1
|
Structure of the ALS Mutation Target Annexin A11 Reveals a Stabilising N-Terminal Segment. Biomolecules 2020; 10:biom10040660. [PMID: 32344647 PMCID: PMC7226064 DOI: 10.3390/biom10040660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
The functions of the annexin family of proteins involve binding to Ca2+, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure-function studies of both full-length AnxA11 and the disease variants being identified in ALS.
Collapse
|
2
|
Xiao Y, Shaw GS, Konermann L. Calcium-Mediated Control of S100 Proteins: Allosteric Communication via an Agitator/Signal Blocking Mechanism. J Am Chem Soc 2017; 139:11460-11470. [PMID: 28758397 DOI: 10.1021/jacs.7b04380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allosteric proteins possess dynamically coupled residues for the propagation of input signals to distant target binding sites. The input signals usually correspond to "effector is present" or "effector is not present". Many aspects of allosteric regulation remain incompletely understood. This work focused on S100A11, a dimeric EF-hand protein with two hydrophobic target binding sites. An annexin peptide (Ax) served as the target. Target binding is allosterically controlled by Ca2+ over a distance of ∼26 Å. Ca2+ promotes formation of a [Ca4 S100 Ax2] complex, where the Ax peptides are accommodated between helices III/IV and III'/IV'. Without Ca2+ these binding sites are closed, precluding interactions with Ax. The allosteric mechanism was probed by microsecond MD simulations in explicit water, complemented by hydrogen exchange mass spectrometry (HDX/MS). Consistent with experimental data, MD runs in the absence of Ca2+ and Ax culminated in target binding site closure. In simulations on [Ca4 S100] the target binding sites remained open. These results capture the essence of allosteric control, revealing how Ca2+ prevents binding site closure. Both HDX/MS and MD data showed that the metalation sites become more dynamic after Ca2+ loss. However, these enhanced dynamics do not represent the primary trigger of the allosteric cascade. Instead, a labile salt bridge acts as an incessantly active "agitator" that destabilizes the packing of adjacent residues, causing a domino chain of events that culminates in target binding site closure. This agitator represents the starting point of the allosteric signal propagation pathway. Ca2+ binding rigidifies elements along this pathway, thereby blocking signal transmission. This blocking mechanism does not conform to the commonly held view that allosteric communication pathways generally originate at the sites where effectors interact with the protein.
Collapse
Affiliation(s)
- Yiming Xiao
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Gary S Shaw
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB. Imaging mass spectrometry for accessing molecular changes during burn wound healing. Wound Repair Regen 2016; 24:775-785. [PMID: 27256813 DOI: 10.1111/wrr.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022]
Abstract
The spatiotemporal analysis of the proteomic profile during human wound healing is a critical investigative step that can establish the complex interplay of molecular events that comprise the local response to burn injury. Partial-thickness wound samples with adjacent "normal" skin were collected from twenty-one patients with burn wounds and examined across a time spectrum ranging from the acute injury period at 3, 6, 11 days to the later hypertrophic scar period at 7 and 15 months. The techniques used for histology-directed tissue analyses highlighted inflammatory protein markers at the early time points after injury with diminished expression as burn wounds progressed into the proliferative phase. The datasets show the usefulness of MALDI MS and imaging mass spectrometry as discovery approaches to identify and map the cutaneous molecular sequence that is activated in response to the unique systemic inflammatory response following burn trauma. This information has the potential to define the unique factors that predispose human burn victims to disfiguring hypertrophic scar formation.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Biochemistry, University of Della Calabria, Arcavacata Di Rende, Italy. .,Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, Tennessee.
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Giovanni Sindona
- Department of Biochemistry, University of Della Calabria, Arcavacata Di Rende, Italy
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
4
|
Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79. [PMID: 23811936 PMCID: PMC11113901 DOI: 10.1007/s00018-013-1400-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.
Collapse
Affiliation(s)
- Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Connie Goh Then Sin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Roger Barraclough
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
5
|
Lee JY, Kim BJ, Sim G, Kim GT, Kang D, Jung JH, Hwa JS, Kwak YJ, Choi YJ, Park YS, Han J, Lee CS, Kang KR. Spinal cord injury markedly altered protein expression patterns in the affected rat urinary bladder during healing stages. J Korean Med Sci 2011; 26:814-23. [PMID: 21655070 PMCID: PMC3102878 DOI: 10.3346/jkms.2011.26.6.814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
The influence of spinal cord injury (SCI) on protein expression in the rat urinary bladder was assessed by proteomic analysis at different time intervals post-injury. After contusion SCI between T9 and T10, bladder tissues were processed by 2-DE and MALDI-TOF/MS at 6 hr to 28 days after SCI to identify proteins involved in the healing process of SCI-induced neurogenic bladder. Approximately 1,000 spots from the bladder of SCI and sham groups were visualized and identified. At one day after SCI, the expression levels of three protein were increased, and seven spots were down-regulated, including heat shock protein 27 (Hsp27) and heat shock protein 20 (Hsp20). Fifteen spots such as S100-A11 were differentially expressed seven days post-injury, and seven proteins including transgelin had altered expression patterns 28 days after injury. Of the proteins with altered expression levels, transgelin, S100-A11, Hsp27 and Hsp20 were continuously and variably expressed throughout the entire post-SCI recovery of the bladder. The identified proteins at each time point belong to eight functional categories. The altered expression patterns identified by 2-DE of transgelin and S100-A11 were verified by Western blot. Transgelin and protein S100-A11 may be candidates for protein biomarkers in the bladder healing process after SCI.
Collapse
Affiliation(s)
- Ji-Young Lee
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- MRCND and Department of Psychiatry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gyujin Sim
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gyu-Tae Kim
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Dawon Kang
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jae Hun Jung
- MRCND and Department of Urology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jeong Seok Hwa
- MRCND and Department of Urology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Yeon Ju Kwak
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Yeon Jin Choi
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Young Sook Park
- Department of Physical Medicine and Rehabilitation, Changwon Samsung Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jaehee Han
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Cheol Soon Lee
- MRCND and Department of Psychiatry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Ryeon Kang
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
6
|
Sakaguchi M, Huh NH. S100A11, a dual growth regulator of epidermal keratinocytes. Amino Acids 2010; 41:797-807. [PMID: 20872027 DOI: 10.1007/s00726-010-0747-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/06/2010] [Indexed: 12/31/2022]
Abstract
S100A11, a member of the family of S100 proteins, is a dimmer, each monomer of which has two EF-hands. Expression of S100A11 is ubiquitous in various tissues at different levels, with a high expression level in the skin. We have analyzed functions of S100A11 mainly in normal human keratinocytes (NHK) as a model cell system of human epithelial cells. High Ca(2+) and transforming growth factor-β (TGF-β), two representative growth suppressors for NHK, need a common S100A11-mediated pathway in addition to unique pathways (NFAT1-mediated pathway for high Ca(2+) and Smad-mediated pathway for TGF-β) for exhibiting a growth inhibitory effect. S100A11 has another action point for growth suppression in NHK. Annexin A1 (ANXA1) complexed with S100A11 efficiently binds to and inhibits cytosolic phospholipase A2 (cPLA2), the activity of which is needed for the growth of NHK. On exposure of NHK to epidermal growth factor (EGF), ANXA1 is cleaved at 12Trp, and this truncated ANXA1 loses binding capacity to S100A11, resulting in maintenance of an active state of cPLA2. On the other hand, we found that S100A11 is actively secreted by NHK. Extracellular S100A11 acts on NHK to enhance the production of EGF family proteins, resulting in growth stimulation. These findings indicate that S100A11 plays a dual role in growth regulation, being suppressive in cells and being promotive from outside of cells.
Collapse
Affiliation(s)
- Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama, 700-8558, Japan
| | | |
Collapse
|
7
|
He H, Li J, Weng S, Li M, Yu Y. S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys 2009; 55:117-26. [PMID: 19649745 DOI: 10.1007/s12013-009-9061-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
S100A11, as a member of S100 protein family, while featuring the common identities as the other EF-hand Ca(2+)-binding family members, has its own individual characteristics. S100A11 is widely expressed in multiple tissues, and is located in cytoplasm, nucleus, and even cell periphery. S100A11 exists as a non-covalent homodimer with an antiparallel conformation. Ca(2+) binding to S100A11 would trigger conformational changes which would expose the hydrophobic cleft of S100A11 and facilitate its interaction with target proteins. Since S100A11 appears to lack enzymatic activity, in this article, corresponding to a variety of its target proteins, we systematically describe the biological roles of S100A11 and its possible mechanism in the processes of inflammation, regulation of enzyme activity, and cell growth regulation. As a dual cell growth mediator, S100A11 acts as either a tumor suppressor or promoter in many different types of tumors and would play respective roles in influencing the proliferation of the cancer cells. We intend to illustrate the biological function of the S100 protein, and shed light on the further research, which will provide us with a better understanding of it.
Collapse
Affiliation(s)
- Honglin He
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Kouno T, Mizuguchi M, Sakaguchi M, Makino E, Mori Y, Shinoda H, Aizawa T, Demura M, Huh NH, Kawano K. The structure of S100A11 fragment explains a local structural change induced by phosphorylation. J Pept Sci 2008; 14:1129-38. [PMID: 18618420 DOI: 10.1002/psc.1050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 05/07/2008] [Indexed: 11/09/2022]
Abstract
S100A11 protein is a member of the S100 family containing two EF-hand motifs. It undergoes phosphorylation on residue T10 after cell stimulation such as an increase in Ca(2+) concentration. Phosphorylated S100A11 can be recognized by its target protein, nucleolin. Although S100A11 is initially expressed in the cytoplasm, it is transported to the nucleus by the action of nucleolin. In the nucleus, S100A11 suppresses the growth of keratinocytes through p21(CIP1/WAF1) activation and induces cell differentiation. Interestingly, the N-terminal fragment of S100A11 has the same activity as the full-length protein; i.e. it is phosphorylated in vivo and binds to nucleolin. In addition, this fragment leads to the arrest of cultured keratinocyte growth. We examined the solution structure of this fragment peptide and explored its structural properties before and after phosphorylation. In a trifluoroethanol solution, the peptide adopts the alpha-helical structure just as the corresponding region of the full-length S100A11. Phosphorylation induces a disruption of the N-capping conformation of the alpha-helix, and has a tendency to perturb its surrounding structure. Therefore, the phosphorylated threonine lies in the N-terminal edge of the alpha-helix. This local structural change can reasonably explain why the phosphorylation of a residue that is initially buried in the interior of protein allows it to be recognized by the binding partner.
Collapse
Affiliation(s)
- Takahide Kouno
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
S100 proteins and annexins both constitute groups of Ca2+-binding proteins, each of which comprises more than 10 members. S100 proteins are small, dimeric, EF-hand-type Ca2+-binding proteins that exert both intracellular and extracellular functions. Within the cells, S100 proteins regulate various reactions, including phosphorylation, in response to changes in the intracellular Ca2+ concentration. Although S100 proteins are known to be associated with many diseases, exact pathological contributions have not been proven in detail. Annexins are non-EF-hand-type Ca2+-binding proteins that exhibit Ca2+-dependent binding to phospholipids and membranes in various tissues. Annexins bring different membranes into proximity and assist them to fuse, and therefore are believed to play a role in membrane trafficking and organization. Several S100 proteins and annexins are known to interact with each other in either a Ca2+-dependent or Ca2+-independent manner, and form complexes that exhibit biological activities. This review focuses on the interaction between S100 proteins and annexins, and the possible biological roles of these complexes. Recent studies have shown that S100-annexin complexes have a role in the differentiation of gonad cells and neurological disorders, such as depression. These complexes regulate the organization of membranes and vesicles, and thereby may participate in the appropriate disposition of membrane-associated proteins, including ion channels and/or receptors.
Collapse
Affiliation(s)
- Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Wang G, Wang X, Wang S, Song H, Sun H, Yuan W, Cao B, Bai J, Fu S. Colorectal cancer progression correlates with upregulation of S100A11 expression in tumor tissues. Int J Colorectal Dis 2008; 23:675-82. [PMID: 18340452 DOI: 10.1007/s00384-008-0464-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Early detection and treatment of human colorectal cancers remain a challenge. Identification of new potential markers may help in the diagnosis of colorectal cancer. MATERIALS AND METHODS By comparative two-dimensional gel electrophoresis using extracts from colorectal tumor and adjacent normal tissues, we identified a calcium-binding protein, S100A11, which was highly expressed in colorectal cancer compared with adjacent normal tissues. We expanded our study in 89 clinical colorectal tumor samples to validate this finding and correlates S100A11 expression in human colorectal cancer tissues with various stages of the tumor by Western blotting and immunohistochemical staining. RESULTS We identified a calcium-binding protein, S100A11, which was highly expressed in colorectal cancer compared with adjacent normal tissues. S100A protein was expressed predominantly in the cytoplasm of normal tissue; however, it was expressed in both the nuclei and cytoplasm of colorectal cancer. S100A11 level in colorectal cancer tissue was increased following stage progression of the disease. CONCLUSION These findings suggest S100A11 could be helpful in the pathological study of colorectal cancer, especially for the classification of different stages in colorectal cancer.
Collapse
Affiliation(s)
- Guiyu Wang
- Department of Abdominal Surgery, The Affiliated Tumor Hospital, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Membrane-induced folding and structure of membrane-bound annexin A1 N-terminal peptides: implications for annexin-induced membrane aggregation. Biophys J 2007; 94:1773-81. [PMID: 17993484 DOI: 10.1529/biophysj.107.119685] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Annexins constitute a family of calcium-dependent membrane-binding proteins and can be classified into two groups, depending on the length of the N-terminal domain unique for each individual annexin. The N-terminal domain of annexin A1 can adopt an alpha-helical conformation and has been implicated in mediating the membrane aggregation behavior of this protein. Although the calcium-independent interaction of the annexin A1 N-terminal domain has been known for some time, there was no structural information about the membrane interaction of this secondary membrane-binding site of annexin A1. This study used circular dichroism spectroscopy to show that a rat annexin A1 N-terminal peptide possesses random coil structure in aqueous buffer but an alpha-helical structure in the presence of small unilamellar vesicles. The binding of peptides to membranes was confirmed by surface pressure (Langmuir film balance) measurements using phosphatidylcholine/phosphatidylserine monolayers, which show a significant increase after injection of rat annexin A1 N-terminal peptides. Lamellar neutron diffraction with human and rat annexin A1 N-terminal peptides reveals an intercalation of the helical peptides with the phospholipid bilayer, with the helix axis lying parallel to the surface of membrane. Our findings confirm that phospholipid membranes assist the folding of the N-terminal peptides into alpha-helical structures and that this conformation enables favorable direct interactions with the membrane. The results are consistent with the hypothesis that the N-terminal domain of annexin A1 can serve as a secondary membrane binding site in the process of membrane aggregation by providing a peripheral membrane anchor.
Collapse
|
12
|
Uebi T, Miwa N, Kawamura S. Comprehensive interaction of dicalcin with annexins in frog olfactory and respiratory cilia. FEBS J 2007; 274:4863-76. [PMID: 17714509 DOI: 10.1111/j.1742-4658.2007.06007.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dicalcin (renamed from p26olf) is a dimer form of S100 proteins found in frog olfactory epithelium. S100 proteins form a group of EF-hand Ca(2+)-binding proteins, and are known to interact with many kinds of target protein to modify their activities. To determine the role of dicalcin in the olfactory epithelium, we identified its binding proteins. Several proteins in frog olfactory epithelium were found to bind to dicalcin in a Ca(2+)-dependent manner. Among them, 38 kDa and 35 kDa proteins were most abundant. Our analysis showed that these were a mixture of annexin A1, annexin A2 and annexin A5. Immunohistochemical analysis showed that dicalcin and all of these three subtypes of annexin colocalize in the olfactory cilia. Dicalcin was found to be present in a quantity almost sufficient to bind all of these annexins. Colocalization of dicalcin and the three subtypes of annexin was also observed in the frog respiratory cilia. Dicalcin facilitated Ca(2+)-dependent liposome aggregation caused by annexin A1 or annexin A2, and this facilitation was additive when both annexin A1 and annexin A2 were present. In this facilitation effect, the effective Ca(2+) concentrations were different between annexin A1 and annexin A2, and therefore the dicalcin-annexin system in frog olfactory and respiratory cilia can cover a wide range of Ca(2+) concentrations. These results suggested that this system is associated with abnormal increases in the Ca(2+) concentration in the olfactory and other motile cilia.
Collapse
Affiliation(s)
- Tatsuya Uebi
- Department of Biology, Graduate School of Science, Osaka University, Japan
| | | | | |
Collapse
|
13
|
Hachimi-Idrissi S, Zizi M, Nguyen DN, Schiettecate J, Ebinger G, Michotte Y, Huyghens L. The evolution of serum astroglial S-100 β protein in patients with cardiac arrest treated with mild hypothermia. Resuscitation 2005; 64:187-92. [PMID: 15680528 DOI: 10.1016/j.resuscitation.2004.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 07/05/2004] [Accepted: 08/02/2004] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To study the effects of mild hypothermia on the 24h concentration of serum astroglial of S-100 beta protein in patients who survived cardiac arrest (CA). DESIGN A prospective, randomised, clinical study in a university teaching hospital. PATIENTS Sixty-one resuscitated patients were randomised into two prospective studies, known as the short study period (SSP) (n = 33 patients) and the long study period (LSP) (n = 28 patients). In the SSP study, patients older than 18 years of age and surviving asystole or pulseless electrical activity were included. In the LSP study, patients with ventricular fibrillation (VF) or non-perfusing ventricular tachycardia (VT) aged between 18 and 75 years were included. In each of the study groups, the patients were further randomised into either normothermic or hypothermic subgroups. The standard supportive therapy was similar, only the devices used to reduce the body temperature and the period of hypothermia were different. Serum samples for the measurement of astroglial S-100 beta protein were collected at admission and 24h later. RESULTS During the first 24h after the cardiac arrest, the concentration of astroglial serum S-100 beta protein decreased significantly in the hypothermic cohort. In the normothermic cohort, the decrease of serum astroglial S-100 beta protein was less pronounced and even increased in the normothermic LSP group. CONCLUSION Induced mild hypothermia reduced the 24h astroglial serum S-100 beta protein concentration and might play a neuroprotective effect after cardiac arrest.
Collapse
Affiliation(s)
- Said Hachimi-Idrissi
- Cerebral Resuscitation Research Group, Department of Critical Care Medicine, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Torres-Cabala C, Panizo-Santos A, Krutzsch HC, Barazi H, Namba M, Sakaguchi M, Roberts DD, Merino MJ. Differential expression of S100C in thyroid lesions. Int J Surg Pathol 2004; 12:107-15. [PMID: 15173915 DOI: 10.1177/106689690401200203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Identification of new potential markers that may help in the diagnosis of benign and malignant thyroid lesions is needed. By comparative 2-dimensional gel electrophoresis of microdissected cells from tumors and normal thyroid tissue, we identified a new protein, S100C, which is highly expressed in papillary carcinomas. In order to validate this finding, we investigated the immunohistochemical expression and the potential role in diagnosis of these markers in 94 specimens representing the spectrum of malignant and benign thyroid lesions. Normal thyroid tissue was evaluated in 57 specimens. Galectin-3, a marker reported as specific for malignant lesions, was also evaluated in the same lesions. S100C protein was expressed in the nuclei of normal tissue, hyperplastic nodules, and follicular adenomas and carcinomas. Papillary carcinomas showed a strong, but cytoplasmic, pattern of staining. Galectin-3 immunostaining was strongly positive in papillary carcinomas, and negative in benign lesions, confirming its value in differential diagnosis. These findings suggest that immunohistochemical staining of S100C could be helpful in the pathological study of thyroid lesions, especially in cases in which follicular variants of papillary carcinoma and follicular carcinoma are considered in the differential diagnosis.
Collapse
Affiliation(s)
- Carlos Torres-Cabala
- Surgical Pathology Section, Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Subramanian L, Polans AS. Cancer-related diseases of the eye: the role of calcium and calcium-binding proteins. Biochem Biophys Res Commun 2004; 322:1153-65. [PMID: 15336963 DOI: 10.1016/j.bbrc.2004.07.109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/19/2022]
Abstract
The eye provides unique opportunities to study complex biochemical pathways and to describe how components of these pathways contribute to the molecular basis of disease. In this article, the role of calcium-binding proteins in cancer-related diseases of the eye is reviewed. First, paraneoplastic syndromes, or so-called remote effects of cancer, arise from damage to tissues distant from any tumor or its metastases. Many of these syndromes are believed to be immune-mediated. Cancer-associated retinopathy (CAR), a blinding disease due to the degeneration of retinal photoreceptor cells, is one of the best characterized of the paraneoplastic syndromes. The CAR autoantigen has been identified as recoverin, a calcium-binding protein of the EF-hand superfamily. Its features as a calcium-binding protein, along with its function in photoreceptor cells and its role as the CAR autoantigen, are discussed. Next, unlike visual symptoms instigated by a distant tumor, ocular melanoma is the primary malignancy originating in the eye. ALG-2 encodes a pro-apoptotic calcium-binding protein that is down-regulated in ocular melanoma, thus providing these tumor cells with a selective advantage. In addition to background discussion of ALG-2, data describing the expression, cellular localization, and dimerization characteristics of ALG-2 in melanoma cells are presented. Biochemical studies of ALG-2 and its interactions with its target Alix/AIP1 also are presented. Finally, the function of ALG-2 in calcium-induced cell death is discussed. Additional calcium-binding proteins in retina and in ocular tumors are described in relation to different disease entities. Such proteins and their expression in the eye provide valuable examples bridging studies of protein chemistry, cellular function, and human disease.
Collapse
Affiliation(s)
- Lalita Subramanian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI 53792, USA
| | | |
Collapse
|
16
|
Kanamori T, Takakura K, Mandai M, Kariya M, Fukuhara K, Sakaguchi M, Huh NH, Saito K, Sakurai T, Fujita J, Fujii S. Increased expression of calcium-binding protein S100 in human uterine smooth muscle tumours. Mol Hum Reprod 2004; 10:735-42. [PMID: 15322223 DOI: 10.1093/molehr/gah100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
S100 proteins belong to the EF-hand Ca(2+ )-binding protein family and regulate a variety of cellular processes via interaction with different target proteins. Several diseases, including cancer and melanoma, are related to the abnormal expression of S100 proteins, which are expressed in cell- and tissue-specific manners. We investigated the expression of S100 family members in human uterine smooth muscle tumours. Expression of six members of the S100 protein family: S100A1, A4, A6, A7, A10 and A11, was found in human uterine leiomyoma and myometrium tissue, but expression of other members was not detected by RT-PCR. Real-time PCR showed that S100A11 expression was significantly increased in leiomyoma compared with myometrium. Suppression of S100A11 by small interfering RNA (siRNA) led to apoptosis, and the overexpression of S100A11 inhibited apoptosis in human uterine smooth muscle tumour cells. These findings suggest that S100A11 has an anti-apoptotic function and is related to the process of growth of human uterine leiomyoma.
Collapse
Affiliation(s)
- Takanobu Kanamori
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Amano H, Maruyama K, Naka M, Tanaka T. Target validation in hypoxia-induced vascular remodeling using transcriptome/metabolome analysis. THE PHARMACOGENOMICS JOURNAL 2004; 3:183-8. [PMID: 12815367 DOI: 10.1038/sj.tpj.6500177] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study describes combined transcriptome and metabolome analysis for therapeutic target validation in hypoxia-induced vascular remodeling. Exposure to hypoxic conditions resulted in the upregulation of S100C mRNA and increased taurine (2-aminoethanesulfonic acid) content in the rat lung, as demonstrated by differential display and amino-acid content analysis. Hypoxia resulted in transcriptional activation of the S100C promoter through hypoxia-inducible factor-1 (HIF-1). Taurine suppressed HIF-1-mediated increases in S100C transcription. Moreover, oral taurine administration attenuated vascular remodeling in hypoxic rat lung, whereas depletion of endogenous taurine by administration of beta-alanine resulted in increased vascular remodeling. Inhibition of HIF transcription by taurine may be of therapeutic benefit in preventing hypoxia-induced vascular remodeling. In conclusion, we used transcriptome and metabolome analysis to identify a therapeutic low-molecular-weight ligand that plays a critical role in hypoxia-induced vascular remodeling. These techniques provided an excellent strategy for screening and validation of targets.
Collapse
Affiliation(s)
- H Amano
- Department of Molecular and Cellular Pharmacology, Mie University School of Medicine, Tsu, Mie, Japan
| | | | | | | |
Collapse
|
18
|
Broome AM, Eckert RL. Microtubule-Dependent Redistribution of a Cytoplasmic Cornified Envelope Precursor. J Invest Dermatol 2004; 122:29-38. [PMID: 14962086 DOI: 10.1046/j.0022-202x.2003.22105.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several cytoplasmic cornified envelope precursors have been described. Nevertheless, the mechanism whereby these proteins are positioned at the site of crosslink formation is not known. In this study, we examine the intracellular distribution of the cornified envelope precursor S100A11 (S100C) and the effects of the physiologic differentiating agent calcium on this distribution. S100A11 is localized in the cytoplasm of resting cultured human keratinocytes. Treatment with calcium causes S100A11 to relocate to the cell periphery. Immunoprecipitation studies reveal that S100A11 associates with microtubules, and inhibitor studies indicate that functional micro-tubules are required for S100A11 peripheral redistribution. Parallel studies indicate that S100A11 is not present in the Golgi or endoplasmic reticulum (ER), suggesting that S100A11 is not moved to the cell periphery via the classical Golgi/ER export pathway. Further evidence that the Golgi/ER is not involved is provided by the observation that the Golgi/ER disruptor brefeldin A does not alter movement. These results suggest that redistribution along microtubules is a mechanism whereby S100A11 is positioned at the cell periphery in preparation for transglutaminase-dependent crosslinking. Staining of epidermal tissue sections from uninvolved and psoriatic epidermis reveals strong staining at the cell periphery in the majority of suprabasal cells, confirming a peripheral distribution of S100A11 in vivo.
Collapse
Affiliation(s)
- Ann-Marie Broome
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
19
|
Bianchi R, Giambanco I, Arcuri C, Donato R. Subcellular localization of S100A11 (S100C) in LLC-PK1 renal cells: Calcium- and protein kinase c-dependent association of S100A11 with S100B and vimentin intermediate filaments. Microsc Res Tech 2003; 60:639-51. [PMID: 12645011 DOI: 10.1002/jemt.10305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The subcellular localization of the Ca(2+)-modulated protein, S100A11, was investigated in the renal cell line LLC-PK1 by immunofluorescence and confocal laser scanning microscopy under varying experimental conditions. In control cells, S100A11 was detected on the plasma membrane, where the protein co-localized with annexin I (ANXA1) at discrete sites, and found diffusely in the cytoplasm. Elevation of the cytosolic Ca(2+) concentration by means of the Ca(2+) ionophore, ionomycin, caused a significant fraction of S100A11 to associate with vimentin intermediate filament (IF)-bound S100B, another member of the S100 protein family. Under these conditions, ANXA1 underwent a quite different kind of relocation. Translocation of S100A11 onto vimentin IF-bound S100B was also observed upon activation of protein kinase C (PKC). Under these conditions, S100A11 appeared to associate directly with vimentin IFs at cell sites displaying low or no abundance of S100B such as cell processes, and, again, S100A11 and ANXA1 underwent a different relocation. Our data suggest the possibility that the intracellular Ca(2+) level might regulate the subcellular localization of S100A11 and its interaction with definite target proteins, and that S100A11 might serve the function of modulating S100B activities. Interestingly, in spite of the known ability of S100A11 to form heterotetramers with ANXA1, the two proteins underwent a different relocation on elevation of the cytosolic Ca(2+) concentration or activation of PKC, pointing to different regulatory activities of individual proteins in renal cells.
Collapse
Affiliation(s)
- Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
20
|
Arcuri C, Giambanco I, Bianchi R, Donato R. Subcellular localization of S100A11 (S100C, calgizzarin) in developing and adult avian skeletal muscles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:84-94. [PMID: 12445463 DOI: 10.1016/s1570-9639(02)00448-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
S100A11 is a member of a multigenic family of Ca(2+)-modulated proteins of the EF-hand type. We studied the subcellular localization of S100A11 in developing and adult avian skeletal muscle cells by confocal laser scanning microscopy and immunogold cytochemistry to get information about possible functional roles of this protein. Analyses of alpha-actinin, S100A1 and S100B were done in parallel for comparison. Low levels of S100A11 were found in skeletal muscle cells at embryonic day (E) 8. At E12, S100A11 was found in myotubes in the form of fine dots located between Z-discs, and on the sarcolemma and its invaginations. At E15, S100A11 was found on the sarcolemma and internal membranes, likely longitudinal tubules, where the protein was co-localized in part with S100A1 and S100B. At E18 and afterwards, co-localization of the three S100 proteins on internal membranes was almost complete. No evidence for association of S100A11 with the contractile elements of the sarcomeres was obtained. Our data suggests that, like S100A1 and S100B, S100A11 might have a role in the regulation of membrane activities, probably in relation to Ca(2+) fluxes in skeletal muscle cells.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy
| | | | | | | |
Collapse
|
21
|
Abstract
The ability of neurons to regenerate an axon after injury is determined by both the surrounding environment and factors intrinsic to the damaged neuron. We have used cDNA microarrays to survey those genes induced during successful sciatic nerve regeneration. The small proline-rich repeat protein 1A (SPRR1A) is not detectable in uninjured neurons but is induced by >60-fold after peripheral axonal damage. The protein is localized to injured neurons and axons. sprr1a is one of a group of epithelial differentiation genes, including s100c and p21/waf, that are coinduced in neurons by axotomy. Overexpressed SPRR1A colocalizes with F-actin in membrane ruffles and augments axonal outgrowth on a range of substrates. In axotomized sensory neurons, reduction of SPRR1A function restricts axonal outgrowth. Neuronal SPRR1A may be a significant contributor to successful nerve regeneration.
Collapse
|
22
|
Bonilla IE, Tanabe K, Strittmatter SM. Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J Neurosci 2002. [PMID: 11850458 DOI: 10.3410/f.1005790.69855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability of neurons to regenerate an axon after injury is determined by both the surrounding environment and factors intrinsic to the damaged neuron. We have used cDNA microarrays to survey those genes induced during successful sciatic nerve regeneration. The small proline-rich repeat protein 1A (SPRR1A) is not detectable in uninjured neurons but is induced by >60-fold after peripheral axonal damage. The protein is localized to injured neurons and axons. sprr1a is one of a group of epithelial differentiation genes, including s100c and p21/waf, that are coinduced in neurons by axotomy. Overexpressed SPRR1A colocalizes with F-actin in membrane ruffles and augments axonal outgrowth on a range of substrates. In axotomized sensory neurons, reduction of SPRR1A function restricts axonal outgrowth. Neuronal SPRR1A may be a significant contributor to successful nerve regeneration.
Collapse
Affiliation(s)
- Iris E Bonilla
- Department of Neurology and Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
23
|
Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33:637-68. [PMID: 11390274 DOI: 10.1016/s1357-2725(01)00046-2] [Citation(s) in RCA: 1169] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
S100 is a multigenic family of non-ubiquitous Ca(2+)-modulated proteins of the EF-hand type expressed in vertebrates exclusively and implicated in intracellular and extracellular regulatory activities. Within cells, most of S100 members exist in the form of antiparallelly packed homodimers (in some cases heterodimers), capable of functionally crossbridging two homologous or heterologous target proteins in a Ca(2+)-dependent (and, in some instances, Ca(2+)-independent) manner. S100 oligomers can also form, under the non-reducing conditions found in the extracellular space and/or within cells upon changes in the cell redox status. Within cells, S100 proteins have been implicated in the regulation of protein phosphorylation, some enzyme activities, the dynamics of cytoskeleton components, transcription factors, Ca(2+) homeostasis, and cell proliferation and differentiation. Certain S100 members are released into the extracellular space by an unknown mechanism. Extracellular S100 proteins stimulate neuronal survival and/or differentiation and astrocyte proliferation, cause neuronal death via apoptosis, and stimulate (in some cases) or inhibit (in other cases) the activity of inflammatory cells. A cell surface receptor, RAGE, has been identified on inflammatory cells and neurons for S100A12 and S100B, which transduces S100A12 and S100B effects. It is not known whether RAGE is a universal S100 receptor, S100 members interact with other cell surface receptors, or S100 protein interaction with other extracellular factors specifies the biological effects of a given S100 protein on a target cell. The variety of intracellular target proteins of S100 proteins and, in some cases, of a single S100 protein, and the cell specificity of expression of certain S100 members suggest that these proteins might have a role in the fine regulation of effector proteins and/or specific steps of signaling pathways/cellular functions. Future analyses should discriminate between functionally relevant S100 interactions with target proteins and in vitro observations devoid of physiological importance.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
24
|
Sakaguchi M, Tsuji T, Inoue Y, Miyazaki M, Namba M, Yamada H, Tanaka T. Loss of nuclear localization of the S100C protein in immortalized human fibroblasts. Radiat Res 2001; 155:208-214. [PMID: 11121236 DOI: 10.1667/0033-7587(2001)155[0208:lonlot]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that cancer develops through a multistep process. In vitro transformation studies of normal human cells have shown that the immortalization step is critical for neoplastic transformation of cells. Furthermore, studies of cell fusion between normal and immortalized cells have indicated that the normal phenotype is dominant and the immortal phenotype is recessive. Thus we looked for cellular proteins that were down-regulated in immortalized human cells by two-dimensional gel electrophoresis to elucidate the mechanisms of immortalization of human cells. We found that the S100C protein was down-regulated in immortalized cells. This protein was localized in the cytoplasm of cells at the semiconfluent stage, while at the confluent stage it moved into the nuclei of normal cells but not into those of immortalized cells. Microinjection of an S100C antibody into normal confluent cells diminished the level of nuclear S100C protein, resulting in DNA synthesis. Taken together, loss of nuclear localization of the S100C protein, which may be related to DNA synthesis, is thought to be one of the mechanisms of immortalization.
Collapse
Affiliation(s)
- M Sakaguchi
- Department of Cell Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Iino S, Sudo T, Niwa T, Fukasawa T, Hidaka H, Niki I. Annexin XI may be involved in Ca2+ - or GTP-gammaS-induced insulin secretion in the pancreatic beta-cell. FEBS Lett 2000; 479:46-50. [PMID: 10940386 DOI: 10.1016/s0014-5793(00)01877-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate possible involvement of annexin XI in the insulin secretory machinery. In fluorescence immunocytochemistry, annexin XI was found in the cytoplasm of pancreatic endocrine cells and a pancreatic beta-cell line, MIN6, in a granular pattern. MIN6 cells also possessed weak and diffused annexin XI immunoreactivity in the cytoplasm. Immunoelectron microscopy revealed annexin XI in the insulin granules. Insulin secretion from streptolysin-O-permeabilized MIN6 cells was inhibited by anti-annexin XI antibody, when the release was stimulated by either Ca2+ or GTP-gammaS, but not by a protein kinase C-activating phorbol ester. Inhibition of insulin release by anti-annexin XI antibody was reproduced in permeabilized rat islets. These findings suggest that annexin XI may be involved in the regulation of insulin secretion from the pancreatic beta-cells.
Collapse
Affiliation(s)
- S Iino
- First Department of Anatomy, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Polans AS, Gee RL, Walker TM, van Ginkel PR. Calcium-binding proteins and their assessment in ocular diseases. Methods Enzymol 2000; 316:103-21. [PMID: 10800671 DOI: 10.1016/s0076-6879(00)16719-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- A S Polans
- Department of Ophthalmology and Visual Sciences, Madison Medical School, University of Wisconsin 53792, USA
| | | | | | | |
Collapse
|
27
|
Sakaguchi M, Miyazaki M, Inoue Y, Tsuji T, Kouchi H, Tanaka T, Yamada H, Namba M. Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts. J Cell Biol 2000; 149:1193-206. [PMID: 10851017 PMCID: PMC2175115 DOI: 10.1083/jcb.149.6.1193] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/1999] [Accepted: 05/04/2000] [Indexed: 11/22/2022] Open
Abstract
Many lines of evidence indicate that neoplastic transformation of cells occurs by a multistep process. For neoplastic transformation of normal human cells, they must be first immortalized and then be converted into neoplastic cells. It is well known that the immortalization is a critical step for the neoplastic transformation of cells and that the immortal phenotype is recessive. Thus, we investigated proteins downregulated in immortalized cells by two-dimensional gel electrophoresis. As a result, S100C, a Ca(2+)-binding protein, was dramatically downregulated in immortalized human fibroblasts compared with their normal counterparts. When the cells reached confluence, S100C was phosphorylated on threonine 10. Then the phosphorylated S100C moved to and accumulated in the nuclei of normal cells, whereas in immortalized cells it was not phosphorylated and remained in the cytoplasm. Microinjection of the anti-S100C antibody into normal confluent quiescent cells induced DNA synthesis. Furthermore, when exogenous S100C was compelled to localize in the nuclei of HeLa cells, their DNA synthesis was remarkably inhibited with increase in cyclin-dependent kinase inhibitors such as p16(Ink4a) and p21(Waf1). These data indicate the possible involvement of nuclear S100C in the contact inhibition of cell growth.
Collapse
Affiliation(s)
- Masakiyo Sakaguchi
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Masahiro Miyazaki
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Yusuke Inoue
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Toshiya Tsuji
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Hirosuke Kouchi
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Mie University, Mie 514-8507, Japan
| | - Hidenori Yamada
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Masayoshi Namba
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| |
Collapse
|
28
|
Inamoto S, Murao S, Yokoyama M, Kitazawa S, Maeda S. Isoproterenol-induced myocardial injury resulting in altered S100A4 and S100A11 protein expression in the rat. Pathol Int 2000; 50:480-5. [PMID: 10886724 DOI: 10.1046/j.1440-1827.2000.01069.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S-100 proteins (S100) are characterized by calcium-binding ability with two structural EF hands. Several S100 are expressed in cardiomyocytes and thought to play a crucial role in calcium signaling. To examine whether the expression of S100 is a response to detectable myocardial damage or regeneration, we investigated, immunohistochemically, the expression of S100A4 and S100A11 in the isoproterenol (ISP)-treated rat heart. Definite expression of S100A4 and S100A11 was demonstrated in normal cardiomyocytes, and their staining patterns were enhanced in the ISP-treated rat heart, suggesting the possible involvement of S1-A4 and S100A11 in ISP-induced myocardial damage.
Collapse
Affiliation(s)
- S Inamoto
- The Second Department of Pathology, andThe First Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
29
|
Réty S, Osterloh D, Arié JP, Tabaries S, Seeman J, Russo-Marie F, Gerke V, Lewit-Bentley A. Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 2000; 8:175-84. [PMID: 10673436 DOI: 10.1016/s0969-2126(00)00093-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND S100C (S100A11) is a member of the S100 calcium-binding protein family, the function of which is not yet entirely clear, but may include cytoskeleton assembly and dynamics. S100 proteins consist of two EF-hand calcium-binding motifs, connected by a flexible loop. Like several other members of the family, S100C forms a homodimer. A number of S100 proteins form complexes with annexins, another family of calcium-binding proteins that also bind to phospholipids. Structural studies have been undertaken to understand the basis of these interactions. RESULTS We have solved the crystal structure of a complex of calcium-loaded S100C with a synthetic peptide that corresponds to the first 14 residues of the annexin I N terminus at 2.3 A resolution. We find a stoichiometry of one peptide per S100C monomer, the entire complex structure consisting of two peptides per S100C dimer. Each peptide, however, interacts with both monomers of the S100C dimer. The two S100C molecules of the dimer are linked by a disulphide bridge. The structure is surprisingly close to that of the p11-annexin II N-terminal peptide complex solved previously. We have performed competition experiments to try to understand the specificity of the S100-annexin interaction. CONCLUSIONS By solving the structure of a second annexin N terminus-S100 protein complex, we confirmed a novel mode of interaction of S100 proteins with their target peptides; there is a one-to-one stoichiometry, where the dimeric structure of the S100 protein is, nevertheless, essential for complex formation. Our structure can provide a model for a Ca(2+)-regulated annexin I-S100C heterotetramer, possibly involved in crosslinking membrane surfaces or organising membranes during certain fusion events.
Collapse
Affiliation(s)
- S Réty
- Centre Universitaire Paris-Sud, LURE (CNRS, CEA, MENRT), Orsay, 91898, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao XQ, Naka M, Muneyuki M, Tanaka T. Ca(2+)-dependent inhibition of actin-activated myosin ATPase activity by S100C (S100A11), a novel member of the S100 protein family. Biochem Biophys Res Commun 2000; 267:77-9. [PMID: 10623577 DOI: 10.1006/bbrc.1999.1918] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100C (S100A11, calgizzarin) inhibits the actin-activated myosin Mg(2+)-ATPase activity of smooth muscle in a dose-dependent manner: its half-maximal effect occurs at a S100C/actin molar ratio of 0.05 and its maximal effect occurs at a ratio of 0.20. Furthermore, S100C was found to bind to actin with a stoichiometry of 1:6-7 in the presence of Ca(2+), with an affinity of 1 x 10(-6) M determined by cosedimentation assays. Other Ca(2+)-binding proteins such as S100A1, S100A2, S100B, and calmodulin did not inhibit actin-activated myosin Mg(2+)-ATPase activity. Calmodulin, S100A1, and S100B reversed the inhibitory effect of calponin in a Ca(2+)-dependent manner, S100A2 had no effect, and S100C had additional inhibitory effects. The results suggest that S100C might be involved in the regulation of actin-activated myosin Mg(2+)-ATPase activity through its Ca(2+)-dependent interaction with actin filaments.
Collapse
Affiliation(s)
- X Q Zhao
- Department of Molecular Pharmacology, Mie University School of Medicine, Tsu, 514-8507, Japan
| | | | | | | |
Collapse
|
31
|
Inada H, Naka M, Tanaka T, Davey GE, Heizmann CW. Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization. Biochem Biophys Res Commun 1999; 263:135-8. [PMID: 10486266 DOI: 10.1006/bbrc.1999.1319] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to analyze the steady-state RNA levels of S100A11 in different tissues, a cDNA fragment of human S100A11 was isolated from a cDNA library. The obtained fragment was labeled and hybridized to RNA isolated from various tissues. The Northern blot analysis revealed that S100A11 RNA levels varied from high in placenta, through intermediate in heart, lung, kidney, and most muscle samples, to barely detectable in brain. An efficient purification method for recombinant S100A11 yielding high quantities was developed. Furthermore, to examine the subcellular localization of this protein, the human polypeptide S100A11 antibodies were raised in rabbit. S100A11 was found to have a localization distinct from other S100 proteins examined, and is mostly localized in the nucleus, with slight variations among different glioblastoma cell types.
Collapse
Affiliation(s)
- H Inada
- Department of Molecular and Cellular Pharmacology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan
| | | | | | | | | |
Collapse
|
32
|
Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:191-231. [PMID: 10395934 DOI: 10.1016/s0167-4889(99)00058-0] [Citation(s) in RCA: 499] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.
Collapse
Affiliation(s)
- R Donato
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
33
|
Sudo T, Hidaka H. Characterization of the calcyclin (S100A6) binding site of annexin XI-A by site-directed mutagenesis. FEBS Lett 1999; 444:11-4. [PMID: 10037139 DOI: 10.1016/s0014-5793(99)00014-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Residues in annexin XI-A essential for binding of calcyclin (S100A6) were examined by site-directed mutagenesis. GST fusion proteins with the calcyclin binding site of annexin XI-A, GST-AXI 34-62 and GST-AXI 49-77 bound to calcyclin-Sepharose Ca2+-dependently. The mutants GST-AXI L52E, M55E, A56E and M59E lost the binding ability, whereas GST-AXI A57E retained the ability. These results demonstrate that the hydrophobic residues L52, M55, A56 and M59 on one side surface of the alpha-helix are critical for the binding. Assays with GST fusion proteins and synthesized peptides corresponding to the calcyclin binding site indicated that other regions around the calcyclin binding site are important to stabilize the conformation.
Collapse
Affiliation(s)
- T Sudo
- Department of Pharmacology, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
34
|
Van Ginkel PR, Gee RL, Walker TM, Hu DN, Heizmann CW, Polans AS. The identification and differential expression of calcium-binding proteins associated with ocular melanoma. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:290-7. [PMID: 9920419 DOI: 10.1016/s0167-4889(98)00133-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium-binding proteins may endow tumor cells with properties related to their malignancy and metastatic phenotype. Chromatographic procedures and amino acid sequence analysis were used in this study to identify seven calcium-binding proteins, annexin VI, cap g, annexin V, calmodulin, S100A11, S100B and S100A6, associated with uveal melanoma, the primary ocular tumor of adults. This series of calcium-binding proteins was identified in both primary tumors and cell lines of uveal melanoma. Several of the proteins were shown by immunochemical methods to be differentially expressed between normal uveal melanocytes and malignant melanomas of the uvea. In addition, the expression of S100A6 may correlate with the malignant properties of the tumor.
Collapse
Affiliation(s)
- P R Van Ginkel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison 53792, USA
| | | | | | | | | | | |
Collapse
|
35
|
Mouta Carreira C, LaVallee TM, Tarantini F, Jackson A, Lathrop JT, Hampton B, Burgess WH, Maciag T. S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro. J Biol Chem 1998; 273:22224-31. [PMID: 9712836 DOI: 10.1074/jbc.273.35.22224] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously characterized the release of the signal peptide sequence-less fibroblast growth factor (FGF) prototype, FGF-1, in vitro as a stress-induced pathway in which FGF-1 is released as a latent homodimer with the p40 extravesicular domain of p65 synaptotagmin (Syn)-1. To determine the biologic relevance of the FGF-1 release pathway in vivo, we sought to resolve and characterize from ovine brain a purified fraction that contained both FGF-1 and p40 Syn-1 and report that the brain-derived FGF-1:p40 Syn-1 aggregate is associated with the calcium-binding protein, S100A13. Since S100A13 binds the anti-inflammatory compound amlexanox and FGF-1 is involved in inflammation, we examined the effects of amlexanox on the release of FGF-1 and p40 Syn-1 in response to stress in vitro. We report that while amlexanox was able to repress the heat shock-induced release of FGF-1 and p40 Syn-1 in a concentration-dependent manner, it had no effect on the constitutive release of p40 Syn-1 from p40 Syn-1 NIH 3T3 cell transfectants. These data suggest the following: (i) FGF-1 is associated with Syn-1 and S100A13 in vivo; (ii) S100A13 may be involved in the regulation of FGF-1 and p40 Syn-1 release in response to temperature stress in vitro; and (iii) the FGF-1 release pathway may be accessible to pharmacologic regulation.
Collapse
Affiliation(s)
- C Mouta Carreira
- Center for Molecular Medicine, Maine Medical Center Research Institute, South Portland, Maine 04106, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sudo T, Hidaka H. Regulation of calcyclin (S100A6) binding by alternative splicing in the N-terminal regulatory domain of annexin XI isoforms. J Biol Chem 1998; 273:6351-7. [PMID: 9497364 DOI: 10.1074/jbc.273.11.6351] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin XI is a Ca2+/phospholipid-binding protein that interacts with a member of S100 protein family, calcyclin (S100A6), in a Ca2+-dependent manner. There are two isoforms of annexin XI, annexin XI-A and -B, generated by alternative splicing in the N-terminal regulatory domain. To determine the role of the alternative splicing region in the calcyclin-binding, we identified and characterized its calcyclin binding site. Experiments with glutathione S-transferase fusion proteins with N-terminal sites of annexin XI-A showed the calcyclin binding site to be in residues Gln49-Thr62 of rabbit annexin XI-A, which contains part of the splicing region. A synthesized peptide corresponding to Tyr43-Thr62 of annexin XI-A inhibited the interaction of annexin XI with calcyclin in liposome co-pelleting assay. The calcyclin binding site possesses a hydrophobic residue cluster conserved among S100 binding sites of annexin I and II. Recombinant annexin XI isoforms were expressed in Sf9 cells using a baculovirus expression system. In contrast to annexin XI-A, it was found that annexin XI-B protein could not bind to calcyclin by the liposome co-pelleting assay. In Sf9 cells coexpressing calcyclin with annexin XI isoforms, the calcyclin binding was observed only for annexin XI-A isoform. These results indicate that the calcyclin binding ability of annexin XI is an annexin XI-A isoform-specific character, suggesting that annexin XI isoforms might play distinct roles in cells through each alternative splicing regions.
Collapse
Affiliation(s)
- T Sudo
- Department of Pharmacology, Nagoya University School of Medicine, Showa-ku, Nagoya, 466, Japan
| | | |
Collapse
|
37
|
Nakamura T, Hayashi M, Kato A, Sawazaki T, Yasue H, Nakano T, Tanaka T. A unique exon-intron organization of a porcine S100C gene: close evolutionary relationship to calmodulin genes. Biochem Biophys Res Commun 1998; 243:647-52. [PMID: 9500989 DOI: 10.1006/bbrc.1998.8158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found a unique exon-intron structure of the porcine S100C gene, a member of the S100 family, in which all other genes characterized to date have common exon-intron organization. The genomic DNA encoding the porcine S100C was cloned and the entire nucleotide sequence of the gene was analyzed. The gene is present as a single copy and consists of three exons and two introns with a total size of 5.3 kb. The first intron is located after the ATG translation initiation codon. Such an intron has never been found in other S100 genes, but is found in almost all calmodulin genes. The gene structural similarity suggests a close evolutionary relationship between the S100C gene and calmodulin genes.
Collapse
Affiliation(s)
- T Nakamura
- Department of Molecular and Cellular Pharmacology, Mie University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The recent finding that S100A11 is a component of the keratinocyte cornified envelope (CE) (Robinson, N. A., Lapic, S., Welter, J. F., and Eckert, R. L. (1997) J. Biol. Chem. 272, 12035-12046) suggests that S100A11 is a transglutaminase (TG) substrate. In the present study we show that S100A11 forms multimers when cultured keratinocytes are challenged by increased levels of intracellular calcium and that multimer formation is inhibited by the TG inhibitor, cystamine. These S100A11 multimers appear to be incorporated into the CE, as immunoreactive S100A11 is detected in purified envelopes prepared from cultured cells and from foreskin epidermis. To study S100A11 as a transglutaminase substrate, recombinant human S100A11 (rhS100A11) was used in a cell-free cross-linking system. [14C]Putrescine, a primary amine, labels rhS100A11 in a TG-dependent manner. Trypsin digestion of [14C]putrescine-labeled rhS100A11 releases one radiolabeled peptide, Ala98-Lys103. The glutamine residue in this segment, Gln102, is the site of radiolabel incorporation indicating that Gln102 functions as an amine acceptor. The ability of S100A11 to form multimers indicates that it also has a reactive lysine residue that functions as an amine donor. To identify the reactive residue, we compared the high pressure liquid chromatography profile of trypsin-digested rhS100A11 monomer to that of cross-linked rhS100A11. A unique cross-linked peptide was purified and identified as Met-Ala-Lys3-Ilu-Ser-Ser-Pro-Thr-Glu-Thr-Glu-Arg cross-linked via an Lys3-Gln102 isopeptide bond to Ala-Val-Pro-Ser-Gln102-Lys. These studies show that S100A11 is post-translationally modified by transglutaminase, that it can be cross-linked to form multimers, that it is present in CEs from cultured keratinocytes and in vivo epidermis, and that Lys3 and Gln102 are specific sites of cross-link formation.
Collapse
Affiliation(s)
- N A Robinson
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
39
|
Croxtall JD, Wu HL, Yang HY, Smith B, Sutton C, Chang BI, Shi GY, Flower R. Lipocortin 1 co-associates with cytokeratins 8 and 18 in A549 cells via the N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1401:39-51. [PMID: 9459484 DOI: 10.1016/s0167-4889(97)00120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An affinity chromatography strategy was used to search for proteins in A549 cells which interact with the N-terminus of lipocortin 1 (annexin 1). Using the biologically active fragment Lc13-25 as the affinity ligand, two proteins of molecular weight (m.w.) 52 and 48kDa were extracted. Affinity blots of these proteins bound iodinated Lc13-25. Partial tryptic digests of these proteins were analysed by matrix assisted laser desorption mass spectrometry and found to display fragmentation patterns with a strong similarity to those of cytokeratin 8 and 18 respectively. Subsequent blotting with a panel of specific cytokeratin antibodies strongly supported the idea that the two proteins were cytokeratin 8 and cytokeratin 18. Cytokeratin 8 was isolated from A549 cells in intermediate filament (IF) preparations which were also found to contain lipocortin 1 as a potential intermediate filament associated protein (IFAP). This association persisted throughout cycles of IF assembly and disassembly. Dual-labelling immuno-histochemistry in A549 cells showed strong co-localization of lipocortin 1 and cytokeratin 8. The implications of this finding are discussed in the light of the biological activity and possible function of lipocortin 1.
Collapse
Affiliation(s)
- J D Croxtall
- Department of Biochemical Pharmacology, The William Harvey Research Institute, The Medical College of St. Bartholomews and the Royal London School of Medicine and Dentistry at Queen Mary and Westfield College, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Brownawell AM, Creutz CE. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J Biol Chem 1997; 272:22182-90. [PMID: 9268363 DOI: 10.1074/jbc.272.35.22182] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The annexins are characterized by their ability to bind phospholipid membranes in a Ca2+-dependent manner. Sequence variability between the N-terminal domains of the family members may contribute to the specific cellular function of each annexin. To identify proteins that interact with the N-terminal domain of synexin (annexin VII), a fusion protein was constructed composed of glutathione S-transferase fused to amino acids 1-145 of human synexin. Affinity chromatography using this construct identified sorcin as a Ca2+-dependent synexin-binding protein. Overlay assays confirmed the interaction. The glutathione S-transferase construct associates with recombinant sorcin over the range of pCa2+ = 4.7-3.1 with no binding observed at pCa2+ = 5.4. Overlay assays using deletion constructs of the synexin N-terminal domain mapped the sorcin binding site to the N-terminal 31 amino acids of the synexin protein. Additionally, synexin forms a complex with sorcin and recruits this protein to chromaffin granule membranes in a Ca2+-dependent manner. Sorcin is able to inhibit synexin-mediated chromaffin granule aggregation in a manner saturable with increasing sorcin concentrations, but does not influence the Ca2+ sensitivity of synexin-mediated granule aggregation. Therefore, the interaction between sorcin and synexin may serve to regulate the functions of these proteins on membrane surfaces in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- A M Brownawell
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
41
|
Abstract
Immunofluorescence and subcellular fractionation localize annexin I and the EF hand protein S100C to the same membranous structures which in part correspond to transferrin receptor-positive endosomes. The association of S100C with endosomal membranes is strictly dependent on annexin I binding since a D91stop-S100C mutant protein, in which the residues essential for annexin I binding have been removed, fails to colocalize with membraneous structures. This indicates that annexin I and S100C form a complex in vivo and that the endosomal localization of this complex is mediated through an interaction of annexin I with the endosomal membrane.
Collapse
Affiliation(s)
- J Seemann
- Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
42
|
Dukhanina EA, Dukhanin AS, Lomonosov MY, Lukanidin EM, Georgiev GP. Spectral studies on the calcium-binding properties of Mts1 protein and its interaction with target protein. FEBS Lett 1997; 410:403-6. [PMID: 9237671 DOI: 10.1016/s0014-5793(97)00576-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two calcium-binding sites of the Mts1 protein, a member of S-100 protein family, were distinguished with the Fluo-3 fluorescent technique. The geometric mean of the apparent dissociation constant (Kd) for these two sites is 2.6 microM; the Hill coefficient (nH) is 0.98. In the presence of a novel target protein p37, isolated from the mouse adenocarcinoma cell line CSML-100, Mts1 binds Ca2+ ions with higher affinity and with strong positive cooperativity (Kd = 0.2 microM, nH = 1.91). Interaction of Mts1 with p37 is confirmed by the fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate (TNS). Reaction with TNS shows that p37 interacts with the hydrophobic site of Mts1 which is exposed due to the binding of Ca2+ ions.
Collapse
Affiliation(s)
- E A Dukhanina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russian Federation.
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- V Gerke
- Institute for Medical Biochemistry, ZMBE, University of Münster, Germany
| | | |
Collapse
|
44
|
Robinson NA, Lapic S, Welter JF, Eckert RL. S100A11, S100A10, annexin I, desmosomal proteins, small proline-rich proteins, plasminogen activator inhibitor-2, and involucrin are components of the cornified envelope of cultured human epidermal keratinocytes. J Biol Chem 1997; 272:12035-46. [PMID: 9115270 DOI: 10.1074/jbc.272.18.12035] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cornified envelope (CE) is an insoluble sheath of epsilon-(gamma-glutamyl)lysine cross-linked protein, which is deposited beneath the plasma membrane during keratinocyte terminal differentiation. We have probed the structure of the CE by proteolytic cleavage of purified CE fragments isolated from CEs formed spontaneously in cell culture. CNBr digestion, followed by trypsin and then proteinase K treatment released 25%, 42%, and 18%, respectively, of the CE protein. Purification and sequencing of released peptides has identified two novel CE precursors, S100A11 (S100C, calgizzarin) and S100A10 (calpactin light chain). We also sequenced peptides derived from annexin I and plasminogen activator inhibitor 2, two putative envelope precursors, as well as portions of the well established CE precursor proteins SPR1A, SPR1B, and involucrin. Many desmosomal components were identified (desmoglein 3, desmocolin A/B, desmoplakin I, plakoglobin, and plakophilin), indicating that desmosomes become cross-linked into the CE. Fragments derived from envoplakin, the recently sequenced 210-kDa membranous CE precursor protein, which also appears to be a desmosomal component, were also identified. Analysis of the pattern of peptide release following the sequential digestion indicates that S100A11 is anchored to the envelope via Gln102 and/or Lys103 at the carboxyl terminus and at Lys3, Lys23, and/or Gln22 in the amino terminus. A similar type of analysis indicates that small proline-rich proteins 1A and 1B (SPR1A and SPR1B) become cross-linked at the amino terminus (residues 1-23) and the carboxyl terminus (residues 86-89). No loricrin, cystatin A, or elafin peptides were detected.
Collapse
Affiliation(s)
- N A Robinson
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
45
|
Nakatani K, Kawanabe Y, Kato A, Tanaka T. Interaction of propranolol with S100 proteins of the cardiac muscle. Eur J Pharmacol 1996; 315:335-8. [PMID: 8982673 DOI: 10.1016/s0014-2999(96)00611-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cardioprotective activity of propranolol is believed to be independent of its beta-adrenoceptor antagonistic effect. Propranolol exerts this effect through a direct effect on the cardiac muscle, but the precise mechanism remains unclear. In this work, we demonstrated that propranolol binds to S100ao and S100L proteins with ED50 of approximately 1.0 microM without cation dependency and that this binding changes the conformation of these S100 proteins. Propranolol, however, was found to bind to and to change the conformation of S100C protein in the presence of Mg2+ or Zn2+ with ED50 of approximately 1.0 microM. No change was observed in the presence of Ca2+. Moreover, in the presence of Mg2+, the ED50 of L- and D- propranolol were approximately 0.8 and 2.0 microM, respectively. This study demonstrated for the first time, that the S100 proteins of the cardiac muscle are intracellular targets of propranolol, and that Mg2+ is a modulator of the cardioprotective activity of S100C protein.
Collapse
Affiliation(s)
- K Nakatani
- Department of Molecular and Cellular Pharmacology, Mie University School of Medicine, Japan
| | | | | | | |
Collapse
|
46
|
Seemann J, Weber K, Gerke V. Structural requirements for annexin I-S100C complex-formation. Biochem J 1996; 319 ( Pt 1):123-9. [PMID: 8870658 PMCID: PMC1217744 DOI: 10.1042/bj3190123] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
S100C is a member of the S100 family of EF-hand-type Ca(2+)-binding proteins which are thought to bind to and thereby regulate the activity of cellular target proteins in a Ca(2+)-dependent manner. An intracellular ligand for S100C is the Ca2+/phospholipid-binding protein annexin I and we show here that complex-formation is mediated through unique domains within S100C and annexin I. Using a proteolytically truncated annexin I derivative as well as a number of N-terminal annexin I peptides in liposome co-pelleting and ligand-blotting assays we map the S100C-binding site to the N-terminal 13 residues of annexin I. Similar analyses employing recombinantly expressed S100C mutants reveal that residues D91 to 194 in the unique C-terminal extension of this S100 protein are indispensable for annexin I binding. Interaction between S100C and an N-terminal annexin I peptide containing a tryptoplan at position 11 can also be monitored by fluorescence emission spectroscopy after tryptophan excitation. This analysis indicates that the local environment of the tryptophan in annexin I becomes less aqueous on S100C binding, suggesting a hydrophobic nature of the protein-protein interaction. Thus the structural basis of the annexin 1-S100C complex-formation probably resembles to a large extent that of the well-characterized annexin II-p11 interaction.
Collapse
Affiliation(s)
- J Seemann
- Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
47
|
Mailliard WS, Haigler HT, Schlaepfer DD. Calcium-dependent binding of S100C to the N-terminal domain of annexin I. J Biol Chem 1996; 271:719-25. [PMID: 8557678 DOI: 10.1074/jbc.271.2.719] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The annexin family of proteins is characterized by a conserved core domain that binds to phospholipids in a Ca(2+)-dependent manner. Each annexin also has a structurally distinct N-terminal domain that may impart functional specificity. To search for cellular proteins that interact with the N-terminal domain of annexin I, we constructed a fusion protein consisting of glutathione S-transferase fused to amino acids 2-47 of human annexin I (GST-AINT; AINT = annexin I N-terminal). Extracts from metabolically labeled A431 cells contained a single protein (M(r) approximately 10,000) that bound to GST-AINT in a Ca(2+)-dependent manner. A synthetic peptide corresponding to amino acids 2-18 of annexin I inhibited the binding of the 10-kDa protein to GST-AINT with half-maximal inhibition occurring at approximately 15 microM peptide. In cellular extracts, endogenous annexin I and the 10-kDa protein associated in a reversible Ca(2+)-dependent manner. Experiments with other annexins and with N-terminal truncated forms of annexin I indicated that the 10-kDa protein bound specifically to a site within the first 12 amino acids of annexin I. The 10-kDa protein was purified from human placenta by hydrophobic and affinity chromatography. Amino acid sequence analysis indicated that the 10-kDa protein is the human homologue of S100C, a recently identified member of the S100 subfamily of EF-hand Ca(2+)-binding proteins.
Collapse
Affiliation(s)
- W S Mailliard
- Department of Physiology and Biophysics, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
48
|
Allen BG, Durussel I, Walsh MP, Cox JA. Characterization of the Ca2+-binding properties of calgizzarin (S100C) isolated from chicken gizzard smooth muscle. Biochem Cell Biol 1996; 74:687-94. [PMID: 9018377 DOI: 10.1139/o96-075] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Calgizzarin is a Ca2+-binding protein of the S100 family that has been implicated in the regulation of cytoskeletal function through its Ca2+-dependent interaction with annexin I. The Ca2+-binding properties of calgizzarin (S100C) have not previously been thoroughly characterized. Calgizzarin, therefore, was purified from chicken gizzard smooth muscle by exploiting its Ca2+-dependent interaction with the hydrophobic matrix phenyl-Sepharose and is shown by 45Ca2+ overlay to bind Ca2+ more weakly than does calmodulin. Gel filtration in the absence and presence of Ca2+ suggested a dimeric structure of calgizzarin and indicated a more compact structure in the presence of Ca2+. Flow dialysis experiments indicated that, at physiological ionic strength, calgizzarin binds two Ca2+ ions per monomer (four per native dimer), as predicted from the deduced amino acid sequence which contains two putative EF-hands, with [Ca2+]0.5 of 0.52 mM and nH of 1.4 in the absence of Mg2+ and [Ca2+]0.5 of 0.3 mM and nH of 1.2 in the presence of 10 mM mgCl2. The hydrophobic fluorescent probe 2-p-toluidinylnaphthalene-6-sulphonate was used to demonstrate Ca(2+)-dependent exposure of a hydrophobic site(s) in calgizzarin. This approach also indicated the ability of calgizzarin to bind Zn2+. Interestingly, the affinity of calgizzarin for Ca2+ was enhanced approximately 10-fold in the presence of the hydrophobic probe, possibly reflecting an increased affinity for Ca2+ when calgizzarin binds to a target protein. Finally, the distribution of calgizzarin among chicken tissues was examined by immunoblotting: calgizzarin was expressed at its highest levels in lung tissue, followed by smooth muscle tissues (oesophagus, large intestine, trachea, and gizzard), kidney, liver, brain, and heart; it was not detected in small intestine or skeletal muscle.
Collapse
Affiliation(s)
- B G Allen
- Smooth Muscle Research Group, University of Calgary, Canada
| | | | | | | |
Collapse
|