation results from the reduction of 3-dehydroquinic acid catalyzed by aroE-encoded shikimate dehydrogenase. Is quinic acid derived from reduction of 3-dehydroquinic acid prior to synthesis of shikimic acid? Alternatively, does quinic acid result from a microbe-catalyzed equilibration involving transport of initially synthesized shikimic acid back into the cytoplasm and operation of the common pathway of aromatic amino acid biosynthesis in the reverse of its normal biosynthetic direction? E. coli SP1.1/pSC5.214A, a construct incapable of de novo synthesis of shikimic acid, catalyzed the conversion of shikimic acid added to its culture medium into a 1.1:1.0:0.70 molar ratio of shikimate/quinate/dehydroshikimate within 36 h. Further mechanistic insights were afforded by elaborating the relationship between transport of shikimic acid and formation of quinic acid. These experiments indicate that formation of quinic acid during biosynthesis of shikimic acid results from a microbe-catalyzed equilibration of initially synthesized shikimic acid. By apparently repressing shikimate transport, the aforementioned E. coli SP1.1/pKD12.138 synthesized 52 g/L of shikimic acid in 18% yield from glucose as a 14:1.0:3.0 shikimate/quinate/dehydroshikimate mixture.
Collapse
Affiliation(s)
- D R Knop
- The Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Ikeda M, Kamada N, Takano Y, Nakano T. Molecular analysis of the Corynebacterium glutamicum transketolase gene. Biosci Biotechnol Biochem 1999; 63:1806-10. [PMID: 10586507 DOI: 10.1271/bbb.63.1806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence.
Collapse
Affiliation(s)
- M Ikeda
- Technical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Yamaguchi, Japan.
| | | | | | | |
Collapse
|
6
|
Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998; 30:1297-318. [PMID: 9924800 DOI: 10.1016/s1357-2725(98)00095-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.
Collapse
Affiliation(s)
- G Schenk
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Schörken U, Sprenger GA. Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:229-43. [PMID: 9655911 DOI: 10.1016/s0167-4838(98)00071-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes are increasingly being used to perform regio- and enantioselective reactions in chemoenzymatic syntheses. To utilize enzymes for unphysiological reactions and to yield novel products, a broad substrate spectrum is desirable. Thiamin diphosphate (ThDP)-dependent enzymes vary in their substrate tolerance from rather strict substrate specificity (phosphoketolases, glyoxylate carboligase) to more permissive enzymes (transketolase, dihydroxyacetone synthase, pyruvate decarboxylase) and therefore differ in their potential to be used as biocatalysts. We give an overview of the known substrate spectra of ThDP-dependent enzymes and present examples of multi-enzyme or chemoenzymatic approaches which involve ThDP-dependent enzymes as biocatalysts to obtain pharmaceutical compounds as ephedrine and glycosidase inhibitors, sex pheromones as exo-brevicomin, 13C-labeled metabolites, and other intermediates as 1-deoxyxylulose 5-phosphate, a precursor of vitamins and isoprenoids.
Collapse
Affiliation(s)
- U Schörken
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, P.O. Box 1913, D-52425 Jülich, Germany
| | | |
Collapse
|
9
|
Salamon C, Chervenak M, Piatigorsky J, Sax CM. The mouse transketolase (TKT) gene: cloning, characterization, and functional promoter analysis. Genomics 1998; 48:209-20. [PMID: 9521875 DOI: 10.1006/geno.1997.5187] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transketolase (TKT) gene is expressed 30-50 times more highly in the mature mouse cornea than in other tissues. Here, we have cloned and characterized the 30- to 40-kb single-copy mouse TKT gene. Sequence analysis supports the suggestion that present-day TKT and TKT-like genes arose from the duplication of a single common ancestral gene. A 6-bp polymorphism is present between different mouse strains in the noncoding region of exon 2. 5' RACE and primer extension analyses indicated that two regions separated by 630 bp are used as transcription initiation sites; both mRNAs appear to use a common initiator ATG codon. The minor distal transcription initiation site, preceded by a TATA sequence, is utilized in liver and is followed by an untranslated exon (exon 1). The major proximal transcription initiation site lies within intron 1, is used in cornea and liver, lacks a TATA sequence, is GC rich, and initiates at multiple sites within a 10-bp span, resembling the promoters of other housekeeping genes. In transfected cornea and lens cell lines, the -49/+90 fragment fused to the CAT gene acted as a minimal promoter, with higher activity noted for the -510/+91 fragment. TKT mRNA levels increased sixfold in the mouse cornea in vivo within 1-2 days of eye opening and were elevated in a lens cell line exposed to H2O2 or the glutathione-specific oxidizing agent diamide and in whole newborn mouse eyes incubated in the presence of light, consistent with multiple consensus stress-inducible control sequences in the TKT promoter regions. Taken together, these observations suggest that oxidative stress may play a role in the regulation of this gene in the cornea.
Collapse
Affiliation(s)
- C Salamon
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|
10
|
Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci U S A 1997; 94:12857-62. [PMID: 9371765 PMCID: PMC24228 DOI: 10.1073/pnas.94.24.12857] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1997] [Accepted: 09/24/1997] [Indexed: 02/05/2023] Open
Abstract
In Escherichia coli, 1-deoxy-D-xylulose (or its 5-phosphate, DXP) is the biosynthetic precursor to isopentenyl diphosphate [Broers, S. T. J. (1994) Dissertation (Eidgenössische Technische Hochschule, Zürich)], thiamin, and pyridoxol [Himmeldirk, K., Kennedy, I. A., Hill, R. E., Sayer, B. G. & Spenser, I. D. (1996) Chem. Commun. 1187-1188]. Here we show that an open reading frame at 9 min on the chromosomal map of E. coli encodes an enzyme (deoxyxylulose-5-phosphate synthase, DXP synthase) that catalyzes a thiamin diphosphate-dependent acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield DXP. We have cloned and overexpressed the gene (dxs), and the enzyme was purified 17-fold to a specific activity of 0.85 unit/mg of protein. The reaction catalyzed by DXP synthase yielded exclusively DXP, which was characterized by 1H and 31P NMR spectroscopy. Although DXP synthase of E. coli shows sequence similarity to both transketolases and the E1 subunit of pyruvate dehydrogenase, it is a member of a distinct protein family, and putative DXP synthase sequences appear to be widespread in bacteria and plant chloroplasts.
Collapse
Affiliation(s)
- G A Sprenger
- Institut für Biotechnologie 1 des Forschungszentrums Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dominy CN, Deane SM, Rawlings DE. A geographically widespread plasmid from Thiobacillus ferrooxidans has genes for ferredoxin-, FNR-, prismane- and NADH-oxidoreductase-like proteins which are also located on the chromosome. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3123-3136. [PMID: 9353917 DOI: 10.1099/00221287-143-10-3123] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During a search for genes encoding electron transport proteins from a Thiobacillus ferroxidans ATCC 33020 gene bank, a 19.8 kb plasmid, pTF5, which conferred increased sensitivity to the antimicrobial agent metronidazole upon an Escherichia coli mutant, was isolated and cloned in E. coli. The plasmid had an identical restriction enzyme map to a plasmid which has been found in T. ferrooxidans strains isolated from many different parts of the world. The plasmid was present at between two and four copies per genome and contained a region of approximately 5-6 kb which was also found on the chromosome. This region was sequenced and found to have four complete ORFs, which when translated had high percentage amino acid similarity to [3Fe-4S,4Fe-4S] ferredoxins, proteins of the FNR regulator family, prismane-like proteins and the NADH oxidoreductase subunit of a methane monooxygenase. In vitro protein analysis using an E. coli-derived transcription-translation system indicated that three of the four products (FdxA, PsmA and RedA) were expressed in the heterologous system. Ferredoxins, prismane-like proteins and NADH oxidoreductases are redox-active proteins and it is likely that the proteins on pTF5 represent an electron transport system of as yet unknown function. Surprisingly, although genes for redox-active proteins have been isolated from other bacteria by screening gene banks for increased sensitivity to metronidazole, the region of pTF5 containing the genes for these proteins was not responsible for the increase in metronidazole sensitivity conferred by the plasmid. The region of pTF5 which did confer increased metronidazole sensitivity to an E. coli metronidazole-resistant mutant was a 319 bp region of DNA close to the origin of plasmid replication. This region contained no ORFs and was identical to that previously reported for the replicon of a 9.8 kb T. ferrooxidans plasmid, pTF191.
Collapse
Affiliation(s)
- Clifford N Dominy
- Department of Microbiology, University of Cape Town, Private Bag Rondebosch, Cape Town 7700, South Africa
| | - Shelly M Deane
- Department of Microbiology, University of Cape Town, Private Bag Rondebosch, Cape Town 7700, South Africa
| | - Douglas E Rawlings
- Department of Microbiology, University of Cape Town, Private Bag Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
12
|
Schiött T, von Wachenfeldt C, Hederstedt L. Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J Bacteriol 1997; 179:1962-73. [PMID: 9068642 PMCID: PMC178920 DOI: 10.1128/jb.179.6.1962-1973.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gram-positive, endospore-forming bacterium Bacillus subtilis contains several membrane-bound c-type cytochromes. We have isolated a mutant pleiotropically deficient in cytochromes c. The responsible mutation resides in a gene which we have named ccdA (cytochrome c defective). This gene is located at 173 degrees on the B. subtilis chromosome. The ccdA gene was found to be specifically required for synthesis of cytochromes of the c type. CcdA is a predicted 26-kDa integral membrane protein with no clear similarity to any known cytochrome c biogenesis protein but seems to be related to a part of Escherichia coli DipZ/DsbD. The ccdA gene is cotranscribed with two other genes. These genes encode a putative 13.5-kDa single-domain response regulator, similar to B. subtilis CheY and Spo0F, and a predicted 18-kDa hydrophobic protein with no similarity to any protein in databases, respectively. Inactivation of the three genes showed that only ccdA is required for cytochrome c synthesis. The results also demonstrated that cytochromes of the c type are not needed for growth of B. subtilis.
Collapse
Affiliation(s)
- T Schiött
- Department of Microbiology, Lund University, Sweden
| | | | | |
Collapse
|
13
|
French C, Ward JM. Production and modification of E. coli transketolase for large-scale biocatalysis. Ann N Y Acad Sci 1996; 799:11-8. [PMID: 8958067 DOI: 10.1111/j.1749-6632.1996.tb33171.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C French
- Department of Biochemistry and Molecular Biology, University College London, United Kingdom
| | | |
Collapse
|
14
|
Snell KD, Draths KM, Frost JW. Synthetic Modification of the Escherichia coli Chromosome: Enhancing the Biocatalytic Conversion of Glucose into Aromatic Chemicals. J Am Chem Soc 1996. [DOI: 10.1021/ja9538041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. D. Snell
- Contribution from the Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322
| | - K. M. Draths
- Contribution from the Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322
| | - J. W. Frost
- Contribution from the Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322
| |
Collapse
|
15
|
de Sury d'Aspremont R, Toussaint B, Vignais PM. Isolation of Rhodobacter capsulatus transketolase: cloning and sequencing of its structural tktA gene. Gene 1996; 169:81-4. [PMID: 8635754 DOI: 10.1016/0378-1119(95)00796-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rhodobacter capsulatus transketolase (Tkt) protein has been isolated from strain B10 by heparin affinity chromatography. Oligodeoxyribonucleotides (oligo) constructed as based on the amino-acid sequences were used for polymerase chain reaction (PCR) amplification on total genomic DNA. Southern hybridization with the PCR product as a probe allowed the isolation of a 5-kb PstI DNA fragment containing the structural Tkt-encoding gene (tktA) which was cloned and sequenced. The deduced tktA product of 671 aa (72815 Da) shares 59% identity with Rhodobacter sphaeroides Tkt.
Collapse
Affiliation(s)
- R de Sury d'Aspremont
- CEA Grenoble, Biochimie Microbienne, Département de Biologie Moléculaire et Structurale, France
| | | | | |
Collapse
|
16
|
Meijer WG, van den Bergh ER, Smith LM. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR. J Bacteriol 1996; 178:881-7. [PMID: 8550526 PMCID: PMC177738 DOI: 10.1128/jb.178.3.881-887.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In a previous study, a gene (pgk) encoding phosphoglycerate kinase was isolated from a genomic library of Xanthobacter flavus. Although this gene is essential for autotrophic growth, it is not located within the cbb operon encoding other Calvin cycle enzymes. An analysis of the nucleotide sequence upstream from pgk showed the presence of a gene encoding glyceraldehyde-3-phosphate dehydrogenase and the 3' end of an open reading frame encoding a protein which is 50% identical to transketolase encoded by cbbT of X. flavus. Gene fusions between pgk and lacZ demonstrated that the gap and pgk genes are organized in an operon. Induction of the Calvin cycle in heterotrophically growing cells resulted in a sixfold increase in phosphoglycerate kinase activity in parallel with the appearance of ribulosebisphosphate carboxylase activity. This superinduction of phosphoglycerate kinase did not occur in an X. flavus strain in which cbbR, encoding the transcriptional activator of the cbb operon, was disrupted. The failure to superinduce the gap-pgk operon is not caused by the absence of a functional Calvin cycle, since the expression of this operon in an X. flavus strain with a defective ribulosebisphosphate carboxylase enzyme was the same as the expression in the wild type. It is therefore concluded that the expression of both the cbb and gap-pgk operons is controlled by CbbR.
Collapse
Affiliation(s)
- W G Meijer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, The Netherlands
| | | | | |
Collapse
|
17
|
|
18
|
Abstract
The pentose-phosphate pathway of Escherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phosphogluconate dehydrogenase (gnd) is regulated by the growth rate in E. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among other genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genes tktA and tktB), ribose-5-phosphate isomerase (rpiA and rpiB) and transaldolase (talA and talB).
Collapse
Affiliation(s)
- G A Sprenger
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH
| |
Collapse
|
19
|
Sprenger GA, Schörken U, Sprenger G, Sahm H. Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains. J Bacteriol 1995; 177:5930-6. [PMID: 7592346 PMCID: PMC177421 DOI: 10.1128/jb.177.20.5930-5936.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A previously recognized open reading frame (T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono, K. Mizobuchi, and A. Nakata, Nucleic Acids Res. 20:3305-3308) from the 0.2-min region of the Escherichia coli K-12 chromosome is shown to encode a functional transaldolase activity. After cloning of the gene onto high-copy-number vectors, transaldolase B (D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate dihydroxyacetone transferase; EC 2.2.1.2) was overexpressed up to 12.7 U mg of protein-1 compared with less than 0.1 U mg of protein-1 in wild-type homogenates. The enzyme was purified from recombinant E. coli K-12 cells by successive ammonium sulfate precipitations (45 to 80% and subsequently 55 to 70%) and two anion-exchange chromatography steps (Q-Sepharose FF, Fractogel EMD-DEAE tentacle column; yield, 130 mg of protein from 12 g of cell wet weight) and afforded an apparently homogeneous protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit size of 35,000 +/- 1,000 Da. As the enzyme had a molecular mass of 70,000 Da by gel filtration, transaldolase B is likely to form a homodimer. N-terminal amino acid sequencing of the protein verified its identity with the product of the cloned gene talB. The specific activity of the purified enzyme determined at 30 degrees C with the substrates fructose-6-phosphate (donor of C3 compound) and erythrose-4-phosphate (acceptor) at an optimal pH (50 mM glycylglycine [pH 8.5]) was 60 U mg-1.Km values for the substrates fructose-6-phosphate and erythrose-4-phosphate were determined at 1,200 and 90 microM, respectively. Kinetic constants for the other two physiological reactants, D,L-glyceraldehyde 3-phosphate (Km, 38 microM; relative activity [V(rel)], 8%) and sedoheptulose-7-phosphate (K(m), 285 microM; V(rel), 5%) were also determined. Fructose acted as a C(3) donor at a high apparent K(m) (>/=M) and with a V(rel) of 12%. The enzyme was inhibited by Tris-HCl, phosphate, or sugars with the L configuration at C(2) (L-glyceraldehyde, D-arabinose-5-phosphate).
Collapse
Affiliation(s)
- G A Sprenger
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | |
Collapse
|
20
|
Sprenger GA, Schörken U, Sprenger G, Sahm H. Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:525-32. [PMID: 7607225 DOI: 10.1111/j.1432-1033.1995.0525h.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transketolase A was purified to apparent homogeneity from recombinant Escherichia coli K12 cells carrying the homologous cloned tktA gene on a pUC19-derived plasmid. These recombinant cells exhibited a transketolase activity in crude extracts of up to 9.7 U/mg compared to < or = 0.1 U/mg in wild-type cells. Transketolase A was purified from crude extracts of a recombinant strain by successive ammonium sulfate precipitations and two anion-exchange chromatography steps (Q-Sepharose FF, Fractogel EMD-DEAE column) and afforded an apparently homogeneous protein band on SDS/PAGE. The enzyme, both in its active and apoform, had a molecular mass of 145,000 Da (+/- 10,000 Da), judged by gel-filtration chromatography. Subunits of 73,000 Da (+/- 2000 Da) were determined on SDS/PAGE, thus, transketolase A most likely forms a homodimer. N-terminal amino acid sequencing of the protein verified the identity with the cloned gene tktA. The specific activity of the purified enzyme, determined at 30 degrees C with the substrates xylulose 5-phosphate (donor of C2 compound) and ribose 5-phosphate (acceptor) at an optimal pH (50 mM glycylglycine, pH 8.5), was 50.4 U/mg. Km values for the substrates xylulose 5-phosphate and ribose 5-phosphate were 160 microM and 1.4 mM, respectively. Km values for the other physiological substrates of transketolase A were 90 microM for erythrose 4-phosphate (best acceptor substrate), 2.1 mM for D,L-glyceraldehyde 3-phosphate, 1.1 mM for fructose 6-phosphate, and 4 mM for sedoheptulose 7-phosphate. Hydroxypyruvate served as alternative donor (Km = 18 mM). Unphosphorylated acceptor compounds were formaldehyde (Km = 31 mM), glycolaldehyde (14 mM), D,L-glyceraldehyde (10 mM) and D-erythrose (150 mM). The enzyme was competitively inhibited by D-arabinose 5-phosphate (K = 6 mM at a concentration of 2.5 mM D-arabinose 5-phosphate) or by the chelating agent EDTA. The inactive apoform of transketolase A was yielded by dialysis against buffer containing 10 mM EDTA, thus removing the cofactors thiamine diphosphate and divalent cations. The reconstitution of the apoenzyme proceded faster in the presence of manganese ions (Kd = 7 microM at 10 microM thiamine diphosphate) than with other divalent cations.
Collapse
Affiliation(s)
- G A Sprenger
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany
| | | | | | | |
Collapse
|