1
|
Santos GB, Ribeiro AC, Lima SN, Trostchansky A, Cerdeira CD, Brigagão MR. Nitroxide Tempol down-regulates kinase activities associated with NADPH oxidase function in phagocytic cells and potentially decreases their fungicidal response. Chem Biol Interact 2018; 279:203-209. [DOI: 10.1016/j.cbi.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022]
|
2
|
Asghar M, Lokhandwala MF. Antioxidant Supplementation Normalizes Elevated Protein Kinase C Activity in the Proximal Tubules of Old Rats. Exp Biol Med (Maywood) 2016; 229:270-5. [PMID: 14988520 DOI: 10.1177/153537020422900308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aging is associated with increase in oxidative stress. Earlier, we have shown that higher basal protein kinase C (PKC) activity in the proximal tubules (PTs) of old rats contributes to the hyperphosphorylation of Na,K-ATPase and subsequent decrease in basal Na,K-ATPase activity, resulting in diminished natriuretic response to dopamine in these animals. We hypothesized that the increase in PKC activity in PTs of old rats is caused by increased oxidative stress and that antioxidants administration should reduce/normalize the elevated PKC activity in the renal PTs of old rats. We studied the effect of two antioxidants, namely, α-lipoic acid (LA) and tempol, on oxidants level and PKC activity in the PTs of adult (6-month) and old (24-month) Fischer 344 rats. We found that the accumulation of fluorescent dichlorofluorescein (DCF), an indicator of oxidant production, was higher in the PTs of old compared to adult rats. Dietary supplementation with LA for 2 weeks normalized the increased DCF level in old rats. Carboxymethylysine and malondialdehyde, markers of oxidative damage, were elevated in the PTs of old rats, which were normalized to the level of adult rats when tempol was provided in drinking water for 3 weeks. Both LA and tempol treatment also normalized the higher basal PKC activity in the PTs of old rats to the level seen in adult rats. These results suggest that increase in oxidative stress causes an increase in PKC activity, and that antioxidants, while reducing oxidative stress, also normalize PKC activity in the PTs of old rats.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
3
|
Assimakopoulos SF, Konstantinou D, Georgiou C, Chroni E. Metabolism of polyamines and oxidative stress in the brain of cholestatic rats. Amino Acids 2009; 38:973-4. [PMID: 19396525 DOI: 10.1007/s00726-009-0296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 12/13/2022]
Abstract
In a recently published article in "Amino Acids" it was shown that obstructive jaundice of 9 days' duration in rats induces significant alterations of polyamines' metabolism in the brain, which might play an important pathogenetic role in cholestatic brain injury. The authors proposed that alterations of polyamines in cholestatic brain might induce neuronal toxicity through a mechanism that implicates the production of reactive oxygen species and oxidative stress, although this parameter was not evaluated in their study. This hypothesis is supported by our recent findings on brain oxidative status in rats with obstructive jaundice of 10 days' duration. Potential interrelations of the two studies' findings are discussed in this commentary.
Collapse
|
4
|
Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2009; 60:418-69. [PMID: 19112152 DOI: 10.1124/pr.108.000240] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
5
|
Tölle A, Schlame M, Charlier N, Guthmann F, Rüstow B. Vitamin E differentially regulates the expression of peroxiredoxin-1 and -6 in alveolar type II cells. Free Radic Biol Med 2005; 38:1401-8. [PMID: 15855058 DOI: 10.1016/j.freeradbiomed.2005.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/21/2005] [Accepted: 02/02/2005] [Indexed: 11/27/2022]
Abstract
Vitamin E is the primary lipophilic antioxidant in mammals. Lack of vitamin E may lead to an increase of cytotoxic phospholipid-peroxidation products (PL-Ox). However, we could previously show that alimentary vitamin E-depletion in rats did not change the concentrations of dienes, hydroperoxides, and platelet-activating factor-related oxidation products in alveolar type II cells (TII cells). We hypothesized that vitamin E deficiency increases the activity of enzymes involved in the degradation of PL-Ox. Degradation of PL-Ox may be catalyzed by phospholipase A2, PAF-acetylhydrolase, or peroxiredoxins (Prx's). Alimentary vitamin E deficiency in rats increased the expression of Prx-1 at the mRNA and protein levels and the formation of Prx-SO3, but it did not change the expression of Prx-6 or the activity of phospholipase A2 and PAF-acetylhydrolase in TII cells. H2O2-induced oxidative stress in isolated TII cells activated protein kinase Calpha (PKCalpha) and increased the expression of Prx-1 and Prx-6. Inhibition of PKCalpha in isolated TII cells by long-time incubation with PMA inhibited PKCalpha and Prx-1 but not Prx-6. We concluded that the expression of Prx-1 and -6 is selectively regulated in TII cells; PKCalpha regulates the expression of Prx-1 but not Prx-6. Prx-6 expression may be closely linked to lipid peroxidation.
