1
|
Choi BJ, Park MH, Jin HK, Bae JS. Acid sphingomyelinase as a pathological and therapeutic target in neurological disorders: focus on Alzheimer's disease. Exp Mol Med 2024; 56:301-310. [PMID: 38337058 PMCID: PMC10907607 DOI: 10.1038/s12276-024-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
Over the past decade, numerous studies have highlighted the importance of acid sphingomyelinase (ASM) in disease treatment in humans. This enzyme functions primarily to generate ceramide, maintain the cellular membrane, and regulate cellular function. However, in the blood and brain of patients with neurological disorders, including major depression, ischemic stroke, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's disease (AD), elevated ASM levels significantly suggest disease onset or progression. In these diseases, increased ASM is profoundly involved in neuronal death, abnormal autophagy, neuroinflammation, blood-brain barrier disruption, hippocampal neurogenesis loss, and immune cell dysfunction. Moreover, genetic and pharmacological inhibition of ASM can prevent or ameliorate various diseases. The therapeutic effects of ASM inhibition have prompted the urgent need to develop ASM inhibitors, and several ASM inhibitors have been identified. In this review, we summarize the current knowledge on the critical roles and mechanisms of ASM in brain cells and blood that are associated with different neuropathological features, especially those observed in AD. Furthermore, we elucidate the potential possibility and limitations of existing ASM-targeting drugs according to experimental studies in neurological disorder mouse models.
Collapse
Affiliation(s)
- Byung Jo Choi
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Min Hee Park
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Hee Kyung Jin
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Jae-Sung Bae
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| |
Collapse
|
2
|
The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2022; 27:307-314. [PMID: 34608263 PMCID: PMC8488928 DOI: 10.1038/s41380-021-01309-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.
Collapse
|
3
|
Verdoodt F, Dehlendorff C, Jäättelä M, Strauss R, Pottegård A, Hallas J, Friis S, Kjaer SK. Antihistamines and Ovarian Cancer Survival: Nationwide Cohort Study and in Vitro Cell Viability Assay. J Natl Cancer Inst 2021; 112:964-967. [PMID: 31688928 DOI: 10.1093/jnci/djz217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/06/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Antihistamines with cationic amphiphilic drug (CAD) characteristics induce cancer-specific cell death in experimental studies. Epidemiologic evidence is, however, limited. In a Danish nationwide cohort of ovarian cancer patients diagnosed during 2000-2015 (n = 5075), we evaluated the association between filled antihistamine prescriptions and cancer mortality. We used Cox regression models to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) for ovarian cancer mortality. In an in vitro cell viability assay, we evaluated cell death in three ovarian cancer cell lines after treatment with clinically relevant doses of eight antihistamines. In our cohort study, CAD antihistamine use (≥1 prescription; n = 133) was associated with a hazard ratio of 0.63 (95% CI = 0.40 to 0.99) compared to use of non-CAD antihistamines (n = 304), and we found a tendency toward a dose-response association. In our cell viability assay, we found consistent and dose-dependent cytotoxicity for all CAD but not non-CAD antihistamines. In this nationwide cohort study, use of antihistamines with CAD characteristics is associated with a prognostic benefit in ovarian cancer patients.
Collapse
Affiliation(s)
- Freija Verdoodt
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Centre, Copenhagen, Denmark.,Belgian Cancer Registry, Brussels, Belgium
| | - Christian Dehlendorff
- Unit of Statistics and Pharmacoepidemiology, Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death & Metabolism, Centre for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Strauss
- Genome Integrity Unit, Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Anton Pottegård
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jesper Hallas
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Søren Friis
- Unit of Statistics and Pharmacoepidemiology, Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Susanne K Kjaer
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Centre, Copenhagen, Denmark.,Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp Mol Med 2020; 52:380-389. [PMID: 32203096 PMCID: PMC7156489 DOI: 10.1038/s12276-020-0399-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Aging, which is associated with age-related changes in physiological processes, is the most significant risk factor for the development and progression of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Accumulating evidence has indicated that sphingolipids are significant regulators that are associated with pathogenesis in aging and several age-related neurodegenerative diseases. In particular, abnormal levels of acid sphingomyelinase (ASM), one of the significant sphingolipid-metabolizing enzymes, have been found in the blood and some tissues under various neuropathological conditions. Moreover, recent studies have reported the importance of ASM as a critical mediator that contributes to pathologies in aging and age-related neurodegenerative diseases. In this review, we describe the pathophysiological processes that are regulated by ASM, focusing on the age-related neurodegenerative environment. Furthermore, we discuss novel insights into how new therapeutics targeting ASM may potentially lead to effective strategies to combat aging and age-related neurodegenerative diseases.
Collapse
|
5
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
6
|
Xiong X, Lee CF, Li W, Yu J, Zhu L, Kim Y, Zhang H, Sun H. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol Open 2019; 8:bio.040311. [PMID: 31142470 PMCID: PMC6826292 DOI: 10.1242/bio.040311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In human, loss of acid sphingomyelinase (ASM/SMPD1) causes Niemann–Pick disease, type A. ASM hydrolyzes sphingomyelins to produce ceramides but protein targets of ASM remain largely unclear. Our mass spectrometry-based proteomic analyses have identified >100 proteins associated with the ASM-dependent, detergent-resistant membrane microdomains (lipid rafts), with >60% of these proteins being palmitoylated, including SNAP23, Src-family kinases Yes and Lyn, and Ras and Rab family small GTPases. Inactivation of ASM abolished the presence of these proteins in the plasma membrane, with many of them trapped in the Golgi. While palmitoylation inhibitors and palmitoylation mutants phenocopied the effects of ASM inactivation, we demonstrated that ASM is required for the transport of palmitoylated proteins, such as SNAP23 and Lyn, from the Golgi to the plasma membrane without affecting palmitoylation directly. Importantly, ASM delivered extracellularly can regulate the trafficking of SNAP23 from the Golgi to the plasma membrane. Our studies suggest that ASM, acting at the plasma membrane to produce ceramides, regulates the localization and trafficking of the palmitoylated proteins. Summary: Acid sphingomyelinase (ASM) regulates palmitoylated protein trafficking and localization.
Collapse
Affiliation(s)
- Xiahui Xiong
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Chia-Fang Lee
- Protea Biosciences, 1311 Pineview drive, Morgantown, West Virginia, USA
| | - Wenjing Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Jiekai Yu
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Linyu Zhu
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Yongsoon Kim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| |
Collapse
|
7
|
Park S, Ko W, Park S, Lee HS, Shin I. Evaluation of the Interaction between Bax and Hsp70 in Cells by Using a FRET System Consisting of a Fluorescent Amino Acid and YFP as a FRET Pair. Chembiochem 2019; 21:59-63. [DOI: 10.1002/cbic.201900293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Seong‐Hyun Park
- Department of ChemistryYonsei University Seoul 03722 South Korea
| | - Wooseok Ko
- Department of ChemistrySogang University Seoul 04107 South Korea
| | - Sang‐Hyun Park
- Department of ChemistryYonsei University Seoul 03722 South Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University Seoul 04107 South Korea
| | - Injae Shin
- Department of ChemistryYonsei University Seoul 03722 South Korea
| |
Collapse
|
8
|
Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans 2018; 46:207-215. [DOI: 10.1042/bst20170130] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic organelles that contain hydrolytic enzymes that mediate the intracellular degradation of macromolecules. Damage of these organelles often results in lysosomal membrane permeabilization (LMP) and the release into the cytoplasm of the soluble lysosomal contents, which include proteolytic enzymes of the cathepsin family. This, in turn, activates several intracellular cascades that promote a type of regulated cell death, called lysosome-dependent cell death (LDCD). LDCD can be inhibited by pharmacological or genetic blockade of cathepsin activity, or by protecting the lysosomal membrane, thereby stabilizing the organelle. Lysosomal alterations are common in cancer cells and may increase the sensitivity of these cells to agents that promote LMP. In this review, we summarize recent findings supporting the use of LDCD as a means of killing cancer cells.
