1
|
King MR, Ruff KM, Lin AZ, Pant A, Farag M, Lalmansingh JM, Wu T, Fossat MJ, Ouyang W, Lew MD, Lundberg E, Vahey MD, Pappu RV. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 2024; 187:1889-1906.e24. [PMID: 38503281 DOI: 10.1016/j.cell.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.
Collapse
Affiliation(s)
- Matthew R King
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Z Lin
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avnika Pant
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Mina Farag
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tingting Wu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Martin J Fossat
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wei Ouyang
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Matthew D Lew
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Emma Lundberg
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Michael D Vahey
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Montenarh M, Götz C. Protein Kinase CK2α', More than a Backup of CK2α. Cells 2023; 12:2834. [PMID: 38132153 PMCID: PMC10741536 DOI: 10.3390/cells12242834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/β2, CK2αα'/β2, or CK2α'2/β2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany;
| | | |
Collapse
|
3
|
Structural, Binding and Functional Properties of Milk Protein-Polyphenol Systems: A Review. Molecules 2023; 28:molecules28052288. [PMID: 36903537 PMCID: PMC10005448 DOI: 10.3390/molecules28052288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Polyphenols (PP) are linked to health benefits (e.g., prevention of cancer, cardiovascular disease and obesity), which are mainly attributed to their antioxidant activity. During digestion, PP are oxidised to a significant degree reducing their bio-functionality. In recent years, the potential of various milk protein systems, including β-casein micelles, β-lactoglobulin aggregates, blood serum albumin aggregates, native casein micelles and re-assembled casein micelles, to bind and protect PP have been investigated. These studies have yet to be systematically reviewed. The functional properties of the milk protein-PP systems depend on the type and concentration of both PP and protein, as well as the structure of the resultant complexes, with environmental and processing factors also having an influence. Milk protein systems protect PP from degradation during digestion, resulting in a higher bioaccessibility and bioavailability, which improve the functional properties of PP upon consumption. This review compares different milk protein systems in terms of physicochemical properties, PP binding performance and ability to enhance the bio-functional properties of PP. The goal is to provide a comprehensive overview on the structural, binding, and functional properties of milk protein-polyphenol systems. It is concluded that milk protein complexes function effectively as delivery systems for PP, protecting PP from oxidation during digestion.
Collapse
|
4
|
Pinard M, Cloutier P, Poitras C, Gauthier MS, Coulombe B. Unphosphorylated Form of the PAQosome Core Subunit RPAP3 Binds Ribosomal Preassembly Complexes to Modulate Ribosome Biogenesis. J Proteome Res 2022; 21:1073-1082. [PMID: 35129352 DOI: 10.1021/acs.jproteome.1c00938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PAQosome (particle for arrangement of quaternary structure) is a 12-subunit HSP90 co-chaperone involved in the biogenesis of several human protein complexes. Two mechanisms of client selection have previously been identified, namely, the selective recruitment of specific adaptors and the differential use of homologous core subunits. Here, we describe a third client selection mechanism by showing that RPAP3, one of the core PAQosome subunits, is phosphorylated at several Ser residues in HEK293 cells. Affinity purification coupled with mass spectrometry (AP-MS) using the expression of tagged RPAP3 with single phospho-null mutations at Ser116, Ser119, or Ser121 reveals binding of the unphosphorylated form to several proteins involved in ribosome biogenesis. In vitro phosphorylation assays indicate that the kinase CK2 phosphorylates these RPAP3 residues. This finding is supported by data showing that pharmacological inhibition of CK2 enhances the binding of RPAP3 to ribosome preassembly factors in AP-MS experiments. Moreover, the silencing of PAQosome subunits interferes with ribosomal assembly factors' interactome. Altogether, these results indicate that RPAP3 phosphate group addition/removal at specific residues modulates binding to subunits of preribosomal complexes and allows speculating that PAQosome posttranslational modification is a mechanism of client selection.
Collapse
Affiliation(s)
- Maxime Pinard
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Philippe Cloutier
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Édouart-Montpetit, Montréal,QuébecH3T 1J4, Canada
| |
Collapse
|
5
|
The influence of sodium caseinate and β-casein concentrate on the physicochemical properties of casein micelles and the role of tea polyphenols in mediating these interactions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Bestgen B, Kufareva I, Seetoh W, Abell C, Hartmann RW, Abagyan R, Le Borgne M, Filhol O, Cochet C, Lomberget T, Engel M. 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. J Med Chem 2019; 62:1817-1836. [PMID: 30689946 DOI: 10.1021/acs.jmedchem.8b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC50 = 0.6 μM). Furthermore, 27 induced apoptosis and cell death in 786-O renal cell carcinoma cells (EC50 = 5 μM) and inhibited STAT3 activation even more potently than the ATP-competitive drug candidate CX-4945 (EC50 of 1.6 μM vs 5.3 μM). Notably, the potencies of our allosteric ligands to inhibit CK2 varied depending on the individual substrate. Altogether, the novel allosteric pocket was proved a druggable site, offering an excellent perspective to develop efficient and selective allosteric CK2 inhibitors.
Collapse
Affiliation(s)
- Benoît Bestgen
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France.,Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany.,Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Weiguang Seetoh
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Chris Abell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Rolf W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2.3, 66123 Saarbrücken , Germany
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Thierry Lomberget
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany
| |
Collapse
|
7
|
Booth DG, Takagi M, Sanchez-Pulido L, Petfalski E, Vargiu G, Samejima K, Imamoto N, Ponting CP, Tollervey D, Earnshaw WC, Vagnarelli P. Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. eLife 2014; 3:e01641. [PMID: 24867636 PMCID: PMC4032110 DOI: 10.7554/elife.01641] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/27/2014] [Indexed: 12/23/2022] Open
Abstract
When the nucleolus disassembles during open mitosis, many nucleolar proteins and RNAs associate with chromosomes, establishing a perichromosomal compartment coating the chromosome periphery. At present nothing is known about the function of this poorly characterised compartment. In this study, we report that the nucleolar protein Ki-67 is required for the assembly of the perichromosomal compartment in human cells. Ki-67 is a cell-cycle regulated protein phosphatase 1-binding protein that is involved in phospho-regulation of the nucleolar protein B23/nucleophosmin. Following siRNA depletion of Ki-67, NIFK, B23, nucleolin, and four novel chromosome periphery proteins all fail to associate with the periphery of human chromosomes. Correlative light and electron microscopy (CLEM) images suggest a near-complete loss of the entire perichromosomal compartment. Mitotic chromosome condensation and intrinsic structure appear normal in the absence of the perichromosomal compartment but significant differences in nucleolar reassembly and nuclear organisation are observed in post-mitotic cells.DOI: http://dx.doi.org/10.7554/eLife.01641.001.
Collapse
Affiliation(s)
- Daniel G Booth
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, Wako Saitama, Japan
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, Wako Saitama, Japan
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
8
|
Karhemo PR, Rivinoja A, Lundin J, Hyvönen M, Chernenko A, Lammi J, Sihto H, Lundin M, Heikkilä P, Joensuu H, Bono P, Laakkonen P. An extensive tumor array analysis supports tumor suppressive role for nucleophosmin in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1004-14. [PMID: 21689627 DOI: 10.1016/j.ajpath.2011.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Nucleophosmin (NPM) is a multifunctional protein involved in a complex network of interactions. The role of NPM in oncogenesis is controversial. The NPM gene (NPM1) is mutated or rearranged in a number of hematological disorders, but such changes have not been detected in solid cancers. However, experiments with cultured NPM-null cells and with mice carrying a single inactivated NPM allele indicate a tumor suppressor function for NPM. To resolve the role of NPM in solid cancers, we examined its expression and localization in histologically normal breast tissue and a large array of human breast carcinoma samples (n = 1160), and also evaluated its association with clinicopathological variables and patient survival. The intensity and localization (nucleolar, nuclear, cytoplasmic) of NPM varied across clinical samples. No mutations explaining the differences were found, but the present findings indicate that expression levels of NPM affected its localization. Our study also revealed a novel granular staining pattern for NPM, which was an independent prognostic factor of poor prognosis. In addition, reduced levels of NPM protein were associated with poor prognosis. Furthermore, luminal epithelial cells of histologically normal breast displayed high levels of NPM and overexpression of NPM in the invasive MDA-MB-231 cells abrogated their growth in soft agar. These results support a tumor suppressive role for NPM in breast cancer.
Collapse
Affiliation(s)
- Piia-Riitta Karhemo
- Research Programs Unit, Molecular Cancer Biology, and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol Cell Biol 2008; 28:4988-98. [PMID: 18559419 DOI: 10.1128/mcb.00492-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The protein kinase casein kinase 2 (CK2) phosphorylates different components of the RNA polymerase I (Pol I) transcription machinery and exerts a positive effect on rRNA gene (rDNA) transcription. Here we show that CK2 phosphorylates the transcription initiation factor TIF-IA at serines 170 and 172 (Ser170/172), and this phosphorylation triggers the release of TIF-IA from Pol I after transcription initiation. Inhibition of Ser170/172 phosphorylation or covalent tethering of TIF-IA to the RPA43 subunit of Pol I inhibits rDNA transcription, leading to perturbation of nucleolar structure and cell cycle arrest. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrate that dissociation of TIF-IA from Pol I is a prerequisite for proper transcription elongation. In support of phosphorylation of TIF-IA switching from the initiation into the elongation phase, dephosphorylation of Ser170/172 by FCP1 facilitates the reassociation of TIF-IA with Pol I, allowing a new round of rDNA transcription. The results reveal a mechanism by which the functional interplay between CK2 and FCP1 sustains multiple rounds of Pol I transcription.
Collapse
|
10
|
Panova TB, Panov KI, Russell J, Zomerdijk JCBM. Casein kinase 2 associates with initiation-competent RNA polymerase I and has multiple roles in ribosomal DNA transcription. Mol Cell Biol 2006; 26:5957-68. [PMID: 16880508 PMCID: PMC1592790 DOI: 10.1128/mcb.00673-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian RNA polymerase I (Pol I) complexes contain a number of associated factors, some with undefined regulatory roles in transcription. We demonstrate that casein kinase 2 (CK2) in human cells is associated specifically only with the initiation-competent Pol Ibeta isoform and not with Pol Ialpha. Chromatin immunoprecipitation analysis places CK2 at the ribosomal DNA (rDNA) promoter in vivo. Pol Ibeta-associated CK2 can phosphorylate topoisomerase IIalpha in Pol Ibeta, activator upstream binding factor (UBF), and selectivity factor 1 (SL1) subunit TAFI110. A potent and selective CK2 inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one, limits in vitro transcription to a single round, suggesting a role for CK2 in reinitiation. Phosphorylation of UBF by CK2 increases SL1-dependent stabilization of UBF at the rDNA promoter, providing a molecular mechanism for the stimulatory effect of CK2 on UBF activation of transcription. These positive effects of CK2 in Pol I transcription contrast to that wrought by CK2 phosphorylation of TAFI110, which prevents SL1 binding to rDNA, thereby abrogating the ability of SL1 to nucleate preinitiation complex (PIC) formation. Thus, CK2 has the potential to regulate Pol I transcription at multiple levels, in PIC formation, activation, and reinitiation of transcription.
Collapse
Affiliation(s)
- Tatiana B Panova
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
11
|
Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA, Ye K. Nucleophosmin/B23, a Nuclear PI(3,4,5)P3 Receptor, Mediates the Antiapoptotic Actions of NGF by Inhibiting CAD. Mol Cell 2005; 18:435-45. [PMID: 15893727 DOI: 10.1016/j.molcel.2005.04.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/21/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022]
Abstract
Phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] is an essential second messenger implicated in various cellular processes. Cytoplasmic PI(3,4,5)P(3) has been well characterized, but little is known about the physiological role of nuclear PI(3,4,5)P(3). Here, we describe a nuclear PI(3,4,5)P(3) receptor, nucleophosmin (NPM)/B23, that mediates the antiapoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Employing PI(3,4,5)P(3) column and NGF-treated PC12 nuclear extracts, we identified B23 as a nuclear PI(3,4,5)P(3) binding protein. Purification from nuclear extract demonstrates that B23 contributes to DNA fragmentation inhibitory activity. Depletion of B23 from nuclear extracts or knockdown B23 in PC12 cells abolishes NGF-provoked protective effect, whereas overexpression of B23 in PC12 cells prevents apoptosis. Further, hydrolyzing PI(3,4,5)P(3) with PTEN or SHIP abrogates its antiapoptotic activity. Moreover, B23 mutants that can not associate with PI(3,4,5)P(3) fail to prevent DNA fragmentation. Thus, the nuclear B23-PI(3,4,5)P(3) complex regulates the antiapoptotic activity of NGF in the nucleus.
Collapse
Affiliation(s)
- Jee-Yin Ahn
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Yung BYM. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells. FEBS Lett 2005; 578:211-6. [PMID: 15589822 DOI: 10.1016/j.febslet.2004.08.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 08/03/2004] [Indexed: 11/17/2022]
Abstract
The retinoic acid-induced differentiation of human leukemia HL-60 cells towards mature granulocytic cells was accompanied by the decline in the protein levels of c-myc, nucleophosmin/B23 and its promoter activity. These RA-induced effects were further enhanced by the concurrent treatment of HL-60 cells with p38 map kinase inhibitor SB203580 (SB). It seems that there is a strong correlation of nucleophosmin/B23 and c-Myc expressions in cells under RA treatment. Furthermore, nucleophosmin/B23 promoter activity decreased upon c-Myc antisense-mediated reduction of intracellular amount of c-Myc. CHIP assays showed that binding of c-Myc to the nucleophosmin/B23 promoter decreased in RA-treated cells. Thus, nucleophosmin/B23 expression is targeted by c-Myc during RA-induced differentiation. These results provide evidence for a novel mechanism of transcriptional downregulation of nucleophosmin/B23 and the functional role of c-Myc in RA-induced differentiation.
Collapse
Affiliation(s)
- Benjamin Y M Yung
- Cancer Biochemistry Laboratory, Department of Pharmacology, College of Medicine, Chang Gung Genomics Research Center, Chang Gung University, Tao-Yuan 333, Taiwan, Republic of China.
| |
Collapse
|
13
|
Vanrobays E, Gelugne JP, Gleizes PE, Caizergues-Ferrer M. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:2083-95. [PMID: 12612080 PMCID: PMC149469 DOI: 10.1128/mcb.23.6.2083-2095.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 09/13/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
Numerous nonribosomal trans-acting factors involved in pre-rRNA processing have been characterized, but few of them are specifically required for the last cytoplasmic steps of 18S rRNA maturation. We have recently demonstrated that Rrp10p/Rio1p is such a factor. By BLAST analysis, we identified the product of a previously uncharacterized essential gene, YNL207W/RIO2, called Rio2p, that shares 43% sequence similarity with Rrp10p/Rio1p. Rio2p homologues were identified throughout the Archaea and metazoan species. We show that Rio2p is a cytoplasmic-nuclear protein and that its depletion blocks 18S rRNA production, leading to 20S pre-rRNA accumulation. In situ hybridization reveals that in Rio2p-depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. We also show that both Rio1p and Rio2p accumulate in the nucleus of crm1-1 cells at the nonpermissive temperature. Nuclear as well as cytoplasmic Rio2p and Rio1p cosediment with pre-40S particles. These results strongly suggest that Rio2p and Rrp10p/Rio1p are shuttling proteins which associate with pre-40S particles in the nucleus and they are not necessary for export of the pre-40S complexes but are absolutely required for the cytoplasmic maturation of 20S pre-rRNA at site D, leading to mature 40S ribosomal subunits.
Collapse
Affiliation(s)
- Emmanuel Vanrobays
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
14
|
Utama B, Kennedy D, Ru K, Mattick JS. Isolation and characterization of a new nucleolar protein, Nrap, that is conserved from yeast to humans. Genes Cells 2002; 7:115-32. [PMID: 11895476 DOI: 10.1046/j.1356-9597.2001.00507.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The nucleolus is the site of rRNA synthesis and processing in eukaryotic cells, but its composition remains poorly understood. RESULTS We have identified a novel nucleolar RNA-associated protein (Nrap) which is highly conserved from yeast (Saccharomyces cerevisiae) to human, with homologues in mouse, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Schizosaccharomyces pombe, and other species. In the mouse, we have found that Nrap is ubiquitously expressed and is specifically localized in the nucleolus. We have also identified splice variants in human and mouse, and defined the intron-exon structure of the human Nrap gene. Nrap is inherited into daughter nuclei by associating with the condensed chromosomes during mitosis. RNase treatment of permeabilized cells indicated that the nucleolar localization of Nrap is RNA dependent. The effects of actinomycin D, cycloheximide and 5,6-dichloro-beta-d-ribofuranosyl-benzimidazole on Nrap expression and distribution in cultured cells suggest that Nrap is associated with the pre-rRNA transcript. CONCLUSIONS Nrap is a large nucleolar protein (of more than 1000 amino acids), and is a new class of protein with new structural and functional motifs. Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript.
Collapse
Affiliation(s)
- Budi Utama
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|
15
|
Park JH, Brekken DL, Randall AC, Parsons M. Molecular cloning of Trypanosoma brucei CK2 catalytic subunits: the alpha isoform is nucleolar and phosphorylates the nucleolar protein Nopp44/46. Mol Biochem Parasitol 2002; 119:97-106. [PMID: 11755190 DOI: 10.1016/s0166-6851(01)00407-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have demonstrated previously that Nopp44/46, an abundant nucleolar phosphoprotein of Trypanosoma brucei, is associated with a protein kinase. In many organisms multiple nucleolar proteins are phosphorylated by the protein kinase CK2, formerly known as casein kinase II. Here we report the identification of two T. brucei genes, CK2a1and CK2a2, which encode protein kinases bearing signature motifs common to CK2 catalytic subunits. The protein specified by CK2a1, designated CK2alpha, was capable of associating with Nopp44/46 as assessed by yeast two-hybrid analysis. An epitope-tagged version of CK2alpha expressed in T. brucei colocalized with Nopp44/46, with a largely nucleolar localization. This localization contrasts with the predominantly nuclear localization of mammalian CK2. When expressed in Escherichia coli, TbCK2alpha was catalytically active and phosphorylated Nopp44/46. Together these data demonstrate that TbCK2alpha is a Nopp44/46-associated kinase. Competition assays revealed that, unlike most CK2s, TbCK2alpha discriminates highly between ATP and GTP. This distinction may be associated with the substitution of glutamic acid and alanine for the di-asparagine motif thought to participate in purine interaction.
Collapse
Affiliation(s)
- Jeong-Hyun Park
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
16
|
Kübler D. Ecto-protein kinase substrate p120 revealed as the cell-surface-expressed nucleolar phosphoprotein Nopp140: a candidate protein for extracellular Ca2+-sensing. Biochem J 2001; 360:579-87. [PMID: 11736647 PMCID: PMC1222260 DOI: 10.1042/0264-6021:3600579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A variety of cell membrane proteins become phosphorylated in their ecto-domains by cell-surface protein kinase (ecto-PK) activities, as detected in a broad spectrum of cell types. This study reports the isolation and identification of a frequent ecto-PK substrate, ecto-p120, using HeLa cells as a model. Data from MS and further biochemical and immunochemical means identified ecto-p120 as a cell-surface homologue of human nucleolar phosphoprotein p140 (hNopp140), which belongs to the family of argyrophilic (AgNOR-stainable) proteins. The superposition of (32)P-labelled ecto-nucleolar phosphoprotein p140 (ecto-Nopp140) with anti-Nopp140 immunostaining could be demonstrated in a wide range of cell lines without any exceptions, suggesting a nearly universal occurrence of cell-surface Nopp140. A previous, tentative association of ecto-p120 with the nucleoplasmic pre-mRNA-binding protein hnRNP U has thus been supplanted, since improved purification techniques have allowed unambiguous identification of this ecto-PK cell-surface substrate. Furthermore, we have shown that rapid suppression of ecto-hNopp140 phosphorylation resulted upon a rise in the free extracellular calcium, while lowering the calcium concentrations returned ecto-Nopp140 phosphorylation to the original level. It is important to note that these Ca(2+)-dependent effects on ecto-Nopp140 phosphorylation are not accompanied by alterations in the phosphorylation of other ecto-PK substrates. Our results indicate that, in addition to nucleolin, a further nucleolar protein, which was considered initially to be strictly intracellular, is identified as a cell-surface phosphoprotein.
Collapse
Affiliation(s)
- D Kübler
- German Cancer Research Center, Division of Pathochemistry B0100, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Abstract
Ribosome biogenesis is both necessary for cellular adaptation, growth, and proliferation as well as a major energetic and biosynthetic demand upon cells. For these reasons, ribosome biogenesis requires precise regulation to balance supply and demand. The complexity of ribosome biogenesis gives rise to many steps and opportunities where regulation could take place. For trans-acting factors involved in ribosome biogenesis in the nucleolus, there may be a dynamic coordination, both spatially and temporally, that regulates their functions from the transcription of rDNA to the assembly and export of preribosomal particles. Here we summarize most of the described regulations on ribosome biogenesis in the nucleolus. However, these may represent only a small fraction of a larger picture. Further studies are required to determine the initial signals, signal transduction pathways utilized, and the specific targets of these regulatory modifications and how these are used to control ribosome biogenesis as a whole.
Collapse
Affiliation(s)
- D J Leary
- Department of Cell and Molecular Biology, Northwestern University Medical School, 300 E. Chicago Ave, Chicago, IL 60611, USA
| | | |
Collapse
|
18
|
Glover CV. On the physiological role of casein kinase II in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 59:95-133. [PMID: 9427841 DOI: 10.1016/s0079-6603(08)61030-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Casein kinase II (CKII) is a highly conserved serine/threonine protein kinase that is ubiquitous in eukaryotic organisms. This review summarizes available data on CKII of the budding yeast Saccharomyces cerevisiae, with a view toward defining the possible physiological role of the enzyme. Saccharomyces cerevisiae CKII is composed of two catalytic and two regulatory subunits encoded by the CKA1, CKA2, CKB1, and CKB2 genes, respectively. Analysis of null and conditional alleles of these genes identifies a requirement for CKII in at least four biological processes: flocculation (which may reflect an effect on gene expression), cell cycle progression, cell polarity, and ion homeostasis. Consistent with this, isolation of multicopy suppressors of conditional cka mutations has identified three genes that have a known or potential role in either the cell cycle or cell polarity: CDC37, which is required for cell cycle progression in both G1 and G2/M; ZDS1 and 2, which appear to have a function in cell polarity; and SUN2, which encodes a protein of the regulatory component of the 26S protease. The identity and properties of known CKII substrates in S. cerevisiae are also reviewed, and advantage is taken of the complete genomic sequence to predict globally the substrates of CKII in this organism. Although the combined data do not yield a definitive picture of the physiological role of CKII, it is proposed that CKII serves a signal transduction function in sensing and/or communicating information about the ionic status of the cell to the cell cycle machinery.
Collapse
Affiliation(s)
- C V Glover
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| |
Collapse
|
19
|
Liu HT, Yung BY. In vivo interaction of nucleophosmin/B23 and protein C23 during cell cycle progression in HeLa cells. Cancer Lett 1999; 144:45-54. [PMID: 10503877 DOI: 10.1016/s0304-3835(99)00184-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By using the cross-linking reagent, DSP, efforts were made to identify the protein(s) that interact with nucleophosmin/B23. A cross-linked protein complex at molecular weight of about 140 kDa was recognized by both nucleophosmin/B23 and protein C23 MAbs. Both C23 and nucleophosmin/B23 could be detected from the cross-linked complex immunoprecipitated by C23 MAb. The association between nucleophosmin/B23 and protein C23 while being observed at interphase and cytokinesis, was not detected in prometaphase and metaphase cells. Interactions of nucleophosmin/B23 with C23 not only could be found in cells in which nucleophosmin/B23 and C23 were both mainly localized to the nucleolus, but also in cells in which nucleophosmin/B23 and C23 had translocated from the nucleolus to the nucleoplasm during actinomycin D-induced cell growth inhibition. The purified recombinant GST-B23 being phosphorylated by prometaphase cell extracts (nocodazole-arrested cells) or cdc2 kinase could still be co-immunoprecipitated with C23. Consequently, the fact that nucleophosmin/B23 did not interact with C23 during mitosis could not be explained simply by mitotic phosphorylation of nucleophosmin/B23. Our findings suggest some possibilities for further elucidation of the actions of nucleophosmin/B23 and protein C23 in cell cycle progression and cell growth.
Collapse
Affiliation(s)
- H T Liu
- Department of Pharmacology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | |
Collapse
|
20
|
Chang JH, Lin JY, Wu MH, Yung BY. Evidence for the ability of nucleophosmin/B23 to bind ATP. Biochem J 1998; 329 ( Pt 3):539-44. [PMID: 9445380 PMCID: PMC1219074 DOI: 10.1042/bj3290539] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By taking advantage of its ability to be retained by ATP-agarose, we have demonstrated that nucleophosmin/B23 is capable of binding ATP. The specificity of the binding was confirmed by the absence of significant binding to AMP-agarose and by its loss when nucleophosmin/B23 in nuclear extracts was preincubated with ATP. Preincubation of the nuclear extracts with other ribonucleotide triphosphates (GTP, CTP, UTP) did not compete for the binding of nucleophosmin/B23 to ATP-agarose. The purified recombinant nucleophosmin/B23 was also able to be retained by ATP-agarose. The Kd for binding of ATP to the purified recombinant nucleophosmin/B23, on the basis of retention on a nitrocellulose membrane, was 86.5+/-8.3 microM; the number of binding sites was 0.68 per nucleophosmin/B23 protein molecule. To determine the possible ATP-binding site of nucleophosmin/B23, various deletion clones including the two mutants in which the putative ATP-binding sequence had been deleted were constructed. Deletion of the portions of the molecule (residues 83-152 and 185-240) had little effect on the ATP binding. The C-terminal deleted mutant (residue 242 to the C-terminus deleted) lost most of its ability to be retained by ATP-agarose and to bind [alpha-32P]ATP on a nitrocellulose membrane. The results indicate that the C-terminal portion (residues 242-294) contains the essential ATP-binding site of nucleophosmin/B23.
Collapse
Affiliation(s)
- J H Chang
- Cancer Biochemistry Laboratory, Department of Pharmacology, Chang Gung University, Taiwan, Republic of China
| | | | | | | |
Collapse
|
21
|
De Angelis PM, Stokke T, Clausen OP. NO38 expression and nucleolar counts are correlated with cellular DNA content but not with proliferation parameters in colorectal carcinomas. Mol Pathol 1997; 50:201-8. [PMID: 9350304 PMCID: PMC379627 DOI: 10.1136/mp.50.4.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS To investigate the expression of nucleolar protein NO38, to determine the numbers of nucleoli per cell, and to examine the relations of these nucleolar parameters to tumour DNA index, total cellular DNA content, S phase fraction, and Ki67 labelling index. METHODS 36 colorectal tumours and 14 normal mucosas were studied. An anti-NO38 monoclonal antibody, 31A12, and flow cytometric analysis were used to detect expression of NO38 by means of a biotin-streptavidin-FITC (fluorescein isothiocyanate) staining method. Nucleolar counts were determined using fluorescence microscopy. Flow cytometry was used to determine tumour DNA indices and the sizes of the S phase fractions. Ki67 labelling indices were determined from tissue sections stained immunohistochemically with the MIB-1 antibody against the Ki67 nuclear protein. RESULTS Generally, tumour cell nucleoli were larger and more irregular in shape compared with nucleoli in normal mucosal cells. DNA aneuploid and diploid tumours expressed 2.8 and 2.1 times more NO38 than normal mucosa. The mean (SD) values for nucleolar counts were higher for the DNA aneuploid tumours (3.81 (0.93)) than the diploid tumours (2.62 (0.38)) and normal mucosa (2.34 (0.37)). NO38 expression and numbers of nucleoli correlated significantly (r = 0.52, p = 0.01). There were, however, no significant correlations between these nucleolar parameters and either the sizes of tumour S phase fractions or Ki67 labelling indices. Cell cycle resolved expression of NO38 in tumours and normal mucosa demonstrated that expression increased approximately in proportion to the DNA content throughout the cell cycle. In aneuploid tumours, NO38 expression was 43% and 98% higher in S and G2 phases, respectively, compared with the G1 phase. Sorting of these populations revealed that the nucleolar count also increased as the DNA content increased but by only 29% and 47% in S and G2, respectively. Apoptotic cells lacked NO38. CONCLUSIONS NO38 expression is higher in tumours than in normal mucosa owing to the increased DNA content and larger nucleoli in tumours; expression increases proportionally with DNA content as cells progress through the cell cycle from G1 through S and G2. However, NO38 expression does not correlate with the tumour S phase fraction or Ki67 labelling index and is lost during apoptosis. Also the results suggest that nucleoli grow in size during the cell cycle, which would account for the doubling of NO38 expression from G1 to G2, as the nucleolar count increased by only 47%.
Collapse
Affiliation(s)
- P M De Angelis
- Institute for Pathology, Norwegian National Hospital, Oslo, Norway
| | | | | |
Collapse
|
22
|
Benítez MJ, Mier G, Briones F, Moreno FJ, Jiménez JS. A surface-plasmon-resonance analysis of polylysine interactions with a peptide substrate of protein kinase CK2 and with the enzyme. Biochem J 1997; 324 ( Pt 3):987-94. [PMID: 9210426 PMCID: PMC1218518 DOI: 10.1042/bj3240987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism of protein kinase CK2 (CK2) activity stimulation by polylysine has been studied by surface plasmon resonance (SPR). The kinetics of the polylysine interaction with a peptide substrate of the enzyme, and with the enzyme itself, have been investigated. A peptide containing a threonine (T) residue surrounded by a cluster of negatively charged acidic [arginine (R) and glutamic acid (E)] residues, RRREEETEEE, and specifically phosphorylated by CK2, was selected. Polylysine interacts with both the enzyme and the peptide substrate. The rate constant, the stoichiometry of the polylysine-peptide substrate interaction and the kinetic parameters of the stimulated enzyme were used to calculate the polylysine-dependent stimulation of CK2. The results are in agreement with experimentally determined polylysine-dependent stimulation. The polylysine-enzyme interaction is too slow to account for enzyme stimulation. The behaviour of polylysine is not reproduced by the polyamine spermine. The results are consistent with a substrate-mediated mechanism of CK2 stimulation by polylysine, and they suggest that the CK2 stimulation by polyamines occurs by a different mechanism.
Collapse
Affiliation(s)
- M J Benítez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Wilson LK, Dhillon N, Thorner J, Martin GS. Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem 1997; 272:12961-7. [PMID: 9148902 DOI: 10.1074/jbc.272.20.12961] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the nucleolar immunophilin, Fpr3, is phosphorylated at tyrosine and dephosphorylated by the phosphotyrosine-specific phosphoprotein phosphatase, Ptp1. In Ptp1-deficient cells, Fpr3 contains phospho-Tyr at a single site (Tyr184), but also contains phospho-Ser and phospho-Thr. Ser186 (adjacent to Tyr184) is situated within a canonical site for phosphorylation by casein kinase II (CKII). Yeast cell lysates contain an activity that binds to Fpr3 in vitro and phosphorylates Fpr3 at Ser, Thr, and Tyr; this activity was found to be dependent on expression of functional yeast CKII. Moreover, purified Fpr3 was phosphorylated on Tyr184 in vitro by either purified yeast CKII or purified, bacterially-expressed human CKII. Likewise, phosphorylation of Fpr3 at tyrosine in vivo was markedly enhanced in yeast cells overexpressing a heterologous (Drosophila) CKII, but was undetectable in yeast cells carrying only a temperature-sensitive allele of the endogenous CKII, even when the cells were grown at a permissive temperature. Phosphorylation of Fpr3 at Tyr184 by CKII in vitro lagged behind phosphorylation of Fpr3 at Ser, and was accelerated by pre-phosphorylation of Fpr3 at Ser using CKII. Furthermore, synthetic peptides corresponding to the sequence surrounding Tyr184 that contained P-Ser (or Glu) at position 186 were much more efficient substrates for CKII phosphorylation of Tyr184 than a synthetic peptide containing Ala at position 186. These findings indicate that CKII phosphorylates Fpr3 at tyrosine and serine both in vivo and in vitro and thus possesses dual specificity. These results also indicate that Tyr184 is phosphorylated by CKII via a two-step process, in which phosphorylation at the +2 position provides a negatively-charged specificity determinant that allows subsequent phosphorylation of Tyr184.
Collapse
Affiliation(s)
- L K Wilson
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | | | | | |
Collapse
|
24
|
Li D, Meier UT, Dobrowolska G, Krebs EG. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem 1997; 272:3773-9. [PMID: 9013635 DOI: 10.1074/jbc.272.6.3773] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Casein kinase 2 (CK2) is a multifunctional second messenger-independent protein serine/threonine kinase that phosphorylates many different proteins. To understand the function and regulation of this enzyme, biochemical methods were used to search for CK2-interacting proteins. Using immobilized glutathione S-transferase fusion proteins of CK2, the nucleolar protein Nopp140 was identified as a CK2-associated protein. It was found that Nopp140 binds primarily to the CK2 regulatory subunit, beta. The possible in vivo association of Nopp140 with CK2 was also suggested from a coimmunoprecipitation experiment in which Nopp140 was detected in immunoprecipitates of CK2 prepared from cell extracts. Further studies using an overlay technique with radiolabeled CK2 as a probe revealed a direct CK2-Nopp140 interaction. Using deletion mutants of CK2beta subunits, the binding region of the CK2beta subunit to Nopp140 has been mapped. It was found that the NH2-terminal 20 amino acids of CK2beta are involved. Since Nopp140 has been identified as a nuclear localization sequence-binding protein and has been shown to shuttle between the cytoplasm and the nucleus, the finding of a CK2-Nopp140 interaction could shed light on our understanding of the function and regulation of CK2 and Nopp140.
Collapse
Affiliation(s)
- D Li
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Hershey JC, Hautmann M, Thompson MM, Rothblum LI, Haystead TA, Owens GK. Angiotensin II-induced hypertrophy of rat vascular smooth muscle is associated with increased 18 S rRNA synthesis and phosphorylation of the rRNA transcription factor, upstream binding factor. J Biol Chem 1995; 270:25096-101. [PMID: 7559641 DOI: 10.1074/jbc.270.42.25096] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hypertrophy of vascular smooth muscle cells (VSMC) is an important adaptive response of hypertension. Drug intervention studies have implicated a role for angiotensin II (A-II) in the mediation of VSMC hypertrophy in vivo, and A-II is a potent hypertrophic agent for VSMC in culture. Our laboratory has previously shown that A-II-induced hypertrophy of cultured VSMC is due in part to generalized increases in protein synthesis and increased content of rRNA. The aim of the present study was to determine if A-II stimulates rRNA gene synthesis and whether the rRNA transcription factor, upstream binding factor (UBF), is involved. Nuclear run-on analysis demonstrated that A-II induced a greater than 5-fold increase in rRNA gene synthesis within 6 h of stimulation. A-II also stimulated a rapid increase in UBF phosphorylation as well as nucleolar localization, but no changes in the content of UBF. Phosphoamino acid analysis showed that phosphorylation occurred only on serine residue(s). Results demonstrate that increased transcription of ribosomal DNA contributes to the A-II-induced increase in protein synthesis and VSMC hypertrophy, and suggest that an important regulatory event in this pathway may be the phosphorylation and/or nucleolar localization of UBF.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Casein Kinase II
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Hypertrophy
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphorylation
- Pol1 Transcription Initiation Complex Proteins
- Protein Serine-Threonine Kinases/metabolism
- RNA, Ribosomal, 18S/biosynthesis
- Rats
- Serine/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- J C Hershey
- Department of Molecular Physiology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wilhelm V, Rojas P, Gatica M, Allende CC, Allende JE. Expression of the subunits of protein kinase CK2 during oogenesis in Xenopus laevis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:671-6. [PMID: 7556222 DOI: 10.1111/j.1432-1033.1995.671zz.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Northern-blot analysis of RNAs from different tissues demonstrated that the mRNA for the protein kinase CK2 alpha subunit is very abundant in the ovary of Xenopus laevis. The competitive reverse-PCR technique has been used to quantitate the mRNA for both CK2 alpha and CK2 beta subunits during oogenesis. The results obtained using eight different animals consistently show an increment of 2-3-fold in the mRNA for both subunits in vitellogenic oocytes (stages II-VI). Each stage-VI oocyte contains approximately 5 x 10(-7) molecules CK2 alpha mRNA and 1 x 10(-7) molecules CK2 beta mRNA. These amounts are considerably higher than many other mRNAs analyzed in these cells. Activity measurements of CK2 using casein or a specific model peptide revealed increments of about 10-12-fold during oogenesis, and also indicated that the amount of enzyme in the nucleus accounted for 15-30% of the total enzyme in the oocyte at all stages. Western-blot analysis of CK2 alpha indicated that the amount of this protein subunit also increased during oogenesis in a parallel fashion with the increment of enzymic activity.
Collapse
Affiliation(s)
- V Wilhelm
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Chile, Santiago
| | | | | | | | | |
Collapse
|
28
|
Patterson SD, Grossman JS, D'Andrea P, Latter GI. Reduced numatrin/B23/nucleophosmin labeling in apoptotic Jurkat T-lymphoblasts. J Biol Chem 1995; 270:9429-36. [PMID: 7721868 DOI: 10.1074/jbc.270.16.9429] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Jurkat T-lymphoblasts were induced to undergo apoptosis by treatment with either EGTA (5 mM/24 h) or a high concentration of lovastatin (100 microM/48 h) to identify proteins that exhibited coordinate regulation between the two treatments and thus provide candidate proteins in the common apoptotic induction pathway. A pure population of apoptotic cells, as determined by morphology, "DNA laddering," and flow cytometry, was obtained by Percoll density gradient centrifugation. Cells of increased buoyant density were clearly apoptotic by all criteria. Following this gradient centrifugation, the cells were labeled with [35S]methionine/cysteine, and lysates were separated by two-dimensional polyacrylamide gel electrophoresis. Surprisingly, the two-dimensional polyacrylamide gel electrophoresis patterns generated from the apoptotic cells did not differ dramatically from that of control cells. Thus, apoptotic Jurkat cells are able to synthesize new proteins and do not exhibit extensive proteolysis. Subsequent quantitative analysis revealed that only five proteins exhibited decreases in turnover that were common to the two treatments. No increases in protein turnover were able to be confirmed across the replicate experiments. One of the proteins that showed decreased labeling by both apoptotic inductions was an abundant nuclear protein with a pI of 5.1 and M(r) 40,000. This protein was identified as numatrin/B23/nucleophosmin (NPM) based on internal amino acid sequence, and this identity was confirmed by immunoblotting and mass spectrometry. NPM is implicated in a range of diverse cellular functions, but its role in apoptosis is unclear.
Collapse
Affiliation(s)
- S D Patterson
- Cold Spring Harbor Laboratory, New York 11724-2208, USA
| | | | | | | |
Collapse
|
29
|
Pepperkok R, Lorenz P, Ansorge W, Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37471-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Song Q, Combest WL, Gilbert LI. Spermine and polylysine enhanced phosphorylation of calmodulin and tubulin in an insect endocrine gland. Mol Cell Endocrinol 1994; 99:1-10. [PMID: 8187951 DOI: 10.1016/0303-7207(94)90139-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spermine-stimulated and heparin-inhibited phosphorylation of both exogenous casein and endogenous protein substrates of the prothoracic gland were measured in prothoracic gland cytosolic fractions from fifth instar larvae and early pupae of the tobacco hornworm, Manduca sexta. The results reveal a striking increase in casein kinase II (CKII) activity, i.e. approximately 3-fold above basal level in the presence of 5 mM spermine, with the highest activity exhibited by gland fractions from day 0-2 larvae, newly pupated animals and day 1 pupae. These results were verified by the results from Western blot analysis using a CKII alpha-subunit specific antibody and a 10 a.a. synthetic peptide that is a specific substrate for CKII. Several endogenous proteins were found to be substrates for CKII when assayed in the presence of spermine or polylysine. A 19 kDa peptide was shown to be calmodulin (CaM) by using the purified Manduca brain CaM as an indicator, and was only phosphorylated in the presence of polylysine. A 52 kDa protein was identified as tubulin by immunoprecipitation with a tubulin-specific monoclonal antibody, and was shown to be phosphorylated in the presence of spermine and polylysine. The possible roles of phosphocalmodulin and phosphotubulin are discussed in the context of prothoracic gland function.
Collapse
Affiliation(s)
- Q Song
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
31
|
Tawfic S, Goueli SA, Olson MO, Ahmed K. Androgenic regulation of phosphorylation and stability of nucleolar protein nucleolin in rat ventral prostate. Prostate 1994; 24:101-6. [PMID: 8309845 DOI: 10.1002/pros.2990240208] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleolin is an abundant nucleolar phosphoprotein which has been implicated as a factor in various stages of ribosome synthesis, including transcription. Since androgens exert a profound effect on the rRNA synthesis in the target organ prostate, we have examined the nature of androgenic regulation of the amount and phosphorylation of nucleolin in this tissue. Phosphorylation of prostatic nucleolin is catalyzed in part by heparin-sensitive casein kinase 2 (CK-2) and by another (heparin-insensitive) protein kinase. Both the amount and phosphorylation of prostatic nucleolin are profoundly sensitive to androgens. Rapid reduction in the level and phosphorylation of nucleolin occurs following androgen deprivation, which corresponds to the ensuing cessation of prostatic growth leading to involution. Further, the loss of nucleolin phosphorylation and its degradation appear to be concordant. Administration of a single injection of 5 alpha-dihydrotestosterone to castrated animals causes an early increase in the amount and phosphorylation of nucleolin, starting in the prereplicative phase in the prostatic cell nucleus. These data suggest that early androgenic regulation of nucleolin expression and phosphorylation may play a role in nucleolar control mechanisms relevant to prostatic cell growth.
Collapse
Affiliation(s)
- S Tawfic
- Department of Veterans Affairs Medical Center, Minneapolis, MN
| | | | | | | |
Collapse
|
32
|
Pyerin W. Human casein kinase II: structures, genes, expression and requirement in cell growth stimulation. ADVANCES IN ENZYME REGULATION 1994; 34:225-46. [PMID: 7942276 DOI: 10.1016/0065-2571(94)90018-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Casein kinase II (CKII) is an ubiquitous Ser/Thr protein phosphotransferase in control of a variety of crucial cellular functions including metabolism, signal transduction, transcription, translation and replication. CKII levels are consistently higher in neoplastic tissues. The human CKII is composed of subunits alpha, alpha', and beta with molecular masses of 43, 38 and 28 kDa, respectively, that form heterotetrameric holoenzymes (alpha 2 beta 2; alpha alpha' beta 2, alpha'2 beta 2) showing autophosphorylation particularly at subunit beta and hence suspected to play a regulatory role. The amino acid sequences of subunits indicate high evolutionary conservation. Employing the complete set of tissue-derived (placenta) and recombinant (expressed in E. coli) subunits and CKII holoenzymes, the catalytic function of alpha and alpha' and the several-fold stimulation by beta is shown to occur comparably in tissue-derived and recombinant CKII and the autophosphorylation of beta is shown by site-directed mutagenesis to be not decisive for the tuning of CKII activity. The human genome contains two genes encoding CKII alpha. First, there is a processed (pseudo)gene which is 99% homologous to the CKII alpha cDNA and which possesses a promoter-like region adjacently upstream with TATA and CAAT boxes so that transcription cannot be excluded. Second, there is an active gene of which we have characterized so far a 18.9 kb long central fragment which contains 8 exons comprising bases 102-824 of the CKII alpha coding region. The gene fragment contains repetitive elements, most prominently 16 Alu repeats. The genome further contains one as yet uncharacterized CKII alpha' gene and one gene encoding CKII beta. The CKII beta gene has been characterized as a 4.2 kb spanning gene composed of seven exons which possesses three transcription start sites and the translation start site in the second exon. The first intron harbors an Alu repeat also. The promoter region of the CKII beta gene contains elements such as multiple GC boxes, a CpG island, and nonstandard-positioned CAAT boxes but lacks a TATA box thus characterizing the gene as a housekeeping gene. The CKII genes are not clustered at a certain chromosome but rather are distributed over the whole human genome. Using the genomic clones as the probes for in situ hybridization, the active CKII alpha gene was mapped to chromosome 20p13, the processed CKII alpha (pseudo)gene to chromosome 11p15, and the CKII beta gene to chromosome 6p21. (The CKII alpha' gene has been localized on chromosome 16 with a cDNA probe.).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W Pyerin
- German Cancer Research Center, Heidelberg
| |
Collapse
|
33
|
Litchfield DW, Lüscher B. Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 1993; 127-128:187-99. [PMID: 7935350 DOI: 10.1007/bf01076770] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Casein kinase II is a protein serine/threonine kinase that is ubiquitously distributed in eukaryotes. Molecular cloning studies and protein sequence analysis of purified proteins have demonstrated the existence of two related, but distinct, isoenzymic forms of its catalytic subunit in mammals and birds. At present, the precise role of the individual casein kinase II isoforms in biological responses is poorly understood. However, a great deal of evidence indicates that casein kinase II is an important component of signalling pathways that control the growth and division of cells. In particular, casein kinase II is known to phosphorylate, and in several cases, regulate the activity of a variety of regulatory nuclear proteins including nuclear oncoproteins, transcription factors, and enzymes involved in other aspects of DNA metabolism. In this review, we will summarize evidence relating to the involvement of casein kinase II in signal transduction events that are relevant to cell proliferation.
Collapse
|
34
|
Suzuki T, Suzuki N, Hosoya T. Limited proteolysis of rat liver nucleolin by endogenous proteases: effects of polyamines and histones. Biochem J 1993; 289 ( Pt 1):109-15. [PMID: 8424749 PMCID: PMC1132137 DOI: 10.1042/bj2890109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleolin is a major nucleolar phosphoprotein and is presumably involved in rDNA transcription and ribosome biosynthesis. This protein is known to be very labile and to be cleaved by endogenous proteases into many small peptides. We found that, when rat liver nucleolar suspension (Nu-1) or nucleolin-rich extract (Nu-2) was incubated under conventional conditions, polyamines and histones interacted with the nucleolin to lead to its preferential degradation to 60 kDa phosphopeptide (p60). The peptide p60 was identified as a peptide containing the N-terminal half of the nucleolin molecule, as judged from peptide-map analysis. Whereas spermine binding to the purified nucleolin was decreased by KCl concentrations above 50 mM, histones (H1, H2B and H3) were able to bind to the nucleolin in the presence of up to 300 mM KCl. A distinct difference between H1 and other histones was found in that H1 could produce p60 from nucleolin in both Nu-1 and Nu-2, whereas H2B and H3 stimulated the degradation of nucleolin to p60 only when Nu-2 was used for the source of nucleolin. A possible relationship between p60 formation and rRNA synthesis is discussed, but its exact role remains to be studied.
Collapse
Affiliation(s)
- T Suzuki
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|
35
|
Angiolillo A, Panara F, Desgro A, Petrelli C, Gianfranceschi GL. Protein kinase NII from calf thymus chromatin. Isolation, characterization and some functional properties. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1785-92. [PMID: 1451914 DOI: 10.1016/0020-711x(92)90129-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. A protein kinase type II was purified from calf thymus chromatin using ammonium sulphate fractionation, ion exchange chromatography on DEAE and phosphocellulose and affinity chromatography on phosvitin- and casein-sepharose columns. 2. The enzyme moves as a single band in non-denaturing gel electrophoresis at pH 8.3, which coincides with the enzyme activity assayed on gel slices. 3. Sodium dodecyl sulphate gel electrophoresis shows three separate polypeptide chains having M(r) of 40,000, 38,000 and 25,000, respectively. The native M(r) was about 130,000, as measured by HPLC on Superose 12 column, suggesting a subunit structure of alpha, alpha', beta 2 type. The enzyme incubated with [gamma 32P]ATP or [gamma 32P]GTP as phosphoryl donors undergoes autophosphorylation in the M(r) = 25,000 subunit. 4. The enzyme phosphorylates casein (Km = 7 microM) and phosvitin (Km = 5 microM) but not histones and was strongly deactivated by Zn2+ ions (I50 = 0.05 mM) and heparin (I50 = 0.1 micrograms/ml). 5. The enzyme seems to be the major phosphorylating system present in the 0.35 M NaCl chromatin extract of calf thymus. The RNA polymerase II from calf thymus and RNA polymerase from E. coli are both phosphorylated by protein kinase NII. The effect of phosphorylation, which causes a remarkable increase of DNA transcription rate, was studied in vitro and extensively discussed.
Collapse
Affiliation(s)
- A Angiolillo
- Istituto di Biologia Cellulare, Università di Perugia, Italy
| | | | | | | | | |
Collapse
|
36
|
Abstract
Nopp140 is a nucleolar phosphoprotein of 140 kd that we originally identified and purified as a nuclear localization signal (NLS)-binding protein. Molecular characterization revealed a 10-fold repeated motif of highly conserved acidic serine clusters that contain an abundance of phosphorylation consensus sites for casein kinase II (CK II). Indeed, Nopp140 is one of the most phosphorylated proteins in the cell, and NLS binding was dependent on phosphorylation. Nopp140 was shown to shuttle between the nucleolus and the cytoplasm. Shuttling is likely to proceed on tracks that were revealed by immunoelectron microscopy. These tracks extend from the dense fibrillar component of the nucleolus across the nucleoplasm to some nuclear pore complexes. We suggest that Nopp140 functions as a chaperone for import into and/or export from the nucleolus.
Collapse
Affiliation(s)
- U T Meier
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
37
|
Meggio F, Boldyreff B, Marin O, Marchiori F, Perich JW, Issinger OG, Pinna LA. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:939-45. [PMID: 1577011 DOI: 10.1111/j.1432-1033.1992.tb16860.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either alone or in combination with the recombinant non-catalytic beta subunit. Calmodulin is not phosphorylated by the CK2 holoenzyme, in either the native or the reconstituted form, unless polylysine is added. In the presence of polylysine, it becomes a good substrate for CK2 (Km 14.2 microM, Kcat 4.6 mol.min-1.mol CK2-1). The recombinant alpha subunit, however, spontaneously phosphorylates calmodulin, this phosphorylation being actually inhibited rather than stimulated by polylysine. The calmodulin tridecapeptide, RKMKDTDSEEEIR, reproducing the phosphorylation site for CK2, is spontaneously phosphorylated by either CK2 holoenzyme or the recombinant alpha subunit with 5.8-fold and 2.8-fold stimulation by polylysine, respectively. The recombinant beta subunit of CK2 is itself a good exogenous substrate for the enzyme, its phosphorylation, however, is inhibited rather than enhanced by polylysine. On the contrary, the phosphorylation of the nonapeptide, MSSSEEVSW, reproducing the beta-subunit phosphoacceptor site, is dramatically stimulated by polylysine. Using a variety of small peptide substrates, it was shown that phosphorylation rate is diversely stimulated by polylysine. The observed stimulation, moreover, is variably accounted for by changes in Vmax and/or Km, depending on the structure of the peptide substrate. Maximum stimulation with all protein/peptide substrates tested requires the presence of the beta subunit, since the recombinant alpha subunit is much less responsive than CK2 holoenzyme, either native or reconstituted. While the phosphorylation of the peptide RRRDDDSDDD by CK2 is stimulated 2.8-fold, with 15 nM polylysine being required for half-maximal stimulation, a stimulation of only 1.9-fold, with 80 nM polylysine required for half-maximal stimulation, is attained with recombinant alpha subunit. The concentration of polylysine required for half-maximal stimulation is comparable to CK2 concentration and increases by increasing CK2 concentration, suggesting that polylysine primarily interacts with the enzyme, rather than with the peptide substrate.
Collapse
Affiliation(s)
- F Meggio
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Casein kinase II (CK II) has been implicated in regulating multiple processes related to cell growth, proliferation, and differentiation. To better understand the function(s) and regulation of this ubiquitous kinase, it is important to know its subcellular distribution. However, this issue has been the subject of contradictory reports. In this study, we have used indirect immunofluorescence microscopy and cell fractionation to study the subcellular distribution of all three subunits of chicken CK II, alpha, alpha', and beta. We examined primary chick embryo fibroblasts, virally transformed chicken hepatoma cells, as well as HeLa cells transiently transfected with cDNAs encoding chicken CK II subunits. We found that each of the three CK II subunits was located predominantly in the cell nucleus, irrespective of the cell type analyzed or the procedure used for cell fixation. No major differences were detected in the subcellular distributions of individual CK II subunits, and no evidence was obtained for subunit redistributions during interphase of the cell cycle. During mitosis, the bulk of the enzyme was dispersed throughout the cell, though a fraction of all three subunits was associated with the mitotic spindle. Biochemical studies based on mechanical enucleation of chicken cells confirmed the predominantly nuclear location of all three CK II subunits. Finally, immunoblotting experiments were carried out to study the expression of CK II subunits. A survey of different adult chicken tissues revealed substantial tissue-specific differences in the levels of CK II protein, but no evidence was obtained for pronounced tissue specificity in the expression of individual CK II subunits. These results strongly suggest that CK II functions primarily in regulating nuclear activities, and that the two catalytic subunits, alpha and alpha', may carry out overlapping functions.
Collapse
Affiliation(s)
- W Krek
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
| | | | | |
Collapse
|
39
|
Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54934-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Yu IJ, Spector DL, Bae YS, Marshak DR. Immunocytochemical localization of casein kinase II during interphase and mitosis. J Biophys Biochem Cytol 1991; 114:1217-32. [PMID: 1894695 PMCID: PMC2289133 DOI: 10.1083/jcb.114.6.1217] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed specific antibodies to synthetic peptide antigens that react with the individual subunits of casein kinase II (CKII). Using these antibodies, we studied the localization of CKII in asynchronous HeLa cells by immunofluorescence and immunoelectron microscopy. Further studies were done on HeLa cells arrested at the G1/S transition by hydroxyurea treatment. Our results indicate that the CKII alpha and beta subunits are localized in the cytoplasm during interphase and are distributed throughout the cell during mitosis. Further electron microscopic investigation revealed that CKII alpha subunit is associated with spindle fibers during metaphase and anaphase. In contrast, the CKII alpha' subunit is localized in the nucleus during G1 and in the cytoplasm during S. Taken together, our results suggest that CKII may play significant roles in cell division control by shifting its localization between the cytoplasm and nucleus.
Collapse
Affiliation(s)
- I J Yu
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
41
|
Molina E, Plana M, Itarte E. Heterogeneity of rat liver cytosol casein kinase 2. Association between the alpha/alpha' -subunits of casein kinase 2 and the phosphorylatable protein pp49. Biochem J 1991; 277 ( Pt 3):811-8. [PMID: 1872814 PMCID: PMC1151316 DOI: 10.1042/bj2770811] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Casein kinase 2 activity could be resolved into three peaks by chromatography on DEAE-Sepharose. The peak eluted at high salt concentrations (casein kinase 2b) showed molecular and kinetic properties typical of the heterotetramer composed of alpha-(or alpha'-) and beta-subunits. In contrast, the peak that was eluted at low salt concentrations (casein kinase 2a) contained no beta-subunit but a phosphorylatable protein of 49 kDa (pp49), in addition to the alpha/alpha'-subunits. The presence of alpha/alpha'/alpha"-subunits in preparations of casein kinases 2a and 2b was confirmed by immunological assays. Casein kinase 2a had low specific activity and a very high apparent Km for beta-casein. The peak eluted at intermediate ionic strength contained the alpha/alpha'-subunits and variable amounts of beta-subunit and pp49, and had kinetic properties intermediate between those of casein kinases 2a and 2b. Experiments based on heat inactivation, inhibition by low concentrations of heparin and ability to use GTP as substrate suggested that phosphorylation of pp49 was catalysed by the alpha/alpha'-subunits of casein kinase 2. No similarities were observed in the phosphopeptide maps of pp49 and beta-subunit. These results show that the alpha/alpha'-subunits of rat liver cytosol casein kinase 2 can form complexes not only with the beta-subunit but also with pp49, and that the complexes containing pp49 have a reduced affinity for the exogenous protein substrate beta-casein.
Collapse
Affiliation(s)
- E Molina
- Departament de Bioquímica i Biologia Molecular-Unitat de Bioquímica Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
42
|
Abstract
Casein kinase II, an ubiquitous, oligomeric, messenger-independent protein kinase has previously been shown to concentrate in the nuclear compartment when cells are stimulated to proliferate. The present communication reports that purified mammalian CKII interacts with genomic DNA preparations in vitro. This interaction led to an apparent activation of the kinase, most likely explained by prevention of its aggregation and subsequent denaturation. Binding of CKII was optimum with double stranded DNA preparations; duplex lambda phage DNA exhibited at least two types of binding sites and the high affinity system (Kd approximately equal to 6 x 10(-13) M) represented a binding capacity of about 1 mol CKII per mol DNA. CKII-DNA interaction was stimulated in the presence of a polyamine and inhibited by heparin. Blotting experiments disclosed that DNA binds CKII through its alpha subunit. These observations are in line with the hypothesis that casein kinase II may be examined as a component in the transduction of the mitogenic signal from the cell membrane to the nucleus, in response to growth factors.
Collapse
Affiliation(s)
- O Filhol
- Unité INSERM 244, DBMS/BRCE, Centre d'Etudes Nucléaires, Grenoble, France
| | | | | |
Collapse
|
43
|
Goueli SA, Davis AT, Arfman E, Vessella R, Ahmed K. Monoclonal antibodies against nuclear casein kinase NII (PK-N2). Hybridoma (Larchmt) 1990; 9:609-18. [PMID: 2076898 DOI: 10.1089/hyb.1990.9.609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A monoclonal antibody was produced against the nuclear casein kinase II (PK-N2) isolated from rat liver. The antibody was of the IgM class, and showed immunoreactivity towards the higher molecular weight subunit (41K Da) of the protein kinase in Western blots. The antibody was equally reactive towards the PK-N2 isolated from rat ventral prostate indicating that it can recognize the enzyme from different tissues of the rat. The antibody also detected the cytosolic casein kinase II (CK-2) suggesting significant similarity of the antigenic domains in the two forms of this protein kinase. No binding was detected with the nuclear or cytosolic casein kinase I (PK-N1 and CK-1). The antibody did not inhibit the enzyme activity or directly precipitate the enzyme, but when coupled to an affinity matrix and cross-linked with dimethylpimelimidate, it was capable of removing nearly all the PK-N2 activity from solution.
Collapse
Affiliation(s)
- S A Goueli
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis
| | | | | | | | | |
Collapse
|
44
|
Valdez BC, Busch RK, Busch H. Phosphorylation of the human cell proliferation-associated nucleolar protein p120. Biochem Biophys Res Commun 1990; 173:423-30. [PMID: 2256932 DOI: 10.1016/s0006-291x(05)81075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human cell proliferation-associated nucleolar protein p120 was found in a variety of human cancer specimens but not in most normal resting cells. Polyclonal antibodies raised against bacterially expressed p120 were used to immunoprecipitate the p120 protein isolated from 32P-labeled HeLa cells. The p120 protein was phosphorylated at serine, threonine and tyrosine residues. A tryptic peptide map showed it contained three labeled peptides. One of these peptides comigrated with a p120 peptide phosphorylated in vitro by casein kinase II. This peptide was phosphorylated in vitro both at Ser-181 and Thr-185. This region is juxtaposed to the epitope site recognized by the anti-p120 monoclonal antibody.
Collapse
Affiliation(s)
- B C Valdez
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
45
|
Pinna LA. Casein kinase 2: an 'eminence grise' in cellular regulation? BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1054:267-84. [PMID: 2207178 DOI: 10.1016/0167-4889(90)90098-x] [Citation(s) in RCA: 698] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- L A Pinna
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| |
Collapse
|
46
|
The major phosphorylation site of nucleophosmin (B23) is phosphorylated by a nuclear kinase II. Biochem J 1990; 270:549-52. [PMID: 2400401 PMCID: PMC1131759 DOI: 10.1042/bj2700549] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleophosmin (B23) was phosphorylated in vitro with [gamma-32P]ATP and a nuclear kinase (type II) purified from HeLa cells. The phosphorylation was inhibited by heparin and by 2,3-diphosphoglycerate. Peptide mapping analysis indicated that the phosphorylation site in vitro was identical to that in vivo. Purified nucleoli have a similar kinase that phosphorylated nucleophosmin at the same site. These results indicated that nucleophosmin is phosphorylated in vivo by a nucleolar kinase (type II).
Collapse
|
47
|
Malek SN, Katumuluwa AI, Pasternack GR. Identification and preliminary characterization of two related proliferation-associated nuclear phosphoproteins. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38312-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Münstermann U, Fritz G, Seitz G, Lu YP, Schneider HR, Issinger OG. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:251-7. [PMID: 2159876 DOI: 10.1111/j.1432-1033.1990.tb15484.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein kinase CKII (i.e. casein kinase II, CKII, NII) is expressed at a higher level in rapidly proliferating tissues and in solid human tumours (e.g. colorectal carcinomas) when compared to the corresponding non-neoplastic colorectal mucosa. This could be shown by (a) Western blotting of cellular extracts from solid tumours followed by immunostaining with an anti-CKII polyclonal antibody, (b) immunohistochemical staining of cells from tissue sections and (c) by activity measurements using the CKII-specific synthetic peptide (RRRDDDSDDD). The maximum observed activity in the colorectal carcinomas investigated was up to eightfold higher in the tumour specimens than in the non-neoplastic tissue (i.e. colorectal mucosa). The activity range was between 33-350 U/mg protein and in the case of colorectal mucosa 13-106 U/mg protein. The amount of CKII determined in the individual tumours was in the range 0.4-1.6 nmol/g tissue.
Collapse
Affiliation(s)
- U Münstermann
- Institut für Humangenetik, Universität des Saarlandes, Homburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
An anti-yeast CKI antiserum was shown to cross-react with CKI isolated from Krebs II mouse ascites tumour cells. The mammalian CKI showed virtually the same molecular mass (app. 45 kDa) as the yeast enzyme. By immunofluorescence it could be shown that CKI is preferably located in the nucleolus.
Collapse
Affiliation(s)
- N Grankowski
- Department of Molecular Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | | |
Collapse
|
50
|
Abstract
Abnormal protein phosphorylation has been identified in Alzheimer's disease (AD) for several proteins including a Mr 60,000 protein, a Mr 86,000 protein and a microtubule-associated protein tau. The Mr 86,000 protein is phosphorylated by protein kinase C, whereas protein kinases responsible for other aberrant phosphorylation reactions are not known. In addition to protein kinase C, another kinase, casein kinase II (CK-II), has now been shown to be aberrant in AD. The spermine-dependent CK-II activity is reduced by 84% in AD and the amount of CK-II as determined by its immunoreactivity on a Western blot is reduced by 63%. Furthermore, the distribution of CK-II in AD is altered. Although the neuronal cell body reacts well with CK-II antisera in the normal cortex, the non-tangle-bearing neurons in the AD cortex showed a 15-30% decrease in anti-CK-II immunoreactivity. The neurofibrillary tangles, on the other hand, stain very strongly with rabbit anti-CK-II and indicates that CK-II may be involved in the pathology of AD. The study of CK-II immunoreactivity for dementing diseases other than AD revealed a similar reduction, suggesting the CK-II involvement in the common process of neurodegeneration.
Collapse
Affiliation(s)
- D S Iimoto
- University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | | | | | | | | |
Collapse
|