1
|
Signal Pathways and Markers Involved in Acute Lung Injury Induced by Acute Pancreatitis. DISEASE MARKERS 2021; 2021:9947047. [PMID: 34497676 PMCID: PMC8419500 DOI: 10.1155/2021/9947047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease with a mortality rate of about 30%. Acute lung injury (ALI) is a common systemic complication of acute pancreatitis, with progressive hypoxemia and respiratory distress as the main manifestations, which can develop into acute respiratory distress syndrome or even multiple organ dysfunction syndrome (MODS) in severe cases, endangering human health. In the model of AP, pathophysiological process of the lung can be summarized as oxidative stress injury, inflammatory factor infiltration, and alveolar cell apoptosis. However, the intrinsic mechanisms underlying AP and how it leads to ALI are not fully understood. In this paper, we summarize recent articles related to AP leading to ALI, including the signal transduction pathways and biomarkers of AP-ALI. There are factors or pathway aggravating ALI, the JAK2-STAT3 signaling pathway, NLRP3/NF-κB pathway, mitogen-activated protein kinase, PKC pathway, neutrophil protease (NP)-LAMC2-neutrophil pathway, and the P2X7 pathway, and there are important transcription factors in the NRF2 signal transduction pathway which could give researchers better understanding of the underlying mechanisms controlling AP and ALI and lay the foundation for finally curing ALI induced by AP.
Collapse
|
2
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Jeong YK, Kim H. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA) on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis. Int J Mol Sci 2017; 18:ijms18112239. [PMID: 29068376 PMCID: PMC5713209 DOI: 10.3390/ijms18112239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (C22:6n-3), exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.
Collapse
Affiliation(s)
- Yoo Kyung Jeong
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
4
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Jeong YK, Lee S, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats. Nutrients 2017; 9:E744. [PMID: 28704954 PMCID: PMC5537858 DOI: 10.3390/nu9070744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas.
Collapse
Affiliation(s)
- Yoo Kyung Jeong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sle Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
6
|
Li C, A. Williams J. Regulation of CCK-induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Abstract
BACKGROUND Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. METHODS This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. RESULTS Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. CONCLUSIONS These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder.
Collapse
Affiliation(s)
- Jingzhen Yuan
- West Los Angeles VA Healthcare Center, UCLA/VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg 258, Rm 340, Los Angeles, CA, 90073, USA.
| | - Stephen J Pandol
- West Los Angeles VA Healthcare Center, UCLA/VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg 258, Rm 340, Los Angeles, CA, 90073, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R. NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 2016; 16:477-88. [PMID: 27282980 DOI: 10.1016/j.pan.2016.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
Abstract
The incidence of acute pancreatitis (AP) is increasing globally and mortality could be high among patients with organ failure and infected necrosis. The predominant factors responsible for the morbidity and mortality of AP are systemic inflammatory response syndrome and multiorgan dysfunction. Even though preclinical studies have shown antisecretory agents (somatostatin), antioxidants (S-adenosyl methionine [SAM], selenium), protease inhibitors, platelet activating factor inhibitor (Lexipafant), and anti-inflammatory immunomodulators (eg. prostaglandin E, indomethacin) to benefit AP in terms of reducing the severity and/or mortality, most of these agents have shown heterogeneous results in clinical studies. Several years of experimental studies have implicated nuclear factor-kappa B (NF-κB) activation as an early and central event in the progression of inflammation in AP. In this manuscript, we review the literature on the role of NF-κB in the pathogenesis of AP, its early intraacinar activation, and how it results in progression of the disease. We also discuss why anti-protease, antisecretory, and anti-inflammatory agents are unlikely to be effective in clinical acute pancreatitis. NF-κB, being a central molecule that links the initial acinar injury to systemic inflammation and perpetuate the inflammation, we propose that more studies be focussed towards targeted inhibition of NF-κB activity. Direct NF-κB inhibition strategies have already been attempted in patients with various cancers. So far, peroxisome proliferator activator receptor gamma (PPAR-γ) ligand, pyrrolidine dithiocarbamate (PDTC), proteasome inhibitor and calpain I inhibitor have been shown to have direct inhibitory effects on NF-κB activation in experimental AP.