Collapse
|
9
|
Zhu L, Xiong X, Kim Y, Okada N, Lu F, Zhang H, Sun H. Acid sphingomyelinase is required for cell surface presentation of Met receptor tyrosine kinase in cancer cells. J Cell Sci 2016; 129:4238-4251. [PMID: 27802163 DOI: 10.1242/jcs.191684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are embedded in the lipid bilayer of the plasma membrane, but the specific roles of various lipids in cell signaling remain largely uncharacterized. We have previously found that acid sphingomyelinase (ASM; also known as SMPD1) regulates the conserved DAF-2 (the ortholog IGF-1R in mammals) RTK signaling pathway in Caenorhabditis elegans How ASM and its catalytic products, ceramides, control RTK signaling pathways remain unclear. Here, we report that ASM regulates the homeostasis of Met, an RTK that is frequently overexpressed in various cancers. Inactivation of ASM led to a rapid loss of Met from the plasma membrane, reduced Met phosphorylation and activation, and induced Met accumulation in the trans-Golgi network (TGN). However, trafficking of integrin β3 and vesicular stomatitis virus glycoprotein (VSVG) was largely unaffected. Knockdown of syntaxin 6 (STX6) also blocked the Golgi exit of Met. Depletion of either ASM or STX6 led to aberrant trafficking of Met to lysosomes, promoting its degradation. Our studies reveal that ASM and ceramides, together with STX6 and cholesterol, constitute a new regulatory mechanism for the exit of Met from the Golgi during its biosynthetic route, which is used to rapidly replenish and regulate the plasma membrane levels of Met in various cancer cells.
Collapse
Affiliation(s)
- Linyu Zhu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Xiahui Xiong
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Yongsoon Kim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Naomi Okada
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Fei Lu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89135, USA
| |
Collapse
|
10
|
Ellegaard AM, Dehlendorff C, Vind AC, Anand A, Cederkvist L, Petersen NHT, Nylandsted J, Stenvang J, Mellemgaard A, Østerlind K, Friis S, Jäättelä M. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment. EBioMedicine 2016; 9:130-139. [PMID: 27333030 PMCID: PMC4972561 DOI: 10.1016/j.ebiom.2016.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy. Use of cationic amphiphilic antihistamines is associated with reduced mortality among patients with non-localized cancer. Clinically relevant concentrations of cationic amphiphilic antihistamines sensitize cancer cells to chemotherapy. Clinically relevant concentrations of cationic amphiphilic antihistamines revert multidrug resistance. Research Context Cationic amphiphilic drugs (CADs) induce lysosomal membrane permeabilization and cell death preferentially in cancer cells. Here, we show that antihistamines with CAD structure, i.e. astemizole, ebastine and loratadine, sensitize cancer cells to chemotherapy and revert multidrug resistance even at low, clinically relevant concentrations. The significance of these experimental findings is supported by an association between CAD antihistamine use and reduced mortality among patients diagnosed with non-localized cancer, especially among those receiving concurrent chemotherapy. These findings are immediately translatable to clinical trials, as loratadine and ebastine, are safe, inexpensive and approved for clinical use.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Christian Dehlendorff
- Statistics, Bioinformatics & Registry, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Anna C Vind
- Department of Veterinary Disease Biology, Section for Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Atul Anand
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Luise Cederkvist
- Statistics, Bioinformatics & Registry, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Nikolaj H T Petersen
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jan Stenvang
- Department of Veterinary Disease Biology, Section for Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Anders Mellemgaard
- Department of Oncology, Copenhagen University Hospital Herlev, DK-2730 Herlev, Denmark
| | - Kell Østerlind
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, DK-2200 DK-2730 Copenhagen, Denmark
| | - Søren Friis
- Statistics, Bioinformatics & Registry, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Ellegaard AM, Groth-Pedersen L, Oorschot V, Klumperman J, Kirkegaard T, Nylandsted J, Jäättelä M. Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance. Mol Cancer Ther 2013; 12:2018-30. [PMID: 23920274 DOI: 10.1158/1535-7163.mct-13-0084] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defective apoptosis signaling and multidrug resistance are major barriers for successful cancer treatment. To identify drugs capable of targeting treatment-resistant cancer cells, we screened small-molecule kinase inhibitor libraries for compounds that decrease the viability of apoptosis-resistant human MCF7-Bcl-2 breast cancer cells. SU11652, a multitargeting receptor tyrosine kinase inhibitor, emerged as the most potent compound in the screen. In addition to MCF7-Bcl-2 cells, it effectively killed HeLa cervix carcinoma, U-2-OS osteosarcoma, Du145 prostate carcinoma, and WEHI-S fibrosarcoma cells at low micromolar concentration. SU11652 accumulated rapidly in lysosomes and disturbed their pH regulation and ultrastructure, eventually leading to the leakage of lysosomal proteases into the cytosol. Lysosomal destabilization was preceded by an early inhibition of acid sphingomyelinase, a lysosomal lipase that promotes lysosomal membrane stability. Accordingly, Hsp70, which supports cancer cell survival by increasing lysosomal acid sphingomyelinase activity, conferred partial protection against SU11652-induced cytotoxicity. Remarkably, SU11652 killed multidrug-resistant Du145 prostate cancer cells as effectively as the drug-sensitive parental cells, and subtoxic concentrations of SU11652 effectively inhibited multidrug-resistant phenotype in Du145 prostate cancer cells. Notably, sunitinib, a structurally almost identical and widely used antiangiogenic cancer drug, exhibited similar lysosome-dependent cytotoxic activity, albeit with significantly lower efficacy. The significantly stronger lysosome-targeting activity of SU11652 suggests that it may display better efficacy in cancer treatment than sunitinib, encouraging further evaluation of its anticancer activity in vivo. Furthermore, our data provide a rationale for novel approaches to target drug-resistant cancers by combining classic chemotherapy with sunitinib or SU11652.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Corresponding Author: Marja Jäättelä, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|
12
|
Petersen NHT, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lønborg A, Vindeløv SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jäättelä M. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 2013; 24:379-93. [PMID: 24029234 DOI: 10.1016/j.ccr.2013.08.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/10/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022]
Abstract
Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.
Collapse
Affiliation(s)
- Nikolaj H T Petersen
- Department of Cell Death and Metabolism, Danish Cancer Society Research Center (DCRC), DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cancer cells display lysosome hypertrophy, secreting lysosomal hydrolases for tumor progression. Hypertrophy renders lysosomes fragile, increasing lysosomal membrane permeabilization (LMP) tendency. In this issue of Cancer Cell, Petersen and colleagues show that lysosomal sphingomyelin content determines LMP and cationic drugs displace acid sphingomyelinase from lysosomal membranes, increasing tumor LMP and death.