Collapse
Affiliation(s)
- Angelika Tölle
- Klinik für Neonatologie, Universitätsmedizin-Berlin, Charité Campus Mitte, D-10098 Berlin, Germany
| | | | | | | | | |
Collapse
|
6
|
Kyng KJ, May A, Brosh RM, Cheng WH, Chen C, Becker KG, Bohr VA. The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells. Oncogene 2003; 22:1135-49. [PMID: 12606941 DOI: 10.1038/sj.onc.1206187] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cockayne syndrome (CS) is a human hereditary disease belonging to the group of segmental progerias, and the clinical phenotype is characterized by postnatal growth failure, neurological dysfunction, cachetic dwarfism, photosensitivity, sensorineural hearing loss, and retinal degradation. CS-B cells are defective in transcription-coupled DNA repair, base excision repair, transcription, and chromatin structural organization. Using array analysis, we have examined the expression profile in CS complementation group B (CS-B) fibroblasts after exposure to oxidative stress (H2O2) before and after complete complementation with the CSB gene. The following isogenic cell lines were compared: CS-B cells (CS-B null), CS-B cells complemented with wild-type CSB (CS-B wt), and a stably transformed cell line with a point mutation in the ATPase domain of CSB (CS-B ATPase mutant). In the wt rescued cells, we detected significant induction (two-fold) of 112 genes out of the 6912 analysed. The patterns suggested an induction or upregulation of genes involved in several DNA metabolic processes including DNA repair, transcription, and signal transduction. In both CS-B mutant cell lines, we found a general deficiency in transcription after oxidative stress, suggesting that the CSB protein influenced the regulation of transcription of certain genes. Of the 6912 genes, 122 were differentially regulated by more than two-fold. Evidently, the ATPase function of CSB is biologically important as the deficiencies seen in the ATPase mutant cells are very similar to those observed in the CS-B-null cells. Some major defects are in the transcription of genes involved in DNA repair, signal transduction, and ribosomal functions.
Collapse
Affiliation(s)
- Kasper J Kyng
- Laboratory of Molecular Gerontology, National Institute on Aging, 5600 Nathan Schock Drive, National Institute of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Chung WH, Bennett BM, Racz WJ, Brien JF, Massey TE. Induction of c-jun and TGF-beta 1 in Fischer 344 rats during amiodarone-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1180-8. [PMID: 11597910 DOI: 10.1152/ajplung.2001.281.5.l1180] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amiodarone (AM) is an antidysrhythmic agent with a propensity to cause pulmonary toxicity, including potentially fatal fibrosis. In the present study, the potential roles of c-Jun and transforming growth factor (TGF)-beta 1 in AM-induced inflammation and fibrogenesis were examined after intratracheal administration of AM (1.83 micromol/day on days 0 and 2) or an equivalent volume (0.4 ml) of distilled water to male Fischer 344 rats. Northern and immunoblot analyses demonstrated that lung TGF-beta 1 (mRNA and protein) expression was increased 1.5- to 1.8-fold relative to control during the early inflammation period and 1 day, 1 wk, and 2 wk post-AM treatment. Lung c-Jun protein expression was increased concomitantly with evidence of AM-induced fibrosis; at 5 wk post-AM treatment, c-Jun protein was increased 3.3-fold relative to control. The results indicate a role for induction of c-jun and TGF-beta 1 expression in the development of AM-induced pulmonary fibrosis in the Fischer 344 rat and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- W H Chung
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
8
|
Sharma A, Singh M. Protein kinase C activation and cardioprotective effect of preconditioning with oxidative stress in isolated rat heart. Mol Cell Biochem 2001; 219:1-6. [PMID: 11354240 DOI: 10.1023/a:1011038531656] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study is designed to investigate the effect of myocardial preconditioning with oxidative stress induced by pyrogallol or H2O2, on ischaemia-reperfusion induced myocardial injury. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Four episodes of preconditioning induced by pyrogallol or hydrogen peroxide (H2O) or ischaemia markedly reduced LDH and CK release in coronary effluent and decreased myocardial infarct size. Administration of polymyxin B, a protein kinase C (PKC) inhibitor, during pyrogallol, H2O2 or ischaemic preconditioning markedly attenuated the cardioprotective effect of preconditioning produced with oxidative stress or ischaemia. These results suggest that preconditioning with oxidative stress may provide cardioprotection similar to ischaemic preconditioning, against ischaemia-reperfusion injury and this cardioprotective effect may be mediated through activation of PKC.
Collapse
Affiliation(s)
- A Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | |
Collapse
|
9
|
Hashimoto K, Minatoguchi S, Hashimoto Y, Wang N, Qiu X, Yamashita K, Uno Y, Arai M, Nishida Y, Takemura G, Suzuki T, Fujiwara T, Fujiwara H. Role of protein kinase C, K(ATP) channels and DNA fragmentation in the infarct size-reducing effects of the free radical scavenger T-0970. Clin Exp Pharmacol Physiol 2001; 28:193-9. [PMID: 11207675 DOI: 10.1046/j.1440-1681.2001.03428.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present study, we investigated the effect of 1-(3-tert-butyl-2-hydroxy-5-methoxyphenyl)-3-(3-pyridylmethyl) urea hydrocloride (T-0970), a novel water-soluble low-molecular weight free radical scavenger, on the generation of hydroxyl radicals in vivo and on myocardial infarct size in an in vivo model of myocardial infarction in rabbits. 2. T-0970 scavenged hydroxyl radicals generated in the myocardium during reperfusion, as assessed by using a microdialysis technique and HPLC in an in vivo model with 30 min coronary occlusion and 30 min reperfusion in rabbits. 3. Another group of rabbits was subjected to 30 min coronary occlusion and 48 h reperfusion. The control group (n = 10) was infused with saline for 190 min from 10 min before occlusion to 180 min after reperfusion. The treatment group (T-0970 group; n = 10) was injected with a bolus 2.5 mg/kg T-0970 and then infused with T-0970 for 190 min from 10 min before reperfusion to 180 min after reperfusion at a rate of 100 microg/kg per min. The T-0970 + CHE group (n = 5) was given chelerythrine (CHE; a selective inhibitor of protein kinase C (PKC); 5 mg/kg, i.v.) 10 min before the administration of T-0970. The T-0970 + 5-HD group (n = 5) was given 5-hydroxydecanoate (5-HD; an inhibitor of mitochondrial K(ATP) channels; 5 mg/kg, i.v.) 10 min before the administration of T-0970. The CHE and 5-HD groups were given CHE (5 mg/kg, i.v.) and 5-HD (5 mg/kg, i.v.) 20 min before reperfusion, respectively. After 48 h reperfusion, infarct size was measured histologically and expressed as a percentage of the area at risk (AAR). In another series of experiments, the control (n = 5) and T-0970 (n = 5) groups were killed 4 h after reperfusion following 30 min coronary occlusion and DNA fragmentation in myocytes was assessed using in situ dUTP nick end-labelling (TUNEL) at the light microscopic level. 4. Infarct size, as a percentage of AAR, in the T-0970 group was significantly reduced compared with the control group (21+/-4 vs 41+/-4%, respectively; P<0.05). This reduction of infarct size by T-0970 was abolished by pretreatment with CHE and 5-HD. Neither CHE nor 5-HD alone had any effect on infarct size. The percentage of infarcted myocytes with DNA fragmentation by TUNEL in the T-0970 group was significantly reduced compared with the number in the control group (4.0+/-1.5 vs 10.7+/-1.9%, respectively; P<0.05). 5. T-0970, a free radical scavenger, improved reperfusion injury. This effect seemed to be mediated by activation of PKC, the opening of mitochondrial K(ATP) channels and inhibition of DNA fragmentation.
Collapse
Affiliation(s)
- K Hashimoto
- Second Department of Internal Medicine, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This review focuses on the possible role of reactive oxygen species in the pathogenesis of this phenomenon. Evidence in support of a role of oxidants in preconditioning has come from the observation that administration of oxygen radical scavengers during the reperfusion period following the initial "preconditioning" ischemia could prevent the phenomenon. In addition, a brief exposure to a low, nontoxic dose of oxygen radicals may reproduce the beneficial effects of ischemic preconditioning, thus suggesting that radicals can directly trigger the preconditioning pathway. To explain the effects of oxidants in this setting, it has been suggested that reperfusion after the initial, "preconditioning" ischemic episode results in the generation of relatively low amounts of oxygen radicals, which are insufficient to determine cell necrosis, but nevertheless could modify cellular activities that have been implicated as mediators of the preconditioning phenomenon. Recent evidence suggests that low levels of oxidants may have a modulatory role on several cell functions. Possible mechanisms of oxidant-mediated protection might be protein kinase C and other kinases, ATP-dependent potassium channels, or changes in sulfhydryl group redox state, while an effect on adenosine metabolism, or the induction of myocardial stunning presumably does not contribute to oxidant-mediated preconditioning. Finally, de novo protein synthesis and gene expression, and increased antioxidant defenses might be involved in the late phase of preconditioning. In summary, available data strongly suggest that oxygen radicals might be possible mediators of preconditioning. However, further investigation is required to clearly elucidate their exact role and mechanisms of action.
Collapse
Affiliation(s)
- I Tritto
- Division of Cardiology, University of Perugia School of Medicine, Perugia, Italy
| | | |
Collapse
|
11
|
Abstract
Reactive oxygen species are produced by all aerobic cells and are widely believed to play a pivotal role in aging as well as a number of degenerative diseases. The consequences of the generation of oxidants in cells does not appear to be limited to promotion of deleterious effects. Alterations in oxidative metabolism have long been known to occur during differentiation and development. Experimental perturbations in cellular redox state have been shown to exert a strong impact on these processes. The discovery of specific genes and pathways affected by oxidants led to the hypothesis that reactive oxygen species serve as subcellular messengers in gene regulatory and signal transduction pathways. Additionally, antioxidants can activate numerous genes and pathways. The burgeoning growth in the number of pathways shown to be dependent on oxidation or antioxidation has accelerated during the last decade. In the discussion presented here, we provide a tabular summary of many of the redox effects on gene expression and signaling pathways that are currently known to exist.
Collapse
Affiliation(s)
- R G Allen
- Lankenau Medical Research Center, Thomas Jefferson University, Wynnewood, PA 19106, USA
| | | |
Collapse
|
12
|
Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999; 18:6104-11. [PMID: 10557101 DOI: 10.1038/sj.onc.1203128] [Citation(s) in RCA: 468] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress-activated signaling cascades are affected by altered redox potential. Key contributors to altered redox potential are reactive oxygen species (ROS) which are formed, in most cases, by exogenous genotoxic agents including irradiation, inflammatory cytokines and chemical carcinogens. ROS and altered redox potential can be considered as the primary intracellular changes which regulate protein kinases, thereby serving as an important cellular component linking external stimuli with signal transduction in stress response. The mechanisms, which underlie the ROS-mediated response, involve direct alteration of kinases and transcription factors, and indirect modulation of cysteine-rich redox-sensitive proteins exemplified by thioredoxin and glutathione S-transferase. This review summarizes the current understanding of the mechanisms contributing to ROS-related changes in key stress activated signaling cascades.
Collapse
Affiliation(s)
- V Adler
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1130, New York, NY 10029, USA
| | | | | | | |
Collapse
|
13
|
Graça-Souza AV, Silva-Neto MA, Oliveira PL. Urate synthesis in the blood-sucking insect rhodnius prolixus. Stimulation by hemin is mediated by protein kinase C. J Biol Chem 1999; 274:9673-6. [PMID: 10092654 DOI: 10.1074/jbc.274.14.9673] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hemin is a catalyst of the formation of reactive oxygen species. We proposed that hematophagous insects are exposed to intense oxidative stress because of hemoglobin hydrolysis in their midgut (Petretsky, M. D., Ribeiro, J. M. C., Atella, G. C., Masuda, H., and Oliveira, P. L. (1995) J. Biol. Chem. 270, 10893-10896). We have shown that hemin stimulates urate synthesis in the blood-sucking insect Rhodnius prolixus (Graça-Souza, A. V., Petretsky, J. H., Demasi, M., Bechara, E. J. H., and Oliveira, P. L. (1997) Free Radical Biol. Med. 22, 209-214). Once released by fat body cells, urate accumulates in the hemolymph, where this radical scavenger constitutes an important defense against blood-feeding derived oxidative stress. Incubation of Rhodnius fat bodies with okadaic acid raises the level of urate synthesis, suggesting that urate production can be controlled by protein phosphorylation/dephosphorylation. Urate synthesis is stimulated by dibutyryl cAMP and inhibited by N(2((p-bromocinnamil)amino)ethyl)-5-isoquinolinesulfonamide (H-89), an inhibitor of protein kinase A, as well as activated by the protein kinase C activator phorbol 12-myristate 13-acetate. In the presence of hemin, however, inhibition of urate synthesis by H-89 does not occur, suggesting that the hemin stimulatory effect is not mediated by protein kinase A. Calphostin C completely inhibits the hemin-induced urate production, suggesting that the triggering of urate antioxidant response depends on protein kinase C activation. This conclusion is reinforced by the observation that in fat bodies exposed to hemin, both protein kinase C activity and phosphorylation of specific endogenous polypeptides are significantly increased.
Collapse
Affiliation(s)
- A V Graça-Souza
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brasil, CEP 21910-590.
| | | | | |
Collapse
|
14
|
Yoshida K, Mizukami Y, Kitakaze M. Nitric oxide mediates protein kinase C isoform translocation in rat heart during postischemic reperfusion. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:230-8. [PMID: 10036321 DOI: 10.1016/s0925-4439(98)00105-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is controversial whether nitric oxide (NO) is protective or deleterious against ischemia-reperfusion injury. We examined the effect of NO on PKC isoform translocation and protection against ischemia-reperfusion injury in perfused heart. An NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester, 3.0 microM), administered only during reperfusion but not during ischemia, inhibited the translocation of PKC-alpha, -delta and -epsilon isoforms to the nucleus-myofibril fraction and the translocation of PKC-alpha to the membrane fraction after ischemia (20 min) and reperfusion (10 min) in the perfused rat heart. NO donors, 3-morpholinosydnonimine (SIN-1) or S-nitroso-N-acetylpenicillamine (SNAP) activated purified PKC in vitro. SIN-1 also induced PKC isoform translocation in perfused heart. On the other hand, PKC selective inhibitor, calphostin C (0.2 microM) or chelerythrine (1.0 microM), aggravated the contractile dysfunction of ischemic heart during reperfusion, when they were perfused during reperfusion. These data suggest that NO generated during reperfusion following ischemia activates PKC isoforms and may protect the heart against contractile dysfunction in the perfused rat heart.
Collapse
Affiliation(s)
- K Yoshida
- Department of Legal Medicine, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan.
| | | | | |
Collapse
|
15
|
Rowlands JC, Casida JE. NADH: ubiquinone oxidoreductase inhibitors block induction of ornithine decarboxylase activity in MCF-7 human breast cancer cells. PHARMACOLOGY & TOXICOLOGY 1998; 83:214-9. [PMID: 9834970 DOI: 10.1111/j.1600-0773.1998.tb01471.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rotenone is the classical inhibitor of NADH: ubiquinone oxidoreductase and its analogue deguelin is a potent inhibitor of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase mRNA steady state level and enzyme activity in mouse 308 cells (Gerhäuser et al. 1995). In MCF-7 human breast cancer cells, rotenone, deguelin and two structurally-unrelated miticides (pyridaben and fenazaquin) inhibit not only NADH: ubiquinone oxidoreductase but also induced ornithine decarboxylase activity with IC50 values of < 1 to 70 nM. Rotenone inhibits ornithine decarboxylase activity equally well as induced by TPA, insulin-like growth factor I and 17 beta-oestradiol. Pyridaben is the most potent of the four inhibitors not only for NADH: ubiquinone oxidoreductase activity (bovine heart enzyme) and TPA-induced ornithine decarboxylase activity and mRNA steady state level but also for TPA-induced reactive oxygen species. It is therefore proposed that NADH: ubiquinone oxidoreductase inhibitors block multiple and possibly reactive oxygen species-modulated pathways which regulate ornithine decarboxylase activity.
Collapse
Affiliation(s)
- J C Rowlands
- Department of Environmental Science, Policy and Management, University of California, Berkeley 94720-3112, USA
| | | |
Collapse
|
16
|
Planer BC, Ning Y, Kumar SA, Ballard PL. Transcriptional regulation of surfactant proteins SP-A and SP-B by phorbol ester. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1353:171-9. [PMID: 9294011 DOI: 10.1016/s0167-4781(97)00070-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate (TPA) activate protein kinase C and have been previously shown to down-regulate surfactant proteins SP-A and SP-B in H441 adenocarcinoma cells. We used H441 cells and human fetal lung to further study the mechanism of TPA action and to examine physiologic relevance. In H441 cells, TPA (10 nM) treatment for 24 h decreased SP-A mRNA content to approximately 5% of control cells, with half-maximal effect at approximately 0.5 nM, and reduced SP-A gene transcription rate to 28% of control after 8 h exposure. In cells cultured in the presence of dexamethasone, which increases the low basal level of SP-B expression, TPA decreased both SP-B mRNA content (approximately 8% of control) and rate of transcription (7% of control). In cultured human fetal lung explants, TPA decreased SP-A and SP-B protein and mRNA in a time- and dose-dependent fashion, with half-maximal effect on mRNAs at approximately 3 nM and approximately 50% inhibition after 24 h of exposure, and similarly reduced SP-A and SP-B gene transcription (approximately 55% of control at 8-24 h). We conclude that TPA acts primarily at the level of gene transcription to down-regulate both SP-A and SP-B in H441 and fetal lung cells, and we speculate that inflammatory and other agents that act through PKC may modulate expression of the surfactant proteins and alter surfactant function in vivo.
Collapse
Affiliation(s)
- B C Planer
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, USA
| | | | | | | |
Collapse
|
17
|
Tritto I, D'Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A, Esposito A, Chiariello M, Ambrosio G. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 1997; 80:743-8. [PMID: 9130455 DOI: 10.1161/01.res.80.5.743] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indirect evidence suggests that oxygen radicals may contribute to ischemic preconditioning. We directly investigated whether exposure to oxygen radicals per se, in the absence of ischemia, could reproduce the beneficial effects of ischemic preconditioning on infarct size and on postischemic contractile dysfunction. In one branch of the study, isolated rabbit hearts underwent 30 minutes of total global ischemia and 45 minutes of reperfusion (n=6, control group). A second group, before ischemia/reperfusion, was exposed for 5 minutes to a low flux of oxygen radicals generated by purine/xanthine oxidase (P/XO), followed by a 15-minute washout (n=6). Oxygen radical pretreatment significantly improved postischemic recovery of contractile function. We then investigated in another branch of the study whether this preconditioning effect would also reduce infarct size and whether it was mediated by protein kinase C activation. Control hearts were subjected to coronary artery occlusion for 30 minutes, followed by 2.5 hours of reperfusion (n=6). A second group, before coronary occlusion, was exposed to oxygen radicals and washout as described (n=8). A third group was subjected to oxygen radical infusion, but an inhibitor of protein kinase C (polymyxin B, 50 micromol/L) was administered throughout subsequent ischemia (n=7). A fourth group was exposed to oxygen radicals in the presence of scavengers (superoxide dismutase, 250 U/mL; catalase 500, U/mL; n=8). Pretreatment with oxygen radicals markedly reduced infarct size, from 65+/-19% of risk region in controls to 12+/-4% (P<.05). Protein kinase C inhibition significantly attenuated this effect (infarct size, 37+/-9% of risk region; P<.05 versus P/XO; P=NS versus controls). Oxygen radical-induced preconditioning was prevented by scavengers (infarct size, 55+/-14% of risk region; P<.05 versus P/XO; P=NS versus P/XO+polymyxin B). Our data show that in the absence of ischemia, exposure to low concentrations of oxygen radicals can reproduce the beneficial effects of ischemic preconditioning on infarct size and postischemic recovery of left ventricular function. Thus, oxygen radicals might be potential contributors to ischemic preconditioning.
Collapse
Affiliation(s)
- I Tritto
- University of Perugia School of Medicine, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tam KY, Wang RL, Lee CW, Compton RG. Applications of the channel flow cell for UV-visible spectroelectrochemical studies: The kinetics of dimerization of the methyl viologen radical cation. ELECTROANAL 1997. [DOI: 10.1002/elan.1140090306] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|