Collapse
Affiliation(s)
- Aparna Jakkampudi
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Ramaiah Jangala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - B Ratnakar Reddy
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Sasikala Mitnala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - D Nageshwar Reddy
- Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Rupjyoti Talukdar
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| |
Collapse
|
9
|
Satoh K, Narita T, Katsumata-Kato O, Sugiya H, Seo Y. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2016; 310:G399-409. [PMID: 26744470 DOI: 10.1152/ajpgi.00198.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/05/2016] [Indexed: 01/31/2023]
Abstract
Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.
Collapse
Affiliation(s)
- Keitaro Satoh
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan;
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kanagawa, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kanagawa, Japan
| | - Yoshiteru Seo
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
10
|
Liu Y, Yuan J, Tan T, Jia W, Lugea A, Mareninova O, Waldron RT, Pandol SJ. Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G550-63. [PMID: 25035113 PMCID: PMC4154116 DOI: 10.1152/ajpgi.00432.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Yannan Liu
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,2Beijing Hospital, Beijing, China,
| | - Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California;
| | - Tanya Tan
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,3St. George's University School of Medicine, St. George's, Grenada; and
| | - Wenzhuo Jia
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,2Beijing Hospital, Beijing, China,
| | - Aurelia Lugea
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| | - Olga Mareninova
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California;
| | - Richard T. Waldron
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J. Pandol
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
11
|
Muili KA, Jin S, Orabi AI, Eisses JF, Javed TA, Le T, Bottino R, Jayaraman T, Husain SZ. Pancreatic acinar cell nuclear factor κB activation because of bile acid exposure is dependent on calcineurin. J Biol Chem 2013; 288:21065-21073. [PMID: 23744075 DOI: 10.1074/jbc.m113.471425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biliary pancreatitis is the most common etiology of acute pancreatitis, accounting for 30-60% of cases. A dominant theory for the development of biliary pancreatitis is the reflux of bile into the pancreatic duct and subsequent exposure to pancreatic acinar cells. Bile acids are known to induce aberrant Ca(2+) signals in acinar cells as well as nuclear translocation of NF-κB. In this study, we examined the role of the downstream Ca(2+) target calcineurin on NF-κB translocation. Freshly isolated mouse acinar cells were infected for 24 h with an adenovirus expressing an NF-κB luciferase reporter. The bile acid taurolithocholic acid-3-sulfate caused NF-κB activation at concentrations (500 μm) that were associated with cell injury. We show that the NF-κB inhibitor Bay 11-7082 (1 μm) blocked translocation and injury. Pretreatment with the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the calcineurin inhibitors FK506 and cyclosporine A, or use of acinar cells from calcineurin Aβ-deficient mice each led to reduced NF-κB activation with taurolithocholic acid-3-sulfate. Importantly, these manipulations did not affect LPS-induced NF-κB activation. A critical upstream regulator of NF-κB activation is protein kinase C, which translocates to the membranes of various organelles in the active state. We demonstrate that pharmacologic and genetic inhibition of calcineurin blocks translocation of the PKC-δ isoform. In summary, bile-induced NF-κB activation and acinar cell injury are mediated by calcineurin, and a mechanism for this important early inflammatory response appears to be upstream at the level of PKC translocation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rita Bottino
- Internal Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Thotalla Jayaraman
- Internal Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | |
Collapse
|
12
|
Koh YH, Tamizhselvi R, Moochhala S, Bian JS, Bhatia M. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells. J Cell Mol Med 2012; 15:2139-49. [PMID: 20973912 PMCID: PMC4394224 DOI: 10.1111/j.1582-4934.2010.01205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Substance P (SP) is involved in the pathophysiology of acute pancreatitis (AP) via binding to its high-affinity receptor, neurokinin-1-receptor (NK1R). An up-regulation of SP and NK1R expression was observed in experimental AP and in caerulein-stimulated pancreatic acinar cells. However, the mechanisms that lead to this up-regulation are not fully understood. In this study, we showed the role of protein kinase C (PKC) in caerulein-induced SP and NK1R production in isolated mouse pancreatic acinar cells. Caerulein (10(-7) M) stimulation rapidly activated the conventional PKC-α and novel PKC-δ as observed by the phosphorylation of these molecules. Pre-treatment of pancreatic acinar cells with Gö6976 (1-10 nM) and rottlerin (1-10 μM) inhibited PKC-α and PKC-δ phosphorylation, respectively, but not the other way round. At these concentrations used, PKC-α and PKC-δ inhibition reversed the caerulein-induced up-regulation of SP and NK1R, indicating an important role of PKCs in the modulation of SP and NK1R expression. Further experiments looking into signalling mechanisms showed that treatment of pancreatic acinar cells with both Gö6976 and rottlerin inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Inhibition of PKC-α or PKC-δ also affected caerulein-induced transcription factor activation, as represented by nuclear factor-κB and AP-1 DNA-binding activity. The findings in this study suggested that PKC is upstream of the mitogen-activated protein kinases and transcription factors, which then lead to the up-regulation of SP/NK1R expression in caerulein-treated mouse pancreatic acinar cells.