Collapse
Affiliation(s)
- Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | |
Collapse
|
14
|
Kim Y, Sun H. ASM-3 acid sphingomyelinase functions as a positive regulator of the DAF-2/AGE-1 signaling pathway and serves as a novel anti-aging target. PLoS One 2012; 7:e45890. [PMID: 23049887 PMCID: PMC3457945 DOI: 10.1371/journal.pone.0045890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 08/27/2012] [Indexed: 02/05/2023] Open
Abstract
In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.
Collapse
Affiliation(s)
- Yongsoon Kim
- Laboratory of Cancer Genomics, Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail: (YK); (HS)
| | - Hong Sun
- Laboratory of Cancer Genomics, Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail: (YK); (HS)
| |
Collapse
|
15
|
O'Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 2012; 165:289-312. [PMID: 21718296 DOI: 10.1111/j.1476-5381.2011.01557.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The drug efflux pump P-glycoprotein (P-gp) plays an important role in the function of the blood-brain barrier by selectively extruding certain endogenous and exogenous molecules, thus limiting the ability of its substrates to reach the brain. Emerging evidence suggests that P-gp may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. Despite some inconsistency in the literature, clinical investigations of potential associations between functional single nucleotide polymorphisms in ABCB1, the gene which encodes P-gp, and antidepressant response have highlighted a potential link between P-gp function and treatment-resistant depression (TRD). Therefore, co-administration of P-gp inhibitors with antidepressants to patients who are refractory to antidepressant therapy may represent a novel therapeutic approach in the management of TRD. Furthermore, certain antidepressants inhibit P-gp in vitro, and it has been hypothesized that inhibition of P-gp by such antidepressant drugs may play a role in their therapeutic action. The present review summarizes the available in vitro, in vivo and clinical data pertaining to interactions between antidepressant drugs and P-gp, and discusses the potential relevance of these interactions in the treatment of depression.
Collapse
Affiliation(s)
- Fionn E O'Brien
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
16
|
Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 2010; 332:265-74. [PMID: 20598437 DOI: 10.1016/j.canlet.2010.05.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
Abstract
Acquired therapy resistance is one of the prime obstacles for successful cancer treatment. Partial resistance is often acquired already during an early face of tumor development when genetic changes causing defects in classical caspase-dependent apoptosis pathway provide transformed cells with a growth advantage by protecting them against various apoptosis inducing stimuli including transforming oncogenes themselves and host immune system. Apoptosis defective cells are further selected during tumor progression and finally by apoptosis inducing treatments. Another form of resistance, multidrug resistance, arises during cancer treatment when cancer cells with effective efflux of cytotoxic agents escape the therapy. Remarkably, induction of lysosomal membrane permeabilization has recently emerged as an effective way to kill apoptosis resistant cancer cells and some lysosome targeting drugs can also re-sensitize multidrug resistant cells to classical chemotherapy. In this review, we highlight recent data on lysosomal cell death pathways and their implications for the future treatment of apoptosis defective and multidrug resistant aggressive tumors.
Collapse
Affiliation(s)
- Line Groth-Pedersen
- Pediatrics and Adolescent Medicine, The Juliane Marie Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
17
|
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 2009; 11:481-96. [PMID: 18764739 PMCID: PMC2933567 DOI: 10.1089/ars.2008.2263] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
18
|
Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:524-39. [PMID: 19146988 DOI: 10.1016/j.bbalip.2008.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 12/12/2022]
Abstract
This review summarizes the current knowledge of endolysosomal and cytoplasmic lipid storage in macrophages induced by oxidized LDL (Ox-LDL), enzymatically degraded LDL (E-LDL) and other atherogenic lipoprotein modifications, and their relation to the adapter protein 3 (AP-3) dependent ABCA1 and ABCG1 cellular lipid efflux pathways. We compare endolysosomal lipid storage caused either through drug induced phospholipidosis, inheritable endolysosomal and cytosolic lipid storage disorders and Ox-LDL or E-LDL induced phagosomal uptake and cytosolic lipid droplet storage in macrophages. Ox-LDL is resistant to rapid endolysosomal hydrolysis and is trapped within the endolysosomal compartment generating lamellar bodies which resemble the characteristics of phospholipidosis. Various inherited lysosomal storage diseases including sphingolipidosis, glycosphingolipidosis and cholesterylester storage diseases also present a phospholipidosis phenotype. In contrast E-LDL resembling coreless unesterified cholesterol enriched LDL-particles, with a multilamellar, liposome-like structure, lead to rapid phagosomal degradation and cytosolic lipid droplet accumulation. As a consequence the uptake of E-LDL through type I and type II phagocytosis leads to increased lipid droplet formation and moderate upregulation of ABCA1 and ABCG1 while uptake of Ox-LDL leads to a rapid expansion of the lysosomal compartment and a pronounced upregulation of the ABCA1/ABCG1/AP-3 lipid efflux pathway.
Collapse
|
19
|
Pariante CM. The role of multi-drug resistance p-glycoprotein in glucocorticoid function: studies in animals and relevance in humans. Eur J Pharmacol 2008; 583:263-71. [PMID: 18275949 DOI: 10.1016/j.ejphar.2007.11.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/01/2007] [Accepted: 11/07/2007] [Indexed: 01/16/2023]
Abstract
Entry of glucocorticoid hormones into cells is tightly regulated by membrane transporters. One of these transporters, the multi-drug resistance p-glycoprotein, has been extensively described to confer treatment resistance to tumour cells as well as to regulate the intracellular levels of glucocorticoid hormones. Moreover, multi-drug resistance p-glycoprotein is also present on the endothelial cells of the blood-brain-barrier, and in neurones, where it limits the access of glucocorticoids to the brain. Finally, this transporter also has the ability to limit the entry of some antidepressants to the brain, with potential consequences for the clinical therapeutic effects of these drugs. This review will focus on the studies that have used multi-drug resistance p-glycoprotein knockout animals in such context, and will discuss the potential clinical relevance of these transporters for psychiatric disorders. In particular, we will discuss the reciprocal interactions between this transporter and antidepressants, both as its inhibitors and as its substrates. We believe that the interaction between antidepressants and multi-drug resistance p-glycoprotein is one of the most potentially exciting developments in psychopharmacological research.
Collapse
Affiliation(s)
- Carmine M Pariante
- Section and Laboratory of Stress, Psychiatry and Immunology (SPI-Lab), Institute of Psychiatry, Kings College London, United Kingdom.
| |
Collapse
|
20
|
Glucosylceramide synthase decrease in frontal cortex of Alzheimer brain correlates with abnormal increase in endogenous ceramides: Consequences to morphology and viability on enzyme suppression in cultured primary neurons. Brain Res 2008; 1191:136-47. [DOI: 10.1016/j.brainres.2007.10.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/22/2007] [Accepted: 10/26/2007] [Indexed: 02/02/2023]
|
21
|
Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of New Functional Inhibitors of Acid Sphingomyelinase Using a Structure−Property−Activity Relation Model. J Med Chem 2007; 51:219-37. [DOI: 10.1021/jm070524a] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Lothar Terfloth
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Stefan Bleich
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Erich Gulbins
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| |
Collapse
|
22
|
Moulin M, Carpentier S, Levade T, Arrigo AP. Potential roles of membrane fluidity and ceramide in hyperthermia and alcohol stimulation of TRAIL apoptosis. Apoptosis 2007; 12:1703-20. [PMID: 17610065 DOI: 10.1007/s10495-007-0096-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We recently reported that a mild heat shock induces a long lasting stimulation of TRAIL-induced apoptosis of leukemic T-lymphocytes and myeloid cell lines, but not normal T-lymphocytes, which correlates with an enhanced ability of TRAIL to recognize its receptors. As shown here, this phenomenon could be inhibited by the xanthogenate agent D609, a sphingomyelin/ceramide pathway inhibitor. A caspase-dependent and D609-sensitive two-fold increase in ceramide level was elicited by heat shock plus TRAIL combined treatment. One day after heat shock, a similar increase in ceramide was induced by TRAIL. Sphingolipids/ceramides are known to regulate membrane integrity, and heat shock increases membrane fluidity. In this regard, the heat shock plus TRAIL combined treatment resulted in a D609-sensitive membrane fluidization which was far more intense than that induced by heat shock only. We also report that membrane fluidizers, that mimic the effect of heat shock, such benzyl alcohol and ethanol, potently stimulated TRAIL-induced apoptosis. As heat shock, these alcohols increased, in a D609-sensitive manner, membrane fluidity in the presence of TRAIL, the recognition of TRAIL death receptors, and ceramide levels. These results suggest that stress agents that trigger ceramide production and an overall increase in membrane fluidity are stimulators of TRAIL apoptosis.
Collapse
Affiliation(s)
- Maryline Moulin
- Laboratoire Stress, Chaperons et Mort cellulaire, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, Lyon-1, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
23
|
Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L, Gorria M, Chevanne M, Christmann M, Kaina B, Counillon L, Gulbins E, Lagadic-Gossmann D, Dimanche-Boitrel MT. Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Cancer Res 2007; 67:7865-74. [PMID: 17699793 DOI: 10.1158/0008-5472.can-07-0353] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously shown that cisplatin triggers an early acid sphingomyelinase (aSMase)-dependent ceramide generation concomitantly with an increase in membrane fluidity and induces apoptosis in HT29 cells. The present study further explores the role and origin of membrane fluidification in cisplatin-induced apoptosis. The rapid increase in membrane fluidity following cisplatin treatment was inhibited by membrane-stabilizing agents such as cholesterol or monosialoganglioside-1. In HT29 cells, these compounds prevented the early aggregation of Fas death receptor and of membrane lipid rafts on cell surface and significantly inhibited cisplatin-induced apoptosis without altering drug intracellular uptake or cisplatin DNA adducts formation. Early after cisplatin treatment, Na+/H+ membrane exchanger-1 (NHE1) was inhibited leading to intracellular acidification, aSMase was activated, and ceramide was detected at the cell membrane. Treatment of HT29 cells with Staphylococcus aureus sphingomyelinase increased membrane fluidity. Moreover, pretreatment with cariporide, a specific inhibitor of NHE1, inhibited cisplatin-induced intracellular acidification, aSMase activation, ceramide membrane generation, membrane fluidification, and apoptosis. Finally, NHE1-expressing PS120 cells were more sensitive to cisplatin than NHE1-deficient PS120 cells. Altogether, these findings suggest that the apoptotic pathway triggered by cisplatin involves a very early NHE1-dependent intracellular acidification leading to aSMase activation and increase in membrane fluidity. These events are independent of cisplatin-induced DNA adducts formation. The membrane exchanger NHE1 may be another potential target of cisplatin, increasing cell sensitivity to this compound.
Collapse
Affiliation(s)
- Amélie Rebillard
- Institut National de la Sante et de la Recherche Medicale, Unité Mixte de Recherche 620, Institut Fédératif de Recherche 140 Génétique Fonctionnelle Agronomie et Santé, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Alikhani M, Maclellan CM, Raptis M, Vora S, Trackman PC, Graves DT. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 2006; 292:C850-6. [PMID: 17005604 DOI: 10.1152/ajpcell.00356.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advanced glycation end products (AGEs) are elevated in aged and diabetic individuals and are associated with pathological changes associated with both. Previously we demonstrated that the AGE N(epsilon)-(carboxymethyl)lysine (CML)-collagen induced fibroblast apoptosis through the cytoplasmic and mitochondrial pathways and the global induction of proapoptotic genes. In the present study we investigated upstream mechanisms of CML-collagen-induced apoptosis. CML-collagen induced activation of the proapoptotic transcription factor FOXO1 compared with unmodified collagen. When FOXO1 was silenced, CML-collagen-stimulated apoptosis was reduced by approximately 75% compared with fibroblasts incubated with nonsilencing small interfering RNA, demonstrating the functional significance of FOXO1 activation (P < 0.05). CML-collagen but not control collagen also induced a 3.3-fold increase in p38 and a 5.6-fold increase in JNK(1/2) activity (P < 0.05). With the use of specific inhibitors, activation of p38 and JNK was shown to play an important role in CML-collagen-induced activation of FOXO1 and caspase-3. Moreover, inhibition of p38 and JNK reduced CML-collagen-stimulated apoptosis by 48 and 57%, respectively, and by 89% when used together (P < 0.05). In contrast, inhibition of the phosphatidylinositol 3-kinase/Akt pathway enhanced FOXO1 activation. p38 and JNK stimulation by CML-collagen was almost entirely blocked when formation of ROS was inhibited and was partially reduced by NO and ceramide inhibitors. These inhibitors also reduced apoptosis to a similar extent. Together these data support a model in which AGE-induced apoptosis involves the formation of ROS, NO, and ceramide and leads to p38 and JNK MAP kinase activation, which in turn induces FOXO1 and caspase-3.
Collapse
Affiliation(s)
- Mani Alikhani
- Dept. of Periodontology and Oral Biology, Boston Univ. School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
25
|
Elojeimy S, Holman DH, Liu X, El-Zawahry A, Villani M, Cheng JC, Mahdy A, Zeidan Y, Bielwaska A, Hannun YA, Norris JS. New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett 2006; 580:4751-6. [PMID: 16901483 DOI: 10.1016/j.febslet.2006.07.071] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 07/25/2006] [Accepted: 07/25/2006] [Indexed: 01/17/2023]
Abstract
Treatment of different cancer cell lines with desipramine induced a time- and dose-dependent downregulation of acid ceramidase. Desipramine's effect on acid ceramidase appeared specific for amphiphilic agents (desipramine, chlorpromazine, and chloroquine) but not other lysomotropic agents such as ammonium chloride and bafilomycin A1, and was not transcriptionally regulated. The cathepsin B/L inhibitor, CA074ME, but not the cathepsin D inhibitor, pepstatin A, blocked desipramine's effect on acid ceramidase. Desipramine led to a more pronounced downregulation of sphingosine compared to ceramide suggesting acid ceramidase inhibition is important to desipramine's mechanism of action. This study reveals a new mechanism of action for desipramine.
Collapse
Affiliation(s)
- Saeed Elojeimy
- Department of Microbiology and Immunology, Medical University of South Carolina, P.O. Box 250504, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hwang D, Popat R, Bragdon C, O'Donnell KE, Sonis ST. Effects of ceramide inhibition on experimental radiation-induced oral mucositis. ACTA ACUST UNITED AC 2006; 100:321-9. [PMID: 16122660 DOI: 10.1016/j.tripleo.2004.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/22/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Oral mucositis (OM) is a common toxicity of ionizing radiation (IR), which is used as treatment for head and neck cancer. Ceramide-mediated apoptosis may contribute to the pathogenesis of mucositis. In response to IR or other cellular stresses, ceramide production occurs either by the hydrolytic action of sphingomyelinase (SMase) or de novo via ceramide synthase. STUDY DESIGN Male golden Syrian hamsters (10 per group) exposed to a single dose of 40 Gy ionizing radiation (day 0) were treated with subcutaneous 0.2 mL injections of either neutral SMase, acidic SMase, or ceramide synthase inhibitor (5 mmol/L glutathione, 5 micromol/L desipramine, or 1 micromol/L fumonisin B1, respectively) from day -1 to day 16. A control group was treated with saline. Two blinded examiners assessed clinical OM development from day 6 to day 26. Two animals per group were killed on days 3, 10, and 16 for immunohistochemical detection of ceramide expression in both the epithelium and in the connective tissue. RESULTS The group exposed to fumonisin B1 exhibited a statistically significant reduction in mean daily weight gain, mean mucositis score, duration of mucositis, and expression of ceramide in the epithelium on day 3 as well as in the connective tissue on days 10 and 16 relative to control. Immunohistologic analysis also revealed significant differences in ceramide expression on days 3 and 16 for animals treated with glutathione in both the epithelial and connective tissue when compared to the control. CONCLUSIONS These results suggest that IR triggers early de novo ceramide production and that inhibition of this process attenuates OM on a clinical level.
Collapse
Affiliation(s)
- Debby Hwang
- Department of Periodontology, School of Dental Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
27
|
Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug-drug interactions. PSYCHOSOMATICS 2005; 46:464-94. [PMID: 16145193 DOI: 10.1176/appi.psy.46.5.464] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The psychotropic drug-drug interactions most likely to be relevant to psychiatrists' practices are examined. The metabolism and the enzymatic and P-glycoprotein inhibition/induction profiles of all antidepressants, antipsychotics, and mood stabilizers are described; all clinically meaningful drug-drug interactions between agents in these psychotropic classes, as well as with frequently encountered nonpsychotropic agents, are detailed; and information on the pharmacokinetic/pharmacodynamic results, mechanisms, and clinical consequences of these interactions is presented. Although the range of drug-drug interactions involving psychotropic agents is large, it is a finite and manageable subset of the much larger domain of all possible drug-drug interactions. Sophisticated computer programs will ultimately provide the best means of avoiding drug-drug interactions. Until these programs are developed, the best defense against drug-drug interactions is awareness and focused attention to this issue.
Collapse
Affiliation(s)
- Neil B Sandson
- Division of Education and Residency Training, Sheppard Pratt Health System, Towson, MD, USA
| | | | | |
Collapse
|
28
|
Charruyer A, Grazide S, Bezombes C, Müller S, Laurent G, Jaffrézou JP. UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 2005; 280:19196-204. [PMID: 15769735 DOI: 10.1074/jbc.m412867200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation of UV light-induced signaling in mammalian cells is largely considered to be subsequent to DNA damage. Several studies have also described ceramide (CER), a lipid second messenger, as a major contributor in mediating UV light-induced c-Jun N-terminal kinase (JNK) activation and cell death. It is demonstrated here that UV-C light irradiation of U937 cells results in the activation and translocation of a Zn2+-independent acid sphingomyelinase, leading to CER accumulation in raft microdomains. These CER-enriched rafts aggregate and play a functional role in JNK activation. The observation that UV-C light also induced CER generation and the externalization of acid sphingomyelinase and JNK in human platelets conclusively rules out the involvement of a nuclear signal generated by DNA damage in the initiation of a UV light response, which is generated at the plasma membrane.
Collapse
Affiliation(s)
- Alexandra Charruyer
- INSERM U563, Centre de Physiopathologie de Toulouse-Purpan, Centre Hospitalier Universitaire Purpan, 31024 Toulouse, France
| | | | | | | | | | | |
Collapse
|
29
|
Uhr M, Namendorf C, Grauer MT, Rosenhagen M, Ebinger M. P-glycoprotein is a factor in the uptake of dextromethorphan, but not of melperone, into the mouse brain: evidence for an overlap in substrate specificity between P-gp and CYP2D6. J Psychopharmacol 2004; 18:509-15. [PMID: 15582917 DOI: 10.1177/0269881104047278] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, the role of P-glycoprotein (P-gp) for the pharmacokinetics of dextromethorphan, a CYP2D6 substrate, and of melperone, a CYP2D6 inhibitor, was investigated. The substances were administered subcutaneously near the nape of the neck of wild-type mice and of abcb1ab (-/-) mice. One hour after injection, concentrations of the two drugs in cerebrum, plasma and in different organs were measured by high-performance liquid chromatography. No significant differences between wild-type mice and abcb1ab (-/-) mice were observed for melperone, suggesting that P-gp is not involved in the uptake of melperone into the brain or other organs of mice. The concentration of dextromethorphan in the brain was more than twice as high in abcb1ab (-/-) mice compared to wild-type mice. Therefore, P-gp appears to be a factor in the uptake of dextromethorphan into the mouse brain, and abcb1-polymorphisms need to be considered for CYP2D6 phenotyping experiments with this drug. There is an overlap in substrate specificity between P-gp and CYP2D6. P-gp is a factor in the uptake of dextromethorphan, but not of melperone.
Collapse
Affiliation(s)
- Manfred Uhr
- Max Planck Institute for Psychiatry, 80804 Munich, Germany.
| | | | | | | | | |
Collapse
|
30
|
Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M. Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med 2002; 33:236-47. [PMID: 12106819 DOI: 10.1016/s0891-5849(02)00879-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One of the earliest changes observed in retinal microvessels in diabetic retinopathy is the selective loss of intramural pericytes. We tested the hypothesis that AGE might be involved in the disappearance of retinal pericytes by apoptosis and further investigated the signaling pathway leading to cell death. Chronic exposure of pericytes to methylglyoxal-modified bovine serum albumin (AGE-BSA) (3 microM) leads to a 3-fold increase of apoptosis (8.9 +/- 1.1%), associated with an increase in cellular ceramide (185 +/- 12%) and diacylglycerol (194 +/- 9%) levels. Ceramide formation was almost inhibited (95%) by an acidic sphingomyelinase inhibitor, desipramine (0.3 microM). Dual inhibition of ceramide (95%) and diacylglycerol (80%) production was observed with a phosphatidylcholine-phospholipase C inhibitor, D609 (9.4 microM). Taken together, these results suggest activation of phosphatidylcholine-phospholipase C coupled to acidic sphingomyelinase. However, both inhibitors only partially protected pericytes against apoptosis, suggesting another apoptotic pathway independent of diacylglycerol/ceramide production. Treatments with various antioxidants completely inhibited pericyte apoptosis, suggesting oxidative stress induction during this apoptotic process. Inhibition of diacylglycerol/ceramide production by N-acetyl-L-cysteine suggests that oxidative stress acts upstream of the two metabolic pathways. AGE treated with metal chelators were also able to induce pericyte apoptosis, suggesting a specific effect of AGE on intracellular oxidative stress independent of redox-active metal ions bound to AGE. In conclusion, these results identify new biochemical targets involved in pericyte loss, which can provide new therapeutic perspectives in diabetic retinopathy.
Collapse
Affiliation(s)
- Ulriche Denis
- Diabetic Microangiopathy Unit, LIPHA-INSERM U352, INSA-Lyon, Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Volders P, Van Hove J, Lories RJU, Vandekerckhove P, Matthijs G, De Vos R, Vanier MT, Vincent MF, Westhovens R, Luyten FP. Niemann-Pick disease type B: an unusual clinical presentation with multiple vertebral fractures. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 109:42-51. [PMID: 11932991 DOI: 10.1002/ajmg.10278] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report here a unique case of a 55-year-old woman presenting with a clinical picture of Parkinson disease, severe back pain, splenomegaly, and pronounced dyspnea. Radiographic examination of the spine showed multiple vertebral fractures. Niemann-Pick disease type B was diagnosed by findings of lipid-loaded histiocytes and a strongly reduced sphingomyelinase enzyme activity. She was homozygous for the deletion of codon 608 (delR608), which encodes an arginine residue in the Acid Sphingomyelinase gene. To investigate the cause of the unusual vertebral fractures, we screened for polymorphisms previously described as possibly associated with increased risk for osteoporosis and fractures. Our patient was heterozygous for the polymorphisms of the vitamin D receptor gene, the estrogen receptor gene, and the collagen 1A1gene. Increased physical activity after Parkinson treatment, a genetic predisposition, together with worsening disease due to interfering medications could explain the dramatic presentation of this patient. She was treated with cholesterol lowering drugs such as statins to decrease sphingomyelin synthesis, avoidance of drugs that inhibit sphingomyelinase, and bisphosphonates. No new fractures have occurred, but the interstitial lung disease has progressed.
Collapse
Affiliation(s)
- P Volders
- Department of Rheumatology, University Hospitals Leuven, Herestraat, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Osés-Prieto JA, López-Moratalla N, Santiago E, Jaffrézou JP, López-Zabalza MJ. Molecular mechanisms of apoptosis induced by an immunomodulating peptide on human monocytes. Arch Biochem Biophys 2000; 379:353-62. [PMID: 10898955 DOI: 10.1006/abbi.2000.1875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A short immunomodulating peptide (Pa) containing a defined structural motif present in a number of extracellular matrix proteins and autoantigens was found to stimulate human monocytes. Pa-induced apoptosis of isolated monocytes, as indicated by internucleosomal DNA cleavage, increased annexin V binding capacity and cleavage of caspase substrates, such as poly(ADP)ribosylpolymerase. In addition, Bcl-2 protein levels were downregulated during Pa-induced cell death. Nuclear extracts of monocytes incubated with Pa showed higher neutral, Ca(2+)-dependent DNase activity than those obtained from nontreated monocytes. Caspase inhibitors prevented Pa-induced apoptosis, Bcl-2 depletion, and DNase activation. Treatment of monocytes with Pa activated c-Jun N-terminal kinases and p38 kinase, in an acidic sphingomyelinase- and caspase-dependent fashion. Pa-induced apoptosis was blocked by selective inhibitors of p38 kinase (SB203580) and acidic sphingomyelinase (SR33557). These results indicate that JNK and p38 kinase stimulation as well as monocyte apoptosis induced by Pa could depend, at least in part, on early activation of acidic sphingomyelinase.
Collapse
Affiliation(s)
- J A Osés-Prieto
- Department of Biochemistry, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
33
|
Augé N, Nègre-Salvayre A, Salvayre R, Levade T. Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog Lipid Res 2000; 39:207-29. [PMID: 10799716 DOI: 10.1016/s0163-7827(00)00007-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The atherosclerotic lesion most probably develops through a number of cellular events which implicate all vascular cell types and include synthesis of extracellular proteins, cell proliferation, differentiation and death. Sphingolipids and sphingolipid metabolizing enzymes may play important roles in atherogenesis, not only because of lipoprotein alterations but also by mediating a number of cellular events which are believed to be crucial in the development of the vascular lesions such as proliferation or cell death. Exogenous sphingolipids may mediate various biological effects such as apoptosis, mitogenesis or differentiation depending on the cell type. Moreover, several molecules present in the atherogenic lesion, such as oxidized LDL, growth factors or cytokines, which activate intracellular signaling pathways leading to vascular cell modifications, can stimulate sphingomyelin hydrolysis and generation of ceramide (and other metabolites as sphingosine-1-phosphate). Here we review the potential implication of the sphingomyelin/ceramide cycle in vascular cell signaling related to atherosclerosis, and more generally the role of sphingolipids in the events observed during the atherosclerotic process as cell differentiation, migration, adhesion, retraction, proliferation and death.
Collapse
Affiliation(s)
- N Augé
- Laboratoire de Biochimie, INSERM U. 466, "Maladies Métaboliques," Institut Louis Bugnard, Bât. Université Paul Sabatier, CHU Rangueil, 1 Avenue Jean Poulhès, F-31403, Toulouse, France.
| | | | | | | |
Collapse
|
34
|
Ferté J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:277-94. [PMID: 10632698 DOI: 10.1046/j.1432-1327.2000.01046.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P-glycoprotein (Pgp), the so-called multidrug transporter, is a plasma membrane glycoprotein often involved in the resistance of cancer cells towards multiple anticancer agents in the multidrug-resistant (MDR) phenotype. It has long been recognized that the lipid phase of the plasma membrane plays an important role with respect to multidrug resistance and Pgp because: the compounds involved in the MDR phenotype are hydrophobic and diffuse passively through the membrane; Pgp domains involved in drug binding are located within the putative transmembrane segments; Pgp activity is highly sensitive to its lipid environment; and Pgp may be involved in lipid trafficking and metabolism. Unraveling the different roles played by the membrane lipid phase in MDR is relevant, not only to the evaluation of the precise role of Pgp, but also to the understanding of the mechanism of action and function of Pgp. With this aim, I review the data from different fields (cancer research, medicinal chemistry, membrane biophysics, pharmaceutical research) concerning drug-membrane, as well as Pgp-membrane, interactions. It is emphasized that the lipid phase of the membrane cannot be overlooked while investigating the MDR phenotype. Taking into account these aspects should be useful in the search of ways to obviate MDR and could also be relevant to the study of other multidrug transporters.
Collapse
Affiliation(s)
- J Ferté
- Service de Biophysique des Protéines et des Membranes, DSV-DBCM-SBPM, CEA, Centre de Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Belhoussine R, Morjani H, Gillet R, Palissot V, Manfait M. Two distinct modes of oncoprotein expression during apoptosis resistance in vincristine and daunorubicin multidrug-resistant HL60 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 457:365-81. [PMID: 10500812 DOI: 10.1007/978-1-4615-4811-9_39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Apoptosis is a genetically regulated cell death process which results in a variety of morphological changes like chromatin condensation and DNA fragmentation. The decision between survival or death in response to an apoptotic stimulus is determined and regulated in part by oncoproteins which include proteins of the Bcl-2 family (bcl-2, bax, bcl-xL) and bcr-abl. We investigated the effect of these proteins on the induction of this phenomenon in human promyelocytic leukemic HL60 cells and two multidrug resistant homologues selected respectively with vincristine (HL60/VCR) and daunorubicin (HL60R/DNR). We show that sensitive cells at 1 micron and HL60/VCR cells at DNR IC50 were able to undergo apoptosis while HL60R/DNR did not even at much higher concentration of DNR. However, treatment with synthetic C2-ceramide did not sensitize HL60/DNR cells to apoptosis. Cell death through apoptosis or necrosis was accompanied by acidification of the cytosol without mitochondrial membrane depolarization. Western blotting analysis shows that bax is expressed at slightly elevated level in HL60S/VCR in comparison with the other cells lines. Bcl-2 is overexpressed in HL60/VCR but not in HL60R/DNR. However, this cell line displayed a higher expression of bcl-xL. Interestingly, bcr-abl, a dysregulated tyrosine kinase was detected only in HL60R/DNR cells. DNR at the IC50, has no effect on expression of the oncoproteins. These data suggest that in addition of the multidrug resistance phenotype, bcr-abl translocation and bcl-xL overexpression could also account for the development of resistance to cell death induced by anthracyclines in leukemic cells.
Collapse
Affiliation(s)
- R Belhoussine
- Université de Reims, IFR 53, UPRES EA2063, UFR de Pharmacie, Reims, France
| | | | | | | | | |
Collapse
|
36
|
Levade T, Jaffrézou JP. Signalling sphingomyelinases: which, where, how and why? BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:1-17. [PMID: 10216276 DOI: 10.1016/s1388-1981(99)00038-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A major lipid signalling pathway in mammalian cells implicates the activation of sphingomyelinase (SMase), which upon cell stimulation hydrolyses the ubiquitous sphingophospholipid sphingomyelin to ceramide. This review summarizes our current knowledge on the nature and regulation of signalling SMase(s). Because of the controversy on the identity of this(these) phospholipase(s), the roles of various SMases in cell signalling are discussed. Special attention is also given to the subcellular site of action of signalling SMases and to the cellular factors that positively or negatively control their activity. These regulating agents include lipids (arachidonic acid, diacylglycerol and ceramide), kinases, proteases, glutathione and other proteins.
Collapse
Affiliation(s)
- T Levade
- INSERM Unit 466, Laboratoire de Biochimie, Maladies Métaboliques, Institut Louis Bugnard, Bât. L3, C.H.U. Rangueil, 1 Avenue Jean Poulhès, E 9910, Toulouse Cedex 4, France.
| | | |
Collapse
|
37
|
Washington CB, Duran GE, Man MC, Sikic BI, Blaschke TF. Interaction of anti-HIV protease inhibitors with the multidrug transporter P-glycoprotein (P-gp) in human cultured cells. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1998; 19:203-9. [PMID: 9803961 DOI: 10.1097/00042560-199811010-00001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anti-HIV protease inhibitors represent a new class of agents for treatment of HIV infection. Saquinavir, ritonavir, indinavir, and nelfinavir are the first drugs approved in this class and significantly reduce HIV RNA copy number with minimal adverse effects. They are all substrates of cytochrome P450 3A4, and are incompletely bioavailable. The drug transporting protein, P-glycoprotein (P-gp), which is highly expressed in the intestinal mucosa, could be responsible for the low oral bioavailability of these and other drugs which are substrates for this transporter. To determine whether these protease inhibitors are modulators of P-gp, we studied them in cell lines which do and do not express P-gp. Saquinavir, ritonavir and nelfinavir significantly inhibited the efflux of [3H]paclitaxel and [3H]vinblastine in P-gp-positive cells, resulting in an increase in intracellular accumulation of these drugs. However, similar concentrations of indinavir did not affect the accumulation of these anticancer agents. In photoaffinity labeling studies, saquinavir and ritonavir displaced [3H]azidopine, a substrate for P-gp, in a dose-dependent manner. These data suggest that saquinavir, ritonavir, and nelfinavir are inhibitors and possibly substrates of P-gp. Because saquinavir has a low bioavailability, its interaction with P-gp may be involved in limiting its absorption.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/toxicity
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/toxicity
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/toxicity
- Biological Availability
- Cell Survival/drug effects
- Daunorubicin/metabolism
- Daunorubicin/toxicity
- Dose-Response Relationship, Drug
- Drug Interactions
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- HIV Protease Inhibitors/metabolism
- HIV Protease Inhibitors/toxicity
- Humans
- Indinavir/metabolism
- Indinavir/toxicity
- Leukemia, Erythroblastic, Acute
- Nelfinavir/metabolism
- Nelfinavir/toxicity
- Paclitaxel/metabolism
- Paclitaxel/toxicity
- Ritonavir/metabolism
- Ritonavir/toxicity
- Saquinavir/metabolism
- Saquinavir/toxicity
- Sarcoma
- Tumor Cells, Cultured
- Uterine Neoplasms
- Vinblastine/metabolism
- Vinblastine/toxicity
Collapse
Affiliation(s)
- C B Washington
- Department of Medicine, Stanford University Medical Center, California 94305-5130, USA
| | | | | | | | | |
Collapse
|
38
|
Morjani H, Belhoussine R, Lahlil R, Manfait M. Pirarubicin nuclear uptake does not correlate with its induced cell death effect during reversal of multidrug resistance by quinine in human K562 and CEM leukemic cells. Eur J Haematol 1998; 61:240-9. [PMID: 9820630 DOI: 10.1111/j.1600-0609.1998.tb01709.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A number of small and lipophilic cations are able to reverse in vitro the resistance to anthracyclines and other natural products through their interaction with P-glycoprotein or P-gp. However, some modulators do not interact with P-gp. We have demonstrated in a previous a work, using confocal laser microspectrofluorometry, that quinine does not increase nuclear anthracycline uptake in multidrug-resistant Chinese hamster ovary LR73 cells. In this case the LR73 cells were transfected with the mdr1 gene. Moreover, quinine induced in these cells an increase of mdr1 gene expression. In the present study, we investigated verapamil and quinine for their ability to increase nuclear pirarubicin uptake in multidrug-resistant K562R and CEMR human leukemic cell lines. These two cell lines resist, respectively, to doxorubicin and vinblastine and both overexpress the P-gp. Verapamil was able to restore nuclear pirarubicin in both cell lines. On the other hand, quinine was unable to significantly increase nuclear pirarubicin uptake. Both modulators were able to restore pirarubicin sensitivity in both resistant cell lines. After treatment with quinine, mdr1 gene and P-gp expression was not significantly altered as observed previously in the LR73 cells. This suggest that the effect of quinine on mdr1 gene expression is dependent on the cell line studied. These data suggest that quinine could modify the molecular environment of anthracyclines and/or its binding to a possible cytoplasmic target, and that the mechanisms by which anthracyclines induce cell death, and ways by which chemotherapy fails in multidrug-resistant leukemic cells remain complex and are related to more than one target.
Collapse
Affiliation(s)
- H Morjani
- Laboratory of Biomolecular Spectroscopy, University of Reims Champagne-Ardenne, IFR53, UPRES EA2063, Faculty of Pharmacy, France
| | | | | | | |
Collapse
|
39
|
Jaffrézou JP, Maestre N, de Mas-Mansat V, Bezombes C, Levade T, Laurent G. Positive feedback control of neutral sphingomyelinase activity by ceramide. FASEB J 1998; 12:999-1006. [PMID: 9707172 DOI: 10.1096/fasebj.12.11.999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While ceramide has emerged as a potent signal transducer, inconsistencies in the kinetics of ceramide generation, or its absence, in response to stimuli have led to confusion and skepticism as to its potential role in apoptosis or proliferation. Here we show that in U937 and HL60 myeloid leukemia cells and in normal skin fibroblasts, cell-permeant ceramides can trigger neutral sphingomyelinase activation, sphingomyelin hydrolysis, and endogenous ceramide generation regardless of Bcl2 overexpression. These observations identify neutral sphingomyelinase as a novel target for ceramide and show that this positive feedback mechanism is responsible for signal propagation, as exemplified by mitogen-activated protein kinase activation in daunorubicin-treated cells. This study provides insight into a fundamental process of cell biology. Indeed, such a sustained ceramide-mediated signal throughout the apoptotic process would ensure self-destruction, perhaps by overriding evolutionary conserved primal cell survival mechanisms.
Collapse
Affiliation(s)
- J P Jaffrézou
- CJF INSERM 9503, Centre Claudius Régaud, Toulouse, France
| | | | | | | | | | | |
Collapse
|
40
|
Bray PG, Ward SA. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Ther 1998; 77:1-28. [PMID: 9500157 DOI: 10.1016/s0163-7258(97)00083-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum is the causative agent of the most deadly form of human malaria. Chemotherapy traditionally has been the main line of defense against this parasite, and chloroquine, the drug of choice, has been one of the most successful drugs ever developed. Unfortunately, the evolution and spread of resistance to chloroquine and other quinoline-containing drugs means that these compounds are now virtually useless in many endemic areas. Future prospects for the use of quinoline compounds improved considerably when it was demonstrated that chloroquine resistance could be circumvented in vitro by a number of structurally and functionally unrelated compounds such as verapamil and desipramine. The phenomenon of resistance reversal by compounds such as verapamil is also a key feature of drug resistance in mammalian cells, and this has raised the possibility that the underlying mechanisms of drug resistance of the two cell types could be similar. This hypothesis has prompted a large number of studies into the genetics and biochemistry of resistance to quinoline-containing drugs in P. falciparum. Both the genetic and the biochemical studies have raised issues of controversy and stimulated much debate. These issues are discussed in this review, in the context of a comparison with the genetics and biochemistry of multidrug resistance in mammalian cells.
Collapse
Affiliation(s)
- P G Bray
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | | |
Collapse
|
41
|
Chen G, Durán GE, Steger KA, Lacayo NJ, Jaffrézou JP, Dumontet C, Sikic BI. Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. J Biol Chem 1997; 272:5974-82. [PMID: 9038218 DOI: 10.1074/jbc.272.9.5974] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A variant of the multidrug-resistant human sarcoma cell line Dx5 was derived by co-selection with doxorubicin and the cyclosporin D analogue PSC 833, a potent inhibitor of the multidrug transporter P-glycoprotein. The variant DxP cells manifest an altered phenotype compared with Dx5, with decreased cross-resistance to Vinca alkaloids and no resistance to dactinomycin. Resistance to doxorubicin and paclitaxel is retained. The multidrug resistance phenotype of DxP cells is not modulated by 2 microM PSC 833 or cyclosporine. DxP cells manifest a decreased ability to transport [3H]cyclosporine. DNA heteroduplex analysis and sequencing reveal a mutant mdr1 gene (deletion of a phenylalanine at amino acid residue 335) in the DxP cell line. The mutant P-glycoprotein has a decreased affinity for PSC 833 and vinblastine and a decreased ability to transport rhodamine 123. Transfection of the mutant mdr1 gene into drug-sensitive MES-SA sarcoma cells confers resistance to both doxorubicin and PSC 833. Our study demonstrates that survival of cells exposed to doxorubicin and PSC 833 in a multistep selection occurred as a result of a P-glycoprotein mutation in transmembrane region 6. These data suggest that Phe335 is an important binding site on P-glycoprotein for substrates such as dactinomycin and vinblastine and for inhibitors such as cyclosporine and PSC 833.
Collapse
Affiliation(s)
- G Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5306, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Lavie Y, Cao HT, Volner A, Lucci A, Han TY, Geffen V, Giuliano AE, Cabot MC. Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 1997; 272:1682-7. [PMID: 8999846 DOI: 10.1074/jbc.272.3.1682] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously shown that multidrug-resistant cancer cells display elevated levels of glucosylceramide (Lavie, Y., Cao, H., Bursten, S. L., Giuliano, A. E., and Cabot, M. C. (1996) J. Biol. Chem. 271, 19530-19536). In this study we used the multidrug-resistant human breast cancer cell line MCF-7-Adriamycin-resistant (AdrR), which exhibits marked accumulation of glucosylceramide compared with the parental MCF-7 wild type (drug-sensitive) cell line, to define the relationship between glycolipids and multidrug resistance (MDR). Herein it is shown that clinically relevant concentrations of tamoxifen, verapamil, and cyclosporin A, all circumventors of MDR, markedly decrease glucosylceramide levels in MCF-7-AdrR cells (IC50 values, 1. 0, 0.8, and 2.3 microM, respectively). In intact cells, tamoxifen inhibited glycosphingolipid synthesis at the step of ceramide glycosylation. In cell-free assays for glucosylceramide synthase, tamoxifen (1:10 molar ratio with ceramide) inhibited glucosylceramide formation by nearly 50%. In cell cultures, inhibition of glucosylceramide synthesis by tamoxifen is correlated with its ability to sensitize MCF-7-AdrR cells to Adriamycin toxicity. Moreover, treatment of cells with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthesis, likewise sensitized MCF-7-AdrR cells to Adriamycin. It is concluded that high cellular levels of glucosylceramide are correlated with MDR, and that glycolipids are a target for the action of MDR-reversing agents such as tamoxifen. The data entertain the notion that drug resistance phenomena are aligned with cell capacity to metabolize ceramide.
Collapse
Affiliation(s)
- Y Lavie
- John Wayne Cancer Institute, Saint John's Hospital and Health Center, Santa Monica, California 90404, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Sphingolipid metabolites participate in key events of signal transduction and cell regulation. In the sphingomyelin cycle, a number of extracellular agents and insults (such as tumor necrosis factor, Fas ligands, and chemotherapeutic agents) cause the activation of sphingomyelinases, which act on membrane sphingomyelin and release ceramide. Multiple experimental approaches suggest an important role for ceramide in regulating such diverse responses as cell cycle arrest, apoptosis, and cell senescence. In vitro, ceramide activates a serine-threonine protein phosphatase, and in cells it regulates protein phosphorylation as well as multiple downstream targets [such as interleukin converting enzyme (ICE)-like proteases, stress-activated protein kinases, and the retinoblastoma gene product] that mediate its distinct cellular effects. This spectrum of inducers of ceramide accumulation and the nature of ceramide-mediated responses suggest that ceramide is a key component of intracellular stress response pathways.
Collapse
Affiliation(s)
- Y A Hannun
- The author is in the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
45
|
Hwang M, Ahn CH, Pine PS, Yin JJ, Hrycyna CA, Licht T, Aszalos A. Effect of combination of suboptimal concentrations of P-glycoprotein blockers on the proliferation of MDR1 gene expressing cells. Int J Cancer 1996; 65:389-97. [PMID: 8575863 DOI: 10.1002/(sici)1097-0215(19960126)65:3<389::aid-ijc19>3.0.co;2-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pharmacologically active in vivo doses of P-glycoprotein (Pgp) blockers, specifically verapamil, Cremophor EL and PSC833 cause toxicity in addition to that from the concomitantly used cancer chemotherapeutic drugs. It was shown before that these blockers cause different types of toxicities in vivo. We found that these 3 chemically distinct Pgp blockers exert different biophysical effects on the membranes of L1210 MDR cells. They also affect the general metabolism of these cells differently, but all block affinity labeling of Pgp. We could also show that the combination of suboptimal doses of these blockers can restore the uptake of the Pgp substrate rhodamine 123 into L1210MDR, 3T3MDR and KB-VI cells and can reduce the survival rate of these cells when treated in combination with daunorubicin. Our results suggest that the combination of suboptimal doses of these Pgp blockers may be advantageous in clinical practice.
Collapse
Affiliation(s)
- M Hwang
- Center for Drug Evaluation and Research, Food and Drug Administration, Washington, DC 20204, USA
| | | | | | | | | | | | | |
Collapse
|