1
|
Delcea M, Greinacher A. Biophysical tools to assess the interaction of PF4 with polyanions. Thromb Haemost 2017; 116:783-791. [DOI: 10.1160/th16-04-0258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/07/2016] [Indexed: 11/05/2022]
Abstract
SummaryThe antigen in heparin-induced thrombocytopenia (HIT) is expressed on platelet factor 4 (PF4) when PF4 complexes with polyanions. In recent years, biophysical tools (e. g. circular dichroism spectroscopy, atomic force microscopy, isothermal titration calorimetry, x-ray crystallography, electron microscopy) have gained an important role to complement immunological and functional assays for better understanding the interaction of heparin with PF4. This allowed identification of those features that make PF4 immunogenic (e. g. a certain conformational change induced by the polyanion, a threshold energy of the complexes, the existence of multimeric complexes, a certain number of bonds formed by PF4 with the polyanion) and to characterize the morphology and thermal stability of complexes formed by the protein with polyanions. These findings and methods can now be applied to test new drugs for their potential to induce the HIT-like adverse drug effect by preclinical in vitro testing. The methods and techniques applied to characterize the antigen in HIT may also be helpful to better understand the mechanisms underlying other antibody-mediated disorders in thrombosis and hemostasis (e. g. acquired hemophilia, thrombotic thrombocytopenic purpura). Furthermore, understanding the mechanisms making the endogenous protein PF4 immunogenic may help to understand the mechanisms underlying other autoimmune disorders.
Collapse
|
2
|
Bertini S, Fareed J, Madaschi L, Risi G, Torri G, Naggi A. Characterization of PF4-Heparin Complexes by Photon Correlation Spectroscopy and Zeta Potential. Clin Appl Thromb Hemost 2017; 23:725-734. [PMID: 28118750 DOI: 10.1177/1076029616685430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is associated with antibodies to complexes between heparin and platelet factor 4 (PF4), a basic protein usually found in platelet alpha granules. Heparin-induced thrombocytopenia antibodies preferentially recognize macromolecular complexes formed between positively charged PF4 and polyanionic heparins over a narrow range of molar ratios. The aim of this work was to study the complexes that human PF4 forms with heparins from various species, such as porcine, bovine, and ovine; heparins from various organs, such as mucosa and lung; and different low-molecular-weight heparins (LMWHs) at several stoichiometric ratios to evaluate their sizes and charges by photo correlation spectroscopy and zeta potential measurements. The resulting data of the PF4 complexes with unfractionated heparins (UFHs), LMWHs and their fractions, and oligosaccharide components suggest that the size of aggregates is not only a simple function of average molecular weight but also of the molecular weight distribution of the sample. Moreover, it was found that lower concentrations of the tested ovine-derived mucosal heparin are required to form the large PF4/heparin complexes as compared to mucosal porcine and bovine heparin.
Collapse
Affiliation(s)
- Sabrina Bertini
- 1 G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Jawed Fareed
- 2 Department of Pathology, Cardiovascular Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Laura Madaschi
- 1 G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Giulia Risi
- 1 G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Giangiacomo Torri
- 1 G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Annamaria Naggi
- 1 G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| |
Collapse
|
3
|
Lord MS, Cheng B, Farrugia BL, McCarthy S, Whitelock JM. Platelet Factor 4 Binds to Vascular Proteoglycans and Controls Both Growth Factor Activities and Platelet Activation. J Biol Chem 2017; 292:4054-4063. [PMID: 28115521 DOI: 10.1074/jbc.m116.760660] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/18/2017] [Indexed: 11/06/2022] Open
Abstract
Platelet factor 4 (PF4) is produced by platelets with roles in both inflammation and wound healing. PF4 is stored in platelet α-granules bound to the glycosaminoglycan (GAG) chains of serglycin. This study revealed that platelet serglycin is decorated with chondroitin/dermatan sulfate and that PF4 binds to these GAG chains. Additionally, PF4 had a higher affinity for endothelial-derived perlecan heparan sulfate chains than serglycin GAG chains. The binding of PF4 to perlecan was found to inhibit both FGF2 signaling and platelet activation. This study revealed additional insight into the ways in which PF4 interacts with components of the vasculature to modulate cellular events.
Collapse
Affiliation(s)
- Megan S Lord
- From the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | - Bill Cheng
- From the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | - Brooke L Farrugia
- From the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | | | - John M Whitelock
- From the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia and
| |
Collapse
|
4
|
Block S, Greinacher A, Helm CA, Delcea M. Characterization of bonds formed between platelet factor 4 and negatively charged drugs using single molecule force spectroscopy. SOFT MATTER 2014; 10:2775-2784. [PMID: 24667820 DOI: 10.1039/c3sm52609g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Immunogenicity (i.e., the ability to initiate immune reactions) is one of the major challenges for the development of new drugs, as it may turn the developed drug therapeutically ineffective or cause severe immune-related effects. Using single molecule force spectroscopy, we study rupture forces between the positively charged, endogenous protein platelet factor 4 (PF4; also known as CXC chemokine ligand 4, CXCL4) and the antithrombotic drug heparin and other negatively charged glycosaminoglycans (GAGs), which are known to form immunogenic PF4/GAG-complexes (e.g., heparin and dextran sulfate) as well as non-immunogenic complexes (e.g., chondroitin sulfate A). Our measurements suggest that the average number of sulfate groups per monosaccharide unit (i.e., the degree of sulfation DS) does not affect the unbinding characteristics of single PF4/GAG-bonds (reaction coordinate x0 = 2.2 ± 0.2 Å, energy barrier ΔG ≈ -1 kBT). However, the average number of GAG bonds formed to a single PF4 molecule increases with increasing DS as indicated by a rising frequency of unbinding events, suggesting a multivalent binding scheme between PF4 and GAGs. Our studies show that at least three GAG bonds have to be formed to each PF4 molecule to induce epitope formation on the PF4/GAG-complex to which PF4/GAG-complex specific antibodies bind. Hence, GAG-based drugs that form less than three bonds per PF4 molecule are unlikely to constitute PF4/drug-complexes that are of immunologic relevance.
Collapse
Affiliation(s)
- Stephan Block
- ZIK HIKE - Zentrum für Innovationskompetenz, Humorale Immunreaktionen bei kardiovaskulären Erkrankunge, Fleischmannstr. 42 - 44, D-17489 Greifswald, Germany.
| | | | | | | |
Collapse
|
5
|
Fichter KM, Zhang L, Kiick KL, Reineke TM. Peptide-functionalized poly(ethylene glycol) star polymers: DNA delivery vehicles with multivalent molecular architecture. Bioconjug Chem 2008; 19:76-88. [PMID: 17915935 PMCID: PMC2650482 DOI: 10.1021/bc0701141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploring the development of nonviral nucleic acid delivery vectors with progressive, specific, and novel designs in molecular architecture is a fundamental way to investigate how aspects of chemical and physical structure impact the transfection process. In this study, macromolecules comprised of a four-arm star poly(ethylene glycol) and termini modified with one of five different heparin binding peptides have been investigated for their ability to bind, compact, and deliver DNA to mammalian cells in vitro. These new delivery vectors combine a PEG-derived stabilizing moiety with peptides that exhibit unique cell-surface binding ability in a molecular architecture that permits multivalent presentation of the cationic peptides. Five peptide sequences of varying heparin binding affinity were studied; each was found to sufficiently bind heparin for biological application. Additionally, the macromolecules were able to bind and compact DNA into particles of proper size for endocytosis. In biological studies, the PEG-star peptides displayed a range of toxicity and transfection efficiency dependent on the peptide identity. The vectors equipped with peptides of highest heparin binding affinity were found to bind DNA tightly, increase levels of cellular internalization, and display the most promising transfection qualities. Our results suggest heparin binding peptides with specific sequences hold more potential than nonspecific cationic polymers to optimize transfection efficiency while maintaining cell viability. Furthermore, the built-in multivalency of these macromolecules may allow simultaneous binding of both DNA at the core of the polyplex and heparan sulfate on the surface of the cell. This scheme may facilitate a bridging transport mechanism, tethering DNA to the surface of the cell and subsequently ushering therapeutic nucleic acids into the cell. This multivalent star shape is therefore a promising architectural feature that may be exploited in the design of future polycationic gene delivery vectors.
Collapse
Affiliation(s)
- Katye M. Fichter
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172
| | - Le Zhang
- Department of Materials Science and Engineering, University of Delaware, and Delaware Biotechnology Institute, Newark, Delaware 19716-3106
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, and Delaware Biotechnology Institute, Newark, Delaware 19716-3106
| | - Theresa M. Reineke
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172
| |
Collapse
|
6
|
Kim SH, Kiick KL. Heparin-mimetic sulfated peptides with modulated affinities for heparin-binding peptides and growth factors. Peptides 2007; 28:2125-36. [PMID: 17916399 PMCID: PMC3100587 DOI: 10.1016/j.peptides.2007.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/29/2022]
Abstract
Heterogeneity in the composition and in the polydispersity of heparin has motivated the development of homogeneous heparin mimics, and peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in selected applications. Here, we report the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for vascular endothelial growth factor isoform 165 (VEGF165); these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF165 was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in selected cases, isothermal titration calorimetry (ITC). The shortest peptide, SP(a), showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SP(a) and PF4(ZIP) was indicated via SPR (K(D)=5.27 microM) and confirmed via ITC (K(D)=8.09 microM). The binding by SP(a) of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications.
Collapse
Affiliation(s)
- Sung Hye Kim
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
| | | |
Collapse
|
7
|
Zhang L, Furst EM, Kiick KL. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J Control Release 2006; 114:130-42. [PMID: 16890321 PMCID: PMC2606047 DOI: 10.1016/j.jconrel.2006.06.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/13/2006] [Indexed: 01/12/2023]
Abstract
The design of materials in which assembly, mechanical response, and biological properties are controlled by protein-polysaccharide interactions could provide materials that mimic the biological environment and find use in the delivery of growth factors. In the investigations reported here, a heparin-binding, coiled-coil peptide, PF4 ZIP, was employed to mediate the assembly of heparinized polymers. The heparin-binding affinity of this peptide was compared with that of other heparin-binding peptides (HBP) via heparin-sepharose chromatography and surface plasmon resonance (SPR) experiments. Results from these experiments indicate that PF4 ZIP demonstrates a higher heparin-binding affinity and heparin association rate when compared to the heparin-binding domains of antithrombin III (ATIII) and heparin-interacting protein (HIP). Viscoelastic hydrogels were formed upon the association of PF4 ZIP-functionalized star poly(ethylene glycol) (PEG-PF4 ZIP) with low-molecular-weight heparin-functionalized star PEG (PEG-LMWH). The viscoelastic properties of the hydrogels can be altered via variations in the ratio of LMWH to PF4 ZIP. bFGF release from these gels have also been investigated. Comparison of the bFGF release profiles with the hydrogel erosion profiles indicates that bFGF delivery from this class of hydrogels is mainly an erosion-controlled process and the rates of bFGF release can be modulated via choice of HBP or via variations in the mechanical properties of the hydrogels. Manipulation of hydrogel physical properties and erosion profiles will provide novel materials for controlled growth factor delivery and other biomedical applications.
Collapse
Affiliation(s)
- Le Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Eric M. Furst
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
8
|
Noti C, Seeberger PH. Chemical Approaches to Define the Structure-Activity Relationship of Heparin-like Glycosaminoglycans. ACTA ACUST UNITED AC 2005; 12:731-56. [PMID: 16039522 DOI: 10.1016/j.chembiol.2005.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/05/2005] [Accepted: 05/18/2005] [Indexed: 11/25/2022]
Abstract
Heparin, the drug of choice for the prevention and treatment of thromboembolic disorders, has been shown to interact with many proteins. Despite its widespread medical use, little is known about the precise sequences that interact with specific proteins. The minimum heparin binding sequence for FGF1 and FGF2 necessary to promote signaling was investigated. A characteristic pentasaccharide sequence, DEFGH, is required to accelerate the inhibition of thrombin and factor Xa in the blood-coagulation cascade. The first synthetic heparin pentasaccharide drug has been approved in Europe and the US and is sold under the trade name Arixtra. Other oligosaccharides with different composition are under clinical investigation. The enormous interest in the assembly of heparin oligosaccharides will stimulate the development of new synthetic approaches. Heparin-oligosaccharide-synthesis automation similar to that of DNA or peptide synthesis will play an important role.
Collapse
Affiliation(s)
- Christian Noti
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology, Wolfgang-Pauli-Strasse 10, HCI F315, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
9
|
|
10
|
Abstract
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related heparan sulfate are complex linear polymers comprised of a mixture of chains of different length, having variable sequences. Heparan sulfate is ubiquitously distributed on the surfaces of animal cells and in the extracellular matrix. It also mediates various physiologic and pathophysiologic processes. Difficulties in evaluating the role of heparin and heparan sulfate in vivo may be partly ascribed to ignorance of the detailed structure and sequence of these polysaccharides. In addition, the understanding of carbohydrate-protein interactions has lagged behind that of the more thoroughly studied protein-protein and protein-nucleic acid interactions. The recent extensive studies on the structural, kinetic, and thermodynamic aspects of the protein binding of heparin and heparan sulfate have led to an improved understanding of heparin-protein interactions. A high degree of specificity could be identified in many of these interactions. An understanding of these interactions at the molecular level is of fundamental importance in the design of new highly specific therapeutic agents. This review focuses on aspects of heparin structure and conformation, which are important for its interactions with proteins. It also describes the interaction of heparin and heparan sulfate with selected families of heparin-binding proteins.
Collapse
Affiliation(s)
- Ishan Capila
- S328 College of Pharmacy, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | | |
Collapse
|
11
|
|
12
|
|
13
|
Antibodies From Patients With Heparin-Induced Thrombocytopenia/Thrombosis Recognize Different Epitopes on Heparin: Platelet Factor 4. Blood 1998. [DOI: 10.1182/blood.v91.3.916.916_916_922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies associated with heparin-induced thrombocytopenia/thrombosis (HITT) are now thought to be specific for complexes formed between heparin and platelet factor 4 (PF4), a basic protein found normally in platelet alpha granules. How these antibodies cause thrombocytopenia and, in some patients, thrombosis, is not fully understood, in part because purified antibodies that could be labeled and used as probes to characterize target epitopes have not been available. We developed a novel method for antibody purification involving binding to and elution from PF4 complexed to heparin immobilized by end-linkage (EL) to a solid phase. Isolated antibodies were functional and after biotinylation, reacted with heparin: PF4 complexes in the same manner as unlabeled antibodies. Using these probes, we found that antibodies from 11 patients with HITT recognized two, and probably three, distinct sites on heparin: PF4 complexes. The antibodies did not bind to PF4 complexed with heparin immobilized by multiple chemical cross-linkages, suggesting that the heparin molecule must be in a flexible, relatively unconstrained state to react with PF4 in such a way as to create sites for HITT antibody binding.
Collapse
|
14
|
Antibodies From Patients With Heparin-Induced Thrombocytopenia/Thrombosis Recognize Different Epitopes on Heparin: Platelet Factor 4. Blood 1998. [DOI: 10.1182/blood.v91.3.916] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Antibodies associated with heparin-induced thrombocytopenia/thrombosis (HITT) are now thought to be specific for complexes formed between heparin and platelet factor 4 (PF4), a basic protein found normally in platelet alpha granules. How these antibodies cause thrombocytopenia and, in some patients, thrombosis, is not fully understood, in part because purified antibodies that could be labeled and used as probes to characterize target epitopes have not been available. We developed a novel method for antibody purification involving binding to and elution from PF4 complexed to heparin immobilized by end-linkage (EL) to a solid phase. Isolated antibodies were functional and after biotinylation, reacted with heparin: PF4 complexes in the same manner as unlabeled antibodies. Using these probes, we found that antibodies from 11 patients with HITT recognized two, and probably three, distinct sites on heparin: PF4 complexes. The antibodies did not bind to PF4 complexed with heparin immobilized by multiple chemical cross-linkages, suggesting that the heparin molecule must be in a flexible, relatively unconstrained state to react with PF4 in such a way as to create sites for HITT antibody binding.
Collapse
|
15
|
Stringer SE, Gallagher JT. Specific binding of the chemokine platelet factor 4 to heparan sulfate. J Biol Chem 1997; 272:20508-14. [PMID: 9252363 DOI: 10.1074/jbc.272.33.20508] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Platelet factor 4 is a tetrameric heparin binding chemokine released from the alpha-granules of activated platelets. In this study we show that platelet factor 4 binds with high affinity and specificity to an approximately 9-kDa sequence in heparan sulfate, which it protects from degradation by heparinase enzymes. This protected fragment is enriched in N-sulfated disaccharides and iduronate 2-O-sulfate residues, the latter being important for binding to platelet factor 4. The major structural motif of the fragment appears to consist of a pair of sulfated domains positioned at both ends separated by a central mainly N-acetylated region. On the basis of these findings, we propose a model in which the heparan sulfate fragment wraps around the ring of positive charges on platelet factor 4 with the iduronate 2-O-sulfates within the sulfated domains binding strongly to lysine clusters on opposite faces of the tetramer.
Collapse
Affiliation(s)
- S E Stringer
- Cancer Research Campaign, Manchester, M20 9BX, United Kingdom
| | | |
Collapse
|
16
|
Lomonte B, Moreno E, Tarkowski A, Hanson LA, Maccarana M. Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43961-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Talpas CJ, Lee L. Comparative studies of the interaction of human and bovine platelet factor 4 with heparin using histidine NMR resonances as spectroscopic probes. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:303-9. [PMID: 8397788 DOI: 10.1007/bf01028192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pKa values of His-38 and His-50 of the heparin-binding protein, bovine platelet factor 4, are 5.6 and 6.5, respectively, as determined by 1H NMR spectroscopy. The 1H NMR resonance of His-38 of bovine platelet factor 4 which exhibits the lower pKa value is perturbed upon heparin binding to a greater degree than the resonance of His-50. Human platelet factor 4 contains the homologous residues His-23 and His-35. The pKa values of the two histidine residues of human platelet factor 4 are 5.3 and 6.4. The 1H NMR resonance of the histidine of human platelet factor 4 exhibiting the lower pKa value also is perturbed upon heparin binding to a greater degree than the histidine resonance exhibiting the higher pKa, thereby suggesting comparable heparin-protein interactions in bovine and human platelet factor 4.
Collapse
Affiliation(s)
- C J Talpas
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | | |
Collapse
|
18
|
Abstract
A model of heparin bound to bovine platelet factor 4 (BPF4) was completed using a graphically designed heparin molecule and the crystallographic coordinates of the native bovine platelet factor 4 tetramer. The oligosaccharides had a chain length of at least eight disaccharide units with the major repeating disaccharide unit consisting of (1----4)-O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1----4)-(2-deoxy-2-sulfamino-2-D-glucopyranosyl 6-sulfate). Each disaccharide unit carried a -4.0 charge. The structure of BPF4 was solved to 2.6 A resolution with R = 0.237. Each monomer of BPF4 contains an alpha-helix lying across 3 strands of antiparallel beta-sheet. Each helix has four lysines, which have been implicated in heparin binding. These lysine residues are predominantly on one side of the helix and are solvent accessible. Electrostatic calculations performed on the BPF4 tetramer show a ring of strong, positive charge which runs perpendicularly across the helices. Included in this ring of density is His-38, which has been shown by NMR to have a large pKa shift when heparin binds to BPF4. Our model of heparin bound to PF4 has the anionic polysaccharide perpendicular to the alpha-helices, wrapped about the tetramer along the ring of positive charge, and salt linked to all four lysines on the helix of each monomer.
Collapse
Affiliation(s)
- J A Stuckey
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
19
|
|
20
|
Abstract
The circular dichroism of platelet factor 4 was investigated and it was found to contain 15% alpha-helix, 25% beta-structure, and the rest of the molecule in unordered conformation. In the presence of heparin, no change in the circular dichroism was observed, suggesting no significant changes in the secondary structure of platelet factor 4 when heparin binds. The CD spectrum of platelet factor 4 was also investigated in the presence of increasing concentrations of guanidine hydrochloride. A two-state transition was observed with midpoints at 0.125 and 2.0 M guanidine hydrochloride. Based on gel filtration studies, the first unfolding transition was correlated with the dissociation of the tetrameric structure. This first unfolding domain was not observed in the presence of heparin, suggesting that heparin stabilizes the tetrameric structure. The second unfolding transition corresponds to the disruption of the overall secondary structure which is generally observed with most proteins. It is concluded that a relatively weak force of attraction holds the tetrameric structure of platelet factor 4 and the dissociation of the subunits is accompanied by loss of some helical secondary structure.
Collapse
Affiliation(s)
- G B Villanueva
- Department of Biochemistry, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|
21
|
Abstract
Many kinds of heparin-bound polyurethanes have been developed. Polyurethanes are a family of elastomers displaying better blood-compatibility than other polymeric materials. It is useful to modify this material by heparinization. Several approaches to heparinization have been devised: 1) a general method of heparinization, applicable to all polymeric materials, 2) a heparinization method specific to polyurethanes, and 3) the design of heparinizable polyurethane derivatives. These three approaches are first explained in detail. Then, the antithrombogenic mechanism of the heparinized polymers is discussed. Finally, the interactions of the heparinized polymers with blood coagulation factors, plasma proteins, and platelets are discussed.
Collapse
Affiliation(s)
- Y Ito
- Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, Japan
| |
Collapse
|