Collapse
Affiliation(s)
- Yung-Hua Koh
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
13
|
Sancho V, Berna MJ, Thill M, Jensen RT. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2145-56. [PMID: 21810446 DOI: 10.1016/j.bbamcr.2011.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023]
Abstract
The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).
Collapse
Affiliation(s)
- Veronica Sancho
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVES To define the role of protein kinase C delta (PKC delta) in acinar cell responses to the hormone cholecystokinin-8 (CCK) using isoform-specific inhibitors and a previously unreported genetic deletion model. METHODS Pancreatic acinar cells were isolated from (1) rat, and pretreated with a PKC delta-specific inhibitor or (2) PKC delta-deficient and wild type mice. Isolated cells were stimulated with CCK (0.001-100 nmol/L) and cell responses were measured. RESULTS The PKC delta inhibitor did not affect stimulated amylase secretion from rat pancreatic acinar cells. Cholecystokinin-8 stimulation induced a typical biphasic dose-response curve for amylase secretion in acinar cells isolated from both PKC delta(-/-) and wild type mice, with maximal stimulation at 10-pmol/L CCK. Cholecystokinin-8 (100 nmol/L) induced zymogen and nuclear factor kappaB activation in both PKC delta(-/-) and wild type mice, although it was up to 50% less in PKC delta(-/-). CONCLUSIONS In contrast to previous studies, this study has used specific and complementary approaches to examine PKC delta-mediated acinar cell responses. We could not confirm that it mediates amylase release but corroborated its role in the early stages of acute pancreatitis.
Collapse
|
15
|
Yuan J, Lugea A, Zheng L, Gukovsky I, Edderkaoui M, Rozengurt E, Pandol SJ. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1190-201. [PMID: 18845574 PMCID: PMC2604803 DOI: 10.1152/ajpgi.90452.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/05/2008] [Indexed: 02/07/2023]
Abstract
The transcription factor NF-kappaB plays a critical role in inflammatory and cell death responses during acute pancreatitis. Previous studies in our laboratory demonstrated that protein kinase C (PKC) isoforms PKCdelta and epsilon are key regulators of NF-kappaB activation induced by cholecystokinin-8 (CCK-8), tumor necrosis factor-alpha, and ethanol. However, the downstream participants in regulating NF-kappaB activation in exocrine pancreas remain poorly understood. Here, we demonstrate that protein kinase D1 (PKD1) is a key downstream target of PKCdelta and PKCepsilon in pancreatic acinar cells stimulated by two major secretagogues, CCK-8 and the cholinergic agonist carbachol (CCh), and that PKD1 is necessary for NF-kappaB activation induced by CCK-8 and CCh. Both CCK-8 and CCh dose dependently induced a rapid and striking activation of PKD1 in rat pancreatic acinar cells, as measured by in vitro kinase assay and by phosphorylation at PKD1 activation loop (Ser744/748) or autophosphorylation site (Ser916). The phosphorylation and activation of PKD1 correlated with NF-kappaB activity stimulated by CCK-8 or CCh, as measured by NF-kappaB DNA binding. Either inhibition of PKCdelta or epsilon by isoform-specific inhibitory peptides, genetic deletion of PKCdelta and epsilon in pancreatic acinar cells, or knockdown of PKD1 by using small interfering RNAs in AR42J cells resulted in a marked decrease in PKD1 and NF-kappaB activation stimulated by CCK-8 or CCh. Conversely, overexpression of PKD1 resulted in augmentation of CCK-8- and CCh-stimulated NF-kappaB activation. Finally, the kinetics of PKD1 and NF-kappaB activation during cerulein-induced rat pancreatitis showed that both PKD1 and NF-kappaB activation were early events during acute pancreatitis and that their time courses of response were similar. Our results identify PKD1 as a novel early convergent point for PKCdelta and epsilon in the signaling pathways mediating NF-kappaB activation in pancreatitis.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles VA Healthcare Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Thrower EC, Osgood S, Shugrue CA, Kolodecik TR, Chaudhuri AM, Reeve JR, Pandol SJ, Gorelick FS. The novel protein kinase C isoforms -delta and -epsilon modulate caerulein-induced zymogen activation in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1344-53. [PMID: 18388183 PMCID: PMC2975015 DOI: 10.1152/ajpgi.00020.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.
Collapse
Affiliation(s)
- Edwin C Thrower
- Department of Internal Medicine, Section of Digestive Diseases, Veterans Affairs Connecticut Healthcare of West Haven, West Haven, CT 06516, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Pathological activation of selective signaling molecules within the pancreatic acinar cell mediates the development of acute pancreatitis. Some of the key early acinar cell events include activation of proteases, inhibition of apical secretion, and elaboration of inflammatory mediators. Previous studies have shown that supraphysiological concentrations of cholecystokinin (CCK) that can cause pancreatitis in vivo, also initiate these pathological responses in dispersed groups of acinar cells (acini). Protein kinase C (PKC) regulates many cellular events and a role for this family of signaling molecules has been described in some of the pathological responses of pancreatitis. Notably, ethanol can activate specific PKC isoforms and sensitize the acinar cells to the pathological effects of CCK. Our preliminary studies in isolated pancreatic acini and a cell-free reconstitution system suggest that PKC can mediate protease activation in the acinar cell. These findings may be relevant to the pathogenesis of pancreatitis from alcohol and other etiologies.
Collapse
Affiliation(s)
- Fred Gorelick
- Department of Internal Medicine, Connecticut VA Healthcare, Yale University, West Haven, Connecticut 06516, USA
| | | | | |
Collapse
|
18
|
Berna MJ, Hoffmann KM, Tapia JA, Thill M, Pace A, Mantey SA, Jensen RT. CCK causes PKD1 activation in pancreatic acini by signaling through PKC-delta and PKC-independent pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:483-501. [PMID: 17306383 PMCID: PMC1924924 DOI: 10.1016/j.bbamcr.2006.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 12/02/2006] [Accepted: 12/18/2006] [Indexed: 12/25/2022]
Abstract
Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependent increase in serine phosphorylation by activation of high- and low-affinity CCK(A) receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-zeta pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-delta, but not PKC-epsilon, or treatment with PKC-delta translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCK(A) receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, 20892-1804, USA
| | - K. Martin Hoffmann
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, 20892-1804, USA
| | - Jose A. Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres, 10071, Spain
| | - Michelle Thill
- National Eye Institute, NIH, Bethesda, Maryland, 20892-1804, USA
| | - Andrea Pace
- Medizinische Klinik I, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, 20892-1804, USA
| |
Collapse
|
19
|
Satoh A, Gukovskaya AS, Reeve JR, Shimosegawa T, Pandol SJ. Ethanol sensitizes NF-kappaB activation in pancreatic acinar cells through effects on protein kinase C-epsilon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G432-8. [PMID: 16574982 DOI: 10.1152/ajpgi.00579.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although ethanol abuse is the most common cause of pancreatitis, the mechanism of alcohol's effect on the pancreas is not well understood. Previously, we demonstrated that in vitro ethanol treatment of pancreatic acinar cells augmented the CCK-8-induced activation of NF-kappaB, a key signaling system involved in the inflammatory response of pancreatitis. In the present study, we determine the role for individual PKC isoforms in the sensitizing effect of ethanol on NF-kappaB activation. Dispersed rat pancreatic acini were treated with and without ethanol and then stimulated with CCK-8; 100 nM CCK-8 caused both NF-kappaB and PKC-delta, -epsilon, and -zeta activation, whereas 0.1 nM CCK-8 did not increase PKC-epsilon, PKC-zeta, or NF-kappaB activity. CCK-8 (0.1 nM) did activate PKC-delta. PKC-epsilon activator alone did not cause NF-kappaB activation; however, together with 0.1 nM CCK-8, it caused NF-kappaB activation. Ethanol activated PKC-epsilon without affecting other PKC isoforms or NF-kappaB activity. Of note, stimulation of acini with ethanol and 0.1 nM CCK-8 resulted in the activation of PKC-delta, PKC-epsilon, and NF-kappaB. The NF-kappaB activation to 0.1 nM CCK-8 in ethanol-pretreated acini was inhibited by both PKC-delta inhibitor and PKC-epsilon inhibitor. Taken together, these results demonstrate the different modes of activation of PKC isoforms and NF-kappaB in acini stimulated with ethanol, high-dose CCK-8, and low-dose CCK-8, and furthermore suggest that activation of both PKC-epsilon and -delta is required for NF-kappaB activation. These results suggest that ethanol enhances the CCK-8-induced NF-kappaB activation at least in part through its effects on PKC-epsilon.
Collapse
Affiliation(s)
- Akihiko Satoh
- VA Greater L.A. Healthcare System, West L.A. Healthcare Center, Bldg. 258, Rm. 340, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
21
|
Zhao X, Shi C, Wang X, Andersson R. Protein kinase C modulates the pulmonary inflammatory response in acute pancreatitis. Respir Physiol Neurobiol 2006; 152:16-26. [PMID: 16214426 DOI: 10.1016/j.resp.2005.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 07/11/2005] [Accepted: 07/14/2005] [Indexed: 01/30/2023]
Abstract
The present study aims at evaluating the role of protein kinase C (PKC) in the development of acute lung injury, production of inflammatory mediators and expression of adhesion molecules on leukocytes after induction of acute pancreatitis (AP). AP was induced by the intraductal infusion of 5% sodium taurodeoxycholate in the rat. The animals had the PKC inhibitor polymyxin B administered intraperitoneally 30min prior to induction of AP. Levels of protein content, protease activity, cytokines and chemokines in bronchoalveolar lavage fluid (BALF) were assessed 1 and 6h after AP induction. Adhesion molecule expression on leukocytes were measured by flowcytometry. Pretreatment with polymyxin B prevented against acute pancreatitis-induced lung injury and the otherwise occurring increases in TNF-alpha, IL-1beta, MCP-1 and IL-10, as well as against the decreases in IL-2, IFNgamma and TIMP-1, decreased protease activity and down-regulation of CD31, CD54 and CD62L on recruited neutrophils and macrophages in BALF. The results indicate that the leukocyte response in acute pancreatitis vary depending on leukocyte subpopulation. It seems that activation of the PKC signalling pathway may play an important role in pancreatitis-associated lung injury.
Collapse
Affiliation(s)
- Xia Zhao
- Departments of Surgery, Lund University Hospital, Clinical Sciences, SE-221 85 Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Jerdeva GV, Yarber FA, Trousdale MD, Rhodes CJ, Okamoto CT, Dartt DA, Hamm-Alvarez SF. Dominant-negative PKC-epsilon impairs apical actin remodeling in parallel with inhibition of carbachol-stimulated secretion in rabbit lacrimal acini. Am J Physiol Cell Physiol 2005; 289:C1052-68. [PMID: 15930141 PMCID: PMC1414898 DOI: 10.1152/ajpcell.00546.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the involvement of PKC-epsilon in apical actin remodeling in carbachol-stimulated exocytosis in reconstituted rabbit lacrimal acinar cells. Lacrimal acinar PKC-epsilon cosedimented with actin filaments in an actin filament binding assay. Stimulation of acini with carbachol (100 microM, 2-15 min) significantly (P < or = 0.05) increased PKC-epsilon recovery with actin filaments in two distinct biochemical assays, and confocal fluorescence microscopy showed a significant increase in PKC-epsilon association with apical actin in stimulated acini as evidenced by quantitative colocalization analysis. Overexpression of dominant-negative (DN) PKC-epsilon in lacrimal acini with replication-defective adenovirus (Ad) resulted in profound alterations in apical and basolateral actin filaments while significantly inhibiting carbachol-stimulated secretion of bulk protein and beta-hexosaminidase. The chemical inhibitor GF-109203X (10 microM, 3 h), which inhibits PKC-alpha, -beta, -delta, and -epsilon, also elicited more potent inhibition of carbachol-stimulated secretion relative to Gö-6976 (10 microM, 3 h), which inhibits only PKC-alpha and -beta. Transduction of lacrimal acini with Ad encoding syncollin-green fluorescent protein (GFP) resulted in labeling of secretory vesicles that were discharged in response to carbachol stimulation, whereas cotransduction of acini with Ad-DN-PKC-epsilon significantly inhibited carbachol-stimulated release of syncollin-GFP. Carbachol also increased the recovery of secretory component in culture medium, whereas Ad-DN-PKC-epsilon transduction suppressed its carbachol-stimulated release. We propose that DN-PKC-epsilon alters lacrimal acinar apical actin remodeling, leading to inhibition of stimulated exocytosis and transcytosis.
Collapse
Affiliation(s)
| | | | | | - Christopher J. Rhodes
- University of Southern California, Los Angeles CA; Pacific Northwest Research Institute, Seattle WA; and
| | | | | | - Sarah F. Hamm-Alvarez
- Departments of Pharmaceutical Sciences
- Ophthalmology and
- Physiology and Biophysics
- Address correspondence to: Sarah F. Hamm-Alvarez, Ph. D., Department of Pharmaceutical Sciences, USC School of Pharmacy, 1985 Zonal Avenue, Los Angeles CA 90033, 323-442-1445 O, 323-442-1390 F,
| |
Collapse
|
23
|
Li C, Chen X, Williams JA. Regulation of CCK-induced amylase release by PKC-delta in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G764-71. [PMID: 15217780 DOI: 10.1152/ajpgi.00111.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PKC is known to be activated by pancreatic secretagogues such as CCK and carbachol and to participate along with calcium in amylase release. Four PKC isoforms, alpha, delta, epsilon, and zeta, have been identified in acinar cells, but which isoforms participate in amylase release are unknown. To identify the responsible isoforms, we used translocation assays, chemical inhibitors, and overexpression of individual isoforms and their dominant-negative variants by means of adenoviral vectors. CCK stimulation caused translocation of PKC-alpha, -delta, and -epsilon, but not -zeta from soluble to membrane fraction. CCK-induced amylase release was inhibited approximately 30% by GF109203X, a broad spectrum PKC inhibitor, and by rottlerin, a PKC-delta inhibitor, but not by Gö6976, a PKC-alpha inhibitor, at concentrations from 1 to 5 microM. Neither overexpression of wild-type or dominant-negative PKC-alpha affected CCK-induced amylase release. Overexpression of PKC-delta and -epsilon enhanced amylase release, whereas only dominant-negative PKC-delta inhibited amylase release by 25%. PKC-delta overexpression increased amylase release at all concentrations of CCK, but dominant-negative PKC-delta only inhibited the maximal concentration; both similarly affected carbachol and JMV-180-induced amylase release. Overexpression of both PKC-delta and its dominant-negative variant affected the late but not the early phase of amylase release. GF109203X totally blocked the enhancement of amylase release by PKC-delta but had no further effect in the presence of dominant-negative PKC-delta. These results indicate that PKC-delta is the PKC isoform involved with amylase secretion.
Collapse
Affiliation(s)
- Chenwei Li
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, 7744 Medical Science II, Ann Arbor, MI 48109-0622, USA.
| | | | | |
Collapse
|
24
|
Satoh A, Gukovskaya AS, Nieto JM, Cheng JH, Gukovsky I, Reeve JR, Shimosegawa T, Pandol SJ. PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G582-91. [PMID: 15117677 DOI: 10.1152/ajpgi.00087.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis.
Collapse
Affiliation(s)
- Akihiko Satoh
- Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Siegmund E, Lüthen F, Kunert J, Weber H. Ethanol modifies the actin cytoskeleton in rat pancreatic acinar cells--comparison with effects of CCK. Pancreatology 2004; 4:12-21. [PMID: 14988654 DOI: 10.1159/000077023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 10/07/2003] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the early events leading to alcoholic pancreatitis seems to be the effect of ethanol on stimulus-secretion coupling. This study examines ethanol-induced modifications of filamentous actin (F-actin) content and localization in acini, the resulting alpha-amylase secretion and the role of protein kinase C (PKC) activity in these processes. METHODS Freshly isolated acini were treated with different concentrations of ethanol or cholecystokinin octapeptide (CCK-8) for different periods. F-actin was localized by confocal laser scanning microscopy; its quantity was determined fluorometrically, and the alpha-amylase secretion was measured. RESULTS Ethanol caused F-actin reorganization resembling the effects of supramaximal CCK-8 stimulation and of direct PKC activation by phorbol-12-myristate-13-acetate. The polyphasic time course of the F-actin content also resembled that under supramaximal CCK-8 stimulation and was counteracted by inhibition of PKC. The PKC inhibitor bisindolylmaleimide I did not increase the ethanol- induced alpha-amylase secretion, but the suboptimally CCK-8-stimulated secretion via high-affinity receptors. CONCLUSION Ethanol, like supramaximal CCK-8 concentrations, inhibits acinar secretion by reorganization of the actin cytoskeleton via PKC activation. This effect is suggested to be mediated by low-affinity CCK-A receptors. Together with the ethanol-induced stimulation of early steps of stimulus-secretion coupling, this may be a pancreas-damaging mechanism resembling that in experimental hyperstimulation pancreatitis.
Collapse
Affiliation(s)
- Eva Siegmund
- Institute of Clinical Chemistry and Pathobiochemistry, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|
26
|
Gukovskaya AS, Hosseini S, Satoh A, Cheng JH, Nam KJ, Gukovsky I, Pandol SJ. Ethanol differentially regulates NF-kappaB activation in pancreatic acinar cells through calcium and protein kinase C pathways. Am J Physiol Gastrointest Liver Physiol 2004; 286:G204-13. [PMID: 12958018 DOI: 10.1152/ajpgi.00088.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms of alcoholic pancreatitis remain unknown. Previously, we showed that ethanol feeding sensitizes rats to pancreatitis caused by CCK-8, at least in part, by augmenting activation of the proinflammatory transcription factor NF-kappaB. To elucidate the mechanism of sensitization, here we investigate the effect of ethanol on Ca(2+)- and PKC-mediated pathways of CCK-induced NF-kappaB activation using an in vitro system of rat pancreatic acini incubated with ethanol. Ethanol augmented CCK-8-induced activation of NF-kappaB, similar to our in vivo findings with ethanol-fed rats. In contrast, ethanol prevented NF-kappaB activation caused by thapsigargin, an agent that mobilizes intracellular Ca(2+) bypassing the receptor. Pharmacological analysis showed that NF-kappaB activation by thapsigargin but not by CCK-8 is mediated through the calcineurin pathway and that the inhibitory effect of ethanol on the thapsigargin-induced NF-kappaB activation could be through inhibiting this pathway. Ethanol augmented NF-kappaB activation induced by the phorbol ester PMA, a direct activator of PKC. Inhibitory analysis demonstrated that Ca(2+)-independent (novel and/or atypical) PKC isoforms are involved in NF-kappaB activation induced by both CCK-8 and PMA in cells treated and not treated with ethanol. The results indicate that ethanol differentially affects the Ca(2+)/calcineurin- and PKC-mediated pathways of NF-kappaB activation in pancreatic acinar cells. These effects may play a role in the ability of ethanol to sensitize pancreas to the inflammatory response and pancreatitis.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- UCLA/VA Greater Los Angeles Healthcare System, West Los Angeles Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kim MJ, Lee YS, Lee KH, Min DS, Yoon SH, Hahn SJ, Kim MS, Jo YH. Site-specific localization of protein kinase C isoforms in rat pancreas. Pancreatology 2002; 1:36-42. [PMID: 12120266 DOI: 10.1159/000055790] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein kinase C (PKC), a major signal-transducing enzyme, is recognized to play an important role in the regulation of pancreatic exocrine and endocrine secretion, and yet the distribution of PKC isoforms in rat pancreas has remained unclarified. AIM OF THE STUDY We examined the precise localization of PKC isoforms to elucidate the role of PKC in the normal rat pancreas. METHODS Male Sprague-Dawley rats were used throughout the experiment. For Western blot analysis, the islet of Langerhans and the acinar tissue were separated by the collagenase digestion method. Also, the whole pancreas was taken out and immunohistochemistry performed. RESULTS According to Western blot analysis, PKC-alpha, -gamma, -delta, -epsilon, -zeta, and -lambda were detected in both acinar and islet cells while PKC-beta II were observed exclusively in the islet. PKC-beta I was not observed. On immunohistochemistry, the immunoreactivities of PKC isoforms were observed as follows: PKC-alpha, weakly in some endocrine cells and ductal epithelium; PKC-beta II, mainly in the islet center; PKC-gamma, in the islet, intrapancreatic ganglia and ductal epithelium; PKC-delta, in the islet periphery, weakly in some acinar cells and ductal epithelium; PKC-epsilon, strongly in the islet, acinar cell and ductal epithelium; PKC-zeta, in the islet, acinar cell and ductal epithelium; PKC-lambda in some endocrine cells and ductal epithelium. CONCLUSION These results suggest that the intrapancreatic site-specific existence of PKC isoforms may regulate pancreatic exocrine and endocrine functions via a PKC-mediated signal transduction.
Collapse
Affiliation(s)
- M J Kim
- Department of Physiology, College of Medicine, Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fährmann M, Kaufhold M, Rieg T, Seidler U. Different actions of protein kinase C isoforms alpha and epsilon on gastric acid secretion. Br J Pharmacol 2002; 136:938-46. [PMID: 12110618 PMCID: PMC1573419 DOI: 10.1038/sj.bjp.0704790] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The phorbol ester TPA, an activator of protein kinase C (PKC), inhibits cholinergic stimulation of gastric acid secretion but increases basal H(+) secretion. 2. Since these contradictory findings suggest the action of different PKC isozymes we analysed the role of calcium-dependent PKC-alpha, and calcium-independent PKC-epsilon in gastric acid secretion. 3. Inhibition of PKC-alpha by the indolocarbazole Gö 6976 revealed that about 28% of carbachol-induced acid secretion was inhibited by PKC-alpha. In the presence of Gö 6976 approximately 64% of the carbachol-induced signal transduction is mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and 14% is conveyed by PKC-epsilon as deduced from the inhibition with the bisindolylmaleimide Ro 31-8220. 4. Inhibition of carbachol-induced acid secretion by TPA was accompanied by a decrease in CaMKII activity. 5. The stimulation of basal acid secretion by TPA was biphasic with a peak at a very low concentration (10 pM), resulting in an activation of the calcium-sensor CaMKII. The activation was determined with a phosphospecific polyclonal antibody against active CaMKII. The TPA-induced increase of H(+) secretion was sensitive to the cell-permeable Ca(2+)-chelator BAPTA/AM, Ro 31-8220, and the CaMKII-inhibitor KN-62, but not to Gö 6976. 6. Since TPA induced the translocation of PKC-epsilon but not of PKC-alpha in resting parietal cells, PKC-epsilon seems to be at least responsible for an initial elevation of free intracellular calcium to initiate TPA-induced acid secretion. 7. Our data indicate the different roles of two PKC isoforms: PKC-epsilon activation appears to facilitate cholinergic stimulation of H(+)-secretion likely by increasing intracellular calcium. In contrast, PKC-alpha activation attenuates acid secretion accompanied by a down-regulation of CaMKII activity.
Collapse
Affiliation(s)
- Michael Fährmann
- Institut für Zoophysiologie der Westfälischen Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany.
| | | | | | | |
Collapse
|
29
|
Gukovskaya AS, Gukovsky I, Jung Y, Mouria M, Pandol SJ. Cholecystokinin induces caspase activation and mitochondrial dysfunction in pancreatic acinar cells. Roles in cell injury processes of pancreatitis. J Biol Chem 2002; 277:22595-604. [PMID: 11964411 DOI: 10.1074/jbc.m202929200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and the UCLA, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
30
|
Kiehne K, Herzig KH, Otte JM, Fölsch UR. Low-affinity CCK-1 receptors inhibit bombesin-stimulated secretion in rat pancreatic acini--implication of the actin cytoskeleton. REGULATORY PEPTIDES 2002; 105:131-7. [PMID: 11891013 DOI: 10.1016/s0167-0115(02)00015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EXPERIMENTAL OBJECTIVES Stimulation of low-affinity CCK-1 receptors on pancreatic acini leads to inhibition of enzyme secretion. We studied signal transduction mechanisms to identify potential causes for the reduced secretion. RