1
|
Dall'asta V, Franchi-Gazzola R, Bussolati O, Sala R, Rotoli BM, Rossi PA, Uggeri J, Belletti S, Visigalli R, Gazzola GC. Emerging roles for sodium dependent amino acid transport in mesenchymal cells. Amino Acids 2013; 11:117-33. [PMID: 24178683 DOI: 10.1007/bf00813856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1996] [Accepted: 02/20/1996] [Indexed: 11/25/2022]
Abstract
The functional aspects of sodium dependent amino acid transport in mesenchymal cells are the subject of this contribution. In a survey of the cross-talk existing among the various transport mechanisms, particular attention is devoted to the role played by substrates shared by several transport systems, such as L-glutamine. Intracellular levels of glutamine are determined by the activity of System A, the main transducer of ion gradients built on by Na,K-ATPase into neutral amino acid gradients. Changes in the activity of the System are employed to regulate intracellular amino acid pool and, hence, cell volume. System A activity has been found increased in hypertonically shrunken cells and in proliferating cells. Under both these conditions cells have to increase their volume; therefore, System A can be employed as a convenient mechanism to increase cell volume both under hypertonic and isotonic conditions. Although less well characterized, the uptake of anionic amino acids performed by System X(-) AG may be involved in the maintenance of intracellular amino acid pool under conditions of limited availability of neutral amino acids substrates of System A.
Collapse
Affiliation(s)
- V Dall'asta
- Istituto di Patologia Generale, Università degli Studi di Parma, Via Gramsci 14, I-43100, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Rubio I, Suva LJ, Todorova V, Bhattacharyya S, Kaufmann Y, Maners A, Smith M, Klimberg VS. Oral Glutamine Reduces Radiation Morbidity in Breast Conservation Surgery. JPEN J Parenter Enteral Nutr 2013; 37:623-30. [DOI: 10.1177/0148607112474994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Larry J. Suva
- Department of Orthopedic Surgery, Center for Orthopedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Sudeepa Bhattacharyya
- Department of Orthopedic Surgery, Center for Orthopedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
3
|
Franchi-Gazzola R, Dall'Asta V, Sala R, Visigalli R, Bevilacqua E, Gaccioli F, Gazzola GC, Bussolati O. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta Physiol (Oxf) 2006; 187:273-83. [PMID: 16734764 DOI: 10.1111/j.1748-1716.2006.01552.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium-dependent neutral amino acid transporter-2 (SNAT2), the ubiquitous member of SLC38 family, accounts for the activity of transport system A for neutral amino acids in most mammalian tissues. As the transport process performed by SNAT2 is highly energized, system A substrates, such as glutamine, glycine, proline and alanine, reach high transmembrane gradients and constitute major components of the intracellular amino acid pool. Moreover, through a complex array of exchange fluxes, involving other amino acid transporters, and of metabolic reactions, such as the synthesis of glutamate from glutamine, SNAT2 activity influences the cell content of most amino acids, thus determining the overall size and the composition of the intracellular amino acid pool. As amino acids represent a large fraction of cell organic osmolytes, changes of SNAT2 activity are followed by modifications in both cell amino acids and cell volume. This mechanism is utilized by many cell types to perform an effective regulatory volume increase (RVI) upon hypertonic exposure. Under these conditions, the expression of SNAT2 gene is induced and newly synthesized SNAT2 proteins are preferentially targeted to the cell membrane, leading to a significant increase of system A transport Vmax. In cultured human fibroblasts incubated under hypertonic conditions, the specific silencing of SNAT2 expression, obtained with anti-SNAT2 siRNAs, prevents the increase in system A transport activity, hinders the expansion of intracellular amino acid pool, and significantly delays cell volume recovery. These results demonstrate the pivotal role played by SNAT2 induction in the short-term hypertonic RVI and suggest that neutral amino acids behave as compatible osmolytes in hypertonically stressed cells.
Collapse
Affiliation(s)
- R Franchi-Gazzola
- Unit of General and Clinical Pathology, Department of Experimental Medicine, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bevilacqua E, Bussolati O, Dall'Asta V, Gaccioli F, Sala R, Gazzola GC, Franchi-Gazzola R. SNAT2 silencing prevents the osmotic induction of transport system A and hinders cell recovery from hypertonic stress. FEBS Lett 2005; 579:3376-80. [PMID: 15922329 DOI: 10.1016/j.febslet.2005.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/04/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
Under hypertonic conditions the induction of SLC38A2/SNAT2 leads to the stimulation of transport system A and to the increase in the cell content of amino acids. In hypertonically stressed human fibroblasts transfection with two siRNAs for SNAT2 suppressed the increase in SNAT2 mRNA and the stimulation of system A transport activity. Under the same condition, the expansion of the intracellular amino acid pool was significantly lowered and cell volume recovery markedly delayed. It is concluded that the up-regulation of SNAT2 is essential for the rapid restoration of cell volume after hypertonic stress.
Collapse
Affiliation(s)
- Elena Bevilacqua
- Sezione di Patologia Generale e Clinica, Dipartimento di Medicina, Sperimentale, Università degli Studi di Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics 2005; 21:253-63. [PMID: 15687482 DOI: 10.1152/physiolgenomics.00249.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Investigating the molecular mechanisms underlying sarcopenia in humans with the use of microarrays has been complicated by low sample size and the variability inherent in human gene expression profiles. We have conducted a study using Affymetrix GeneChips to identify a molecular signature of aged skeletal muscle. The molecular signature was defined as the set of expressed genes that best distinguished the vastus lateralis muscle of young (n = 10) and older (n = 12) male subjects, when a k-nearest neighbor supervised classification method was used in conjunction with a signal-to-noise ratio gene selection method and a holdout cross-validation procedure. The age-specific expression signature was comprised of 45 genes; 27 were upregulated and 18 were downregulated. This signature also correctly classified 75% of the muscle samples from young and older subjects published by an independent laboratory, based on their expression profiles. The signature revealed increased expression of several genes involved in mediating cellular responses to inflammation and apoptosis, including complement component C1QA, Galectin-1, C/EBP-beta, and FOXO3A, among others. The increased expressions of genes that regulate pre-mRNA splicing, localization, and modification of RNA comprise markers of the aging signature. Downregulated genes in the signature were the glutamine transporter SLC38A1, a TRAF-6 inhibitory zinc finger protein, and membrane-bound transcription factor protease S2P, among others. The sarcopenia signature developed here will be useful as a molecular model to judge the effectiveness of exercise and other therapeutic treatments aimed at ameliorating the effects of muscle loss associated with aging.
Collapse
Affiliation(s)
- Paul G Giresi
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Franchi-Gazzola R, Gaccioli F, Bevilacqua E, Visigalli R, Dall'Asta V, Sala R, Varoqui H, Erickson JD, Gazzola GC, Bussolati O. The synthesis of SNAT2 transporters is required for the hypertonic stimulation of system A transport activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1667:157-66. [PMID: 15581851 DOI: 10.1016/j.bbamem.2004.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/06/2004] [Accepted: 09/24/2004] [Indexed: 11/29/2022]
Abstract
In cultured human fibroblasts incubated under hypertonic conditions, the stimulation of system A for neutral amino acid transport, associated to the increased expression of the mRNA for SNAT2 transporter, leads to an expanded intracellular amino acid pool and to the recovery of cell volume. A protein of nearly 60 kDa, recognized by an antiserum against SNAT2, is increased both in the pool of biotinylated membrane proteins and in the total cell lysate of hypertonically stressed cells. The increased level of SNAT2 transporters in hypertonically stressed cells is confirmed by immunocytochemistry. DRB, an inhibitor of transcription, substantially inhibits the increase of SNAT2 proteins on the plasma membrane, completely suppresses the stimulation of system A transport activity, and markedly delays the cell volume recovery observed during the hypertonic treatment. On the contrary, if the transport activity of system A is adaptively increased by amino acid starvation in the presence of DRB, the increase of SNAT2 transporters on the plasma membrane is still clearly detectable and the transport change only partially inhibited. It is concluded that the synthesis of new SNAT2 transporters is essential for the hypertonic stimulation of transport system A, but accounts only in part for the adaptive increase of the system.
Collapse
Affiliation(s)
- Renata Franchi-Gazzola
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Via Volturno 39, 43100 Parma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bode BP, Fuchs BC, Hurley BP, Conroy JL, Suetterlin JE, Tanabe KK, Rhoads DB, Abcouwer SF, Souba WW. Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1062-73. [PMID: 12381519 DOI: 10.1152/ajpgi.00031.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human hepatoma cells take up glutamine at rates severalfold faster than the system N-mediated transport rates observed in normal human hepatocytes. Amino acid inhibition, kinetic, Northern blotting, RT-PCR, and restriction enzyme analyses collectively identified the transporter responsible in six human hepatoma cell lines as amino acid transporter B(0) (ATB(0)), the human ortholog of rodent ASCT2. The majority of glutamine uptake in liver fibroblasts and an immortalized human liver epithelial cell line (THLE-5B) was also mediated by ATB(0). The 2.9-kb ATB(0) mRNA was equally expressed in all cell lines, whereas expression of the system A transporters ATA2 and ATA3 was variable. In contrast, the system N isoforms (SN1 and SN2) were expressed only in well-differentiated hepatomas. ATB(0) mRNA was also expressed in cirrhotic liver and adult and pediatric liver cancer biopsies but was not detectable in isolated human hepatocytes or fetal liver. Although the growth of all hepatomas was glutamine dependent, competitive inhibition of ATB(0)-mediated glutamine uptake blocked proliferation only in poorly differentiated cells lacking SN1 or SN2 expression and exhibiting low glutamine synthetase mRNA levels.
Collapse
Affiliation(s)
- Barrie P Bode
- Surgical Oncology Research Laboratories, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Much has been learned about plasma membrane glutamine transporter activities in health and disease over the past 30 years, including their potential regulatory role in metabolism. Since the 1960s, discrimination among individual glutamine transporters was based on functional characteristics such as substrate specificity, ion dependence, and kinetic and regulatory properties. Within the past two years, several genes encoding for proteins with these defined activities (termed "systems") have been isolated from human and rodent cDNA libraries and found to be distributed among four distinct gene families. The Na(+)-dependent glutamine transporter genes isolated thus far are System N (SN1), System A (ATA1, ATA2), System ASC/B(0) (ASCT2 or ATB(0)), System B(0,+) (ATB(0,+)) and System y(+)L (y(+)LAT1, y(+)LAT2). Na(+)-independent glutamine transporter genes encoding for System L (LAT1, LAT2) and System b(0,+) (b(0,+)AT) have also been recently isolated, and similar to y(+)L, have been shown to function as disulfide-linked heterodimers with the 4F2 heavy chain (CD98) or rBAT (related to b(0,+) amino acid transporter). In this review, the molecular features, catalytic mechanisms and tissue distributions of each are addressed. Although most of these transporters mediate the transmembrane movement of several other amino acids, their potential roles in regulating interorgan glutamine flux are discussed. Most importantly, these newly isolated transporter genes provide the long awaited tools necessary to study their molecular regulation during the catabolic states in which glutamine is considered to be "conditionally essential."
Collapse
Affiliation(s)
- B P Bode
- Department of Biology, Saint Louis University, St. Louis, MO 63103-2010, USA
| |
Collapse
|
9
|
Karna E, Miltyk W, Wołczyński S, Pałka JA. The potential mechanism for glutamine-induced collagen biosynthesis in cultured human skin fibroblasts. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:23-32. [PMID: 11470441 DOI: 10.1016/s1096-4959(01)00400-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although glutamine (Gln) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Intermediates of Gln interconversion: glutamate (Glu) and pyrroline-5-carboxylate (P5C) stimulate collagen biosynthesis in cultured cells but evoke different maxima of collagen biosynthesis stimulating activity at different times of incubation. P5C was found to be the most potent stimulator of collagen biosynthesis after 6 h of incubation (approx. three-fold increase); after 12 h, it induced increase in collagen biosynthesis to 260%, while at 24 h, the process was decreased to approximately 80% of control values. Glu induced increase in collagen biosynthesis to approximately 180%, 400% and 120% of control values, after 6, 12 and 24 h, respectively, suggesting that after 12 h of incubation, Glu was the most potent stimulator of collagen biosynthesis. Glu was also the most potent stimulator of type I procollagen expression at this time. After 6, 12 and 24 h incubation, Gln induced collagen biosynthesis to approximately 112, 115 and 230% of control values, respectively. Since prolidase is known to be involved in collagen metabolism, the enzyme activity assay was performed in fibroblasts cultured in the presence of Gln, Glu and P5C. While Gln and Glu required 24 h for maximal stimulation of prolidase activity, P5C induced it after 6-12 h. The data suggest that P5C induced collagen biosynthesis and prolidase activity in a shorter time than Gln and Glu. We considered that P5C directly stimulates the processes, while Gln acts through its intermediate-P5C. Reduction of P5C to proline is coupled to the conversion of glucose-6-phosphate (G6P) to 6-phospho-gluconate, catalyzed by G6P dehydrogenase. We have found that dehydroepiandrosterone (DHEA), a potent inhibitor of G6P dehydrogenase, inhibited a stimulatory effect of P5C on collagen synthesis, expression of type I collagen and prolidase activity. Our results postulate a potential mechanism of glutamine-induced collagen biosynthesis through its intermediate - P5C. P5C-dependent activation of nucleotide biosynthesis, prolidase activity and P5C conversion into proline may contribute to the stimulation of collagen biosynthesis.
Collapse
Affiliation(s)
- E Karna
- Department of Medicinal Chemistry, Medical Academy of Białystok, Kilińskiego 1, 15-230, Białystok, Poland.
| | | | | | | |
Collapse
|
10
|
Franchi-Gazzola R, Visigalli R, Dall'Asta V, Sala R, Woo SK, Kwon HM, Gazzola GC, Bussolati O. Amino acid depletion activates TonEBP and sodium-coupled inositol transport. Am J Physiol Cell Physiol 2001; 280:C1465-74. [PMID: 11350742 DOI: 10.1152/ajpcell.2001.280.6.c1465] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of the osmosensitive sodium/myo-inositol cotransporter (SMIT) is regulated by multiple tonicity-responsive enhancers (TonEs) in the 5'-flanking region of the gene. In response to hypertonicity, the nuclear abundance of the transcription factor TonE-binding protein (TonEBP) is increased, and the transcription of the SMIT gene is induced. Transport system A for neutral amino acids, another osmosensitive mechanism, is progressively stimulated if amino acid substrates are not present in the extracellular compartment. Under this condition, as in hypertonicity, cells shrink and mitogen-activated protein kinases are activated. We demonstrate here that a clear-cut nuclear redistribution of TonEBP, followed by SMIT expression increase and inositol transport activation, is observed after incubation of cultured human fibroblasts in Earle's balanced salts (EBSS), an isotonic, amino acid-free saline. EBSS-induced SMIT stimulation is prevented by substrates of system A, although these compounds do not compete with inositol for transport through SMIT. We conclude that the incubation in isotonic, amino acid-free saline triggers an osmotic stimulus and elicits TonEBP-dependent responses like hypertonic treatment.
Collapse
Affiliation(s)
- R Franchi-Gazzola
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Via Volturna, 39, 43100 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pawlik TM, Souba WW, Sweeney TJ, Bode BP. Phorbol esters rapidly attenuate glutamine uptake and growth in human colon carcinoma cells. J Surg Res 2000; 90:149-55. [PMID: 10792956 DOI: 10.1006/jsre.2000.5872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The amino acid glutamine, while essential for gut epithelial growth, has also been shown to stimulate colon carcinoma proliferation and diminish differentiation. Human colon carcinomas are known to extract and metabolize glutamine at rates severalfold greater than those of normal tissues, but the regulation of this response is unclear. Previously we reported that phorbol esters regulate hepatoma System ASC/B(0)-mediated glutamine uptake and cell growth. As human colon carcinoma cells use this same transporter for glutamine uptake, the present studies were undertaken to determine whether similar regulation functions in colon carcinoma. MATERIALS AND METHODS Human colon carcinoma cell lines (WiDr and HT29) were treated with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and initial-rate transport of glutamine and other nutrients was measured at specific times thereafter. Growth rates were monitored during culture +/- PMA or an excess of System ASC/B(0) substrates relative to glutamine. RESULTS PMA treatment induced a rapid inhibition of glutamine uptake rates in WiDr and HT29 cells by 30 and 57%, respectively, after 1 h. Cycloheximide failed to block this response, indicating that the mechanism by which PMA exerts its effects is posttranslational. The inhibition of glutamine uptake by PMA was abrogated by the PKC inhibitor staurosporine, suggesting that this rapid System ASC/B(0) regulation may be mediated by a PKC-dependent pathway. PMA also significantly decreased transport via System y(+) (arginine) and System A (small zwitterionic amino acids). Chronic phorbol ester treatment inhibited WiDr cell growth, as did attenuation of System B(0)-mediated glutamine uptake with other transporter substrates. CONCLUSIONS System ASC/B(0) uptake governs glutamine-dependent growth in colon carcinoma cell lines, and is regulated by a phorbol ester-sensitive pathway that may involve PKC. The results further establish the link between glutamine uptake and colon carcinoma cell growth, a relationship worthy of further investigation with the goal of discovering novel cancer therapeutic targets.
Collapse
Affiliation(s)
- T M Pawlik
- Surgical Oncology Research Laboratories, Massachusetts General Hospital and, Boston, Massachusetts 02114-2696, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Among other functions, the liver serves to regulate both glucose and nitrogen economy in the body, and in humans, the amino acid glutamine is a major gluconeogenic substrate and the primary extrahepatic ammonia shuttle. Accordingly, the liver acinus possesses a unique heterogeneous metabolic architecture suited to carry out these functions with glutamine-consuming urea cycle and gluconeogenic enzymes in the periportal hepatocytes and a high capacity for glutamine synthesis in the perivenous hepatocytes, resulting in net glutamine balance across the hepatic bed under most conditions. Cytoplasmic levels of glutamine are significantly governed by the activity of the System N transporter in the plasma membrane of parenchymal cells; in this capacity, this glutamine carrier has been shown to represent a rate-limiting step in metabolism via glutaminase. The unique properties of System N allow it to rapidly adapt in support of the dynamic demands of whole body ammonia and glucose homeostasis. In contrast to System N in normal hepatocytes, human hepatoma cells take up glutamine at rates several-fold faster through a broad-specificity higher affinity transporter with characteristics of System ASC or B0. It is currently hypothesized that the expression of this high activity carrier by hepatoma cells combined with accelerated metabolism and tumor-induced derangements in hepatocellular architecture result in net glutamine consumption, and may underlie the diminished plasma glutamine levels observed in patients with hepatocellular carcinoma (HCC). The transport of glutamine through System ASC has been shown to regulate growth in some human hepatoma cells, which suggests this transporter may warrant consideration as a therapeutic target for HCC.
Collapse
Affiliation(s)
- B P Bode
- Massachusetts General Hospital Division of Surgical Oncology and Harvard Medical School, Boston 02114-2696, USA
| | | |
Collapse
|
13
|
Dall'Asta V, Bussolati O, Sala R, Parolari A, Alamanni F, Biglioli P, Gazzola GC. Amino acids are compatible osmolytes for volume recovery after hypertonic shrinkage in vascular endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C865-72. [PMID: 10199817 DOI: 10.1152/ajpcell.1999.276.4.c865] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The response to chronic hypertonic stress has been studied in human endothelial cells derived from saphenous veins. In complete growth medium the full recovery of cell volume requires several hours and is neither associated with an increase in cell K+ nor hindered by bumetanide but depends on an increased intracellular pool of amino acids. The highest increase is exhibited by neutral amino acid substrates of transport system A, such as glutamine and proline, and by the anionic amino acid glutamate. Transport system A is markedly stimulated on hypertonic stress, with an increase in activity roughly proportional to the extent and the duration of the osmotic shrinkage. Cycloheximide prevents the increase in transport activity of system A and the recovery of cell volume. It is concluded that human endothelial cells counteract hypertonic stress through the stimulation of transport system A and the consequent expansion of the intracellular amino acid pool.
Collapse
Affiliation(s)
- V Dall'Asta
- Istituto di Patologia Generale, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Lohmann R, Souba WW, Bode BP. Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G743-50. [PMID: 10070052 DOI: 10.1152/ajpgi.1999.276.3.g743] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Despite the central role of the liver in glutamine homeostasis in health and disease, little is known about the mechanism by which this amino acid is transported into sinusoidal endothelial cells, the second most abundant hepatic cell type. To address this issue, the transport of L-glutamine was functionally characterized in hepatic endothelial cells isolated from male rats. On the basis of functional analyses, including kinetics, cation substitution, and amino acid inhibition, it was determined that a Na+-dependent carrier distinct from system N in parenchymal cells, with properties of system ASC or B0, mediated the majority of glutamine transport in hepatic endothelial cells. These results were supported by Northern blot analyses that showed expression of the ATB0 transporter gene in endothelial but not parenchymal cells. Concurrently, it was determined that, whereas both cell types express glutamine synthetase, hepatic endothelial cells express the kidney-type glutaminase isozyme in contrast to the liver-type isozyme in parenchymal cells. This represents the first report of ATB0 and kidney-type glutaminase isozyme expression in the liver, observations that have implications for roles of specific cell types in hepatic glutamine homeostasis in health and disease.
Collapse
Affiliation(s)
- R Lohmann
- Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | | | | |
Collapse
|
15
|
Collins CL, Wasa M, Souba WW, Abcouwer SF. Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. J Cell Physiol 1998; 176:166-78. [PMID: 9618156 DOI: 10.1002/(sici)1097-4652(199807)176:1<166::aid-jcp18>3.0.co;2-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A continual supply of the amino acid glutamine (GLN) may be necessary for cancerous cell growth. GLN plays a central role in multiple metabolic pathways and has long been considered an essential component of tissue culture media. However, the GLN requirements of tumor cell lines and the factors that determine a cell's need for GLN have not been comprehensively studied. Also, it remains unclear how various metabolic pathways contribute to GLN consumption. In the present study, possible determinants of GLN metabolism were examined in seven breast cell lines, two derived from immortalized normal tissue and five of tumor origin. These cells exhibited different dependencies on media GLN concentration for growth and a wide range of GLN utilization rates. GLN uptake was facilitated by a single, common transporter functionally defined as System ASC. However, the affinities for GLN exhibited by this transporter differed appreciably between cell lines. Furthermore, the concentration at which media GLN became a limiting factor for cellular proliferation correlated with transporter affinity. The origin of the cell lines was not a determinant of GLN metabolism because immortalized cells of nontumor origin exhibited GLN dependence and utilization rates comparable to those of tumor-derived cells. The rates of CO2 production from GLN were similar for each cell lines. Rates of GLN disappearance and glutamate appearance in media were strongly correlated, with 32-80% of media GLN converted to glutamate. Both rates were directly affected by media cystine concentration, suggesting that a large portion of glutamate efflux was coupled with cystine import through the amino acid transport system x(c)-. These results demonstrated that cell growth is a function of GLN influx and suggest that GLN is used to supply glutamate and cystine, perhaps for glutathione synthesis.
Collapse
Affiliation(s)
- C L Collins
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
16
|
Bellon G, Chaqour B, Wegrowski Y, Monboisse JC, Borel JP. Glutamine increases collagen gene transcription in cultured human fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:311-23. [PMID: 7548230 DOI: 10.1016/0167-4889(95)00093-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown that glutamine stimulates the synthesis of collagen in human dermal confluent fibroblast cultures (Bellon, G. et al. [1987] Biochim. Biophys. Acta, 930, 39-47). In this paper, we examine the effects of glutamine on collagen gene expression. A dose-dependent effect of glutamine on collagen synthesis was demonstrated from 0 to 0.25 mM followed by a plateau up to 10 mM glutamine. Depending on the cell population, collagen synthesis was increased by 1.3-to 2.3-fold. The mean increase in collagen and non-collagen protein synthesis was 63% and 18% respectively. Steady-state levels of alpha 1(I) and alpha 1(III) mRNAs, were measured by hybridizing total RNA to specific cDNA probes at high stringency. Glutamine increased the steady-state level of collagen alpha 1(I) and alpha 1(III) mRNAs in a dose-dependent manner. At 0.15 mM glutamine, collagen mRNAs were increased by 1.7-and 2.3-fold respectively. Nuclear run-off experiments at this concentration of glutamine indicated that the transcriptional activity was increased by 3.4-fold for the pro alpha 1(I) collagen gene. The effect of glutamine on gene transcription was also supported by the measurement of pro alpha 1(I) collagen mRNA half-life since glutamine did not affect its stability. Protein synthesis seemed to be required for the glutamine-dependent induction of collagen gene expression since cycloheximide suppressed the activation. The effect of glutamine appeared specific because analogues and/or derivatives of glutamine, such as acivicin, 6-diazo-5-oxo-L-norleucine, homoglutamine, ammonium chloride and glutamate did not replace glutamine. The influence of amino acid transport systems through plasma membrane was assessed by the use of 2(methylamino)-isobutyric acid and beta 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid. The glutamine-dependent induction of collagen gene expression was found to be independent of transport system A but dependent on transport system L whose inhibition induced a decrease in pro alpha 1(I) collagen gene transcription by an unknown mechanism. Thus, glutamine, at physiological concentrations, indirectly regulates collagen gene expression.
Collapse
Affiliation(s)
- G Bellon
- Laboratory of Biochemistry, CNRS ER X084, Faculty of Medecine, University of Reims, France
| | | | | | | | | |
Collapse
|
17
|
Vasta V, Meacci E, Farnararo M, Bruni P. Glutamine transport and enzymatic activities involved in glutaminolysis in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1243:43-8. [PMID: 7827106 DOI: 10.1016/0304-4165(94)00118-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamine is actively metabolized in human platelets, representing a preferential mitochondrial oxidative substrate in these cells. The primary importance of this metabolic route of glutamine is further confirmed here by the observation that platelet glutaminase activity is entirely represented by the phosphate dependent glutaminase or glutaminase I, most probably localized in the mitochondrial platelet fraction and classified by kinetic analysis as a kidney-type form. The following step of the glutamine metabolizing pathway, allowing the entrance of the amino acid skeleton carbons in the Krebs cycle, might be catalyzed by both glutamate dehydrogenase and aspartate transaminase, the first being entirely mitochondrial and the latter 65% mitochondrial. We also investigated platelets for the presence of one or more specific transport systems involved in glutamine uptake and we present the first evidence for two glutamine transport systems in human platelets that by inhibition analysis appear to share characteristics with the Na(+)-dependent ASC system and the Na(+)-independent L system for dipolar amino acid uptake. Both systems display affinity characteristics for glutamine in the range of plasma glutamine concentration and may thus have physiological relevance for the uptake of the amino acid in these cells.
Collapse
Affiliation(s)
- V Vasta
- Dipartimento di Scienze Biochimiche, Università di Firenze, Italy
| | | | | | | |
Collapse
|
18
|
Dall'Asta V, Rossi P, Bussolati O, Gazzola G. Response of human fibroblasts to hypertonic stress. Cell shrinkage is counteracted by an enhanced active transport of neutral amino acids. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34085-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Dall'Asta V, Rossi PA, Bussolati O, Gazzola GC. Regulatory volume decrease of cultured human fibroblasts involves changes in intracellular amino-acid pool. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1220:139-45. [PMID: 8312358 DOI: 10.1016/0167-4889(94)90129-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regulatory volume decrease (RVD) has been studied in cultured human fibroblasts incubated in a complete growth medium at low osmolality (215 mosmolal). After the initial swelling induced by hypotonic treatment, cells recover their volume almost completely within about 60 min. This RVD is associated with comparable losses of cell potassium and amino acids. After an initial increase, cell content of sodium is kept at values close to control. Chromatographic analysis of intracellular amino-acid pool has shown that RVD-associated decrease in cell amino acids is due for the most part to changes in the intracellular concentration of L-glutamine. RVD-exerting cells undergo a rapid and marked depolarization that is maintained after cell volume recovery. This change in membrane potential has been detected with measurements of both the transmembrane distribution ratios of L-arginine and of fluorescence of potential-sensitive dye bis-oxonol. Due to depolarization, the trans-membrane gradient of sodium electrochemical potential is lowered. It is proposed that cell depolarization concurs to keep the intracellular concentration of amino acids low by inhibiting sodium-coupled uptake through system A.
Collapse
Affiliation(s)
- V Dall'Asta
- Istituto di Patologia Generale, Università degli Studi di Parma, Italy
| | | | | | | |
Collapse
|
20
|
Bussolati O, Sala R, Astorri A, Rotoli BM, Dall'Asta V, Gazzola GC. Characterization of amino acid transport in human endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C1006-14. [PMID: 8238295 DOI: 10.1152/ajpcell.1993.265.4.c1006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transport of amino acids has been studied in human umbilical vein endothelial cells. Neutral amino acids enter human umbilical vein endothelial cells through three distinct agencies endowed with the characteristics of systems A, ASC, and L. Each system has been studied by evaluating the influx of preferential substrates. The influx of L-proline and 2-methylaminoisobutyric acid occurs through an Na(+)-dependent adaptively regulated trans-inhibited agency identifiable with system A. L-Threonine influx occurs mainly through a distinct Na(+)-dependent trans-stimulated pathway corresponding to system ASC. System L accounts for Na(+)-independent influx of L-leucine. These systems cooperate for the transport of L-glutamine, which is due mainly to system ASC, whereas the component due to the operation of system A increases upon amino acid starvation. No clear evidence was found for a glutamine-specific system ("system N"). Two systems, one Na+ dependent (system XAG-) and the other Na+ independent (system xc-), transport anionic amino acids. L-Arginine influx exhibits a poor dependence on extracellular Na+, whereas it is sensitive to conditions known to change membrane potential and to trans-stimulation by intracellular amino acids. These features are consistent with a process mediated by system y+ and may be of significance for the regulation of the intracellular concentration of L-arginine.
Collapse
Affiliation(s)
- O Bussolati
- Istituto di Patologia Generale, Università degli Studi di Parma, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Dudrick PS, Bland KI, Souba WW. Effects of tumor necrosis factor on system ASC-mediated glutamine transport by human fibroblasts. J Surg Res 1992; 52:347-52. [PMID: 1593872 DOI: 10.1016/0022-4804(92)90114-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of tumor necrosis factor-alpha (TNF) on glutamine GLN transport by cultured human fibroblasts were studied. Uptake of 3H-GLN was assayed in both the presence and absence of sodium in order to differentiate Na(+)-dependent and Na(+)-independent transport systems. GLN transport was linear (r = 0.99) for at least 15 min and occurred predominantly via a single Na(+)-dependent pathway, consistent with System ASC. Incubation of fibroblasts with TNF (1000 units/ml) for 12 hr resulted in a significant decrease in system ASC-mediated glutamine transport activity. TNF did not alter cell morphology or protein content. Kinetic studies indicated that the decrease in carrier-mediated Na(+)-dependent GLN transport was not due to a change in transporter affinity (Km = 117 +/- 23 microM in controls vs 86 +/- 23 microM in TNF, P = NS), but instead to a 45% decrease in maximal transport rate (Vmax = 4088 +/- 354 pmole/mg protein/30 sec in controls vs 2230 +/- 510 in TNF, P less than 0.05). TNF also decreased Na(+)-independent transport by 50% (mean uptake of 50 microM GLN = 94 +/- 13 pmole/mg protein/30 sec in controls vs 46 +/- 6 in TNF, P less than 0.02). In human fibroblasts, the activity of System ASC, which has generally been viewed as a hormonally unresponsive carrier, is decreased by TNF. This impairment in glutamine transport may result in inadequate amounts of intracellular glutamine to support fibroblast metabolism and possibly function.
Collapse
Affiliation(s)
- P S Dudrick
- Department of Surgery, University of Florida College of Medicine, Gainesville
| | | | | |
Collapse
|
22
|
Bussolati O, Rotoli BM, Laris PC, Dall'Asta V, Gazzola GC. The preferential interaction of L-threonine with transport system ASC in cultured human fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1070:305-12. [PMID: 1684912 DOI: 10.1016/0005-2736(91)90071-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transport of L-threonine was studied in cultured human fibroblasts. A kinetic analysis of L-threonine transport in a range of extracellular concentrations from 0.01 to 20 mM indicated that this amino acid enters cells through both Na(+)-independent and Na(+)-dependent routes. These routes are: (1) a non-saturable, Na(+)-independent route formally indistinguishable from diffusion; (2) a saturable, Na(+)-independent route inhibitable by the analog BCH and identifiable with system L; (3) a low-affinity, Na(+)-dependent component (Km = 3 mM) which can be attributed to the activity of system A since it is adaptively enhanced by amino acid starvation and suppressed by the characterizing analog MeAIB and (4) a high-affinity, Na(+)-dependent route (Km = 0.05 mM). This latter route is identifiable with system ASC since it is insensitive to adaptive regulation, uninhibited by MeAIB, trans-stimulated by intracellular substrates of system ASC, markedly stereoselective, and relatively insensitive to changes in external pH. At an external concentration of 0.05 mM more than 90% of L-threonine transport is referrable to the activity of system ASC; in these conditions, the transport of the amino acid exhibits typical ASC-features even in the absence of inhibitors of other transport agencies, and, therefore, it can be employed as a reliable indicator of the activity of transport system ASC in cultured human fibroblasts.
Collapse
Affiliation(s)
- O Bussolati
- Istituto di Patologia Generale, Università di Parma, Italy
| | | | | | | | | |
Collapse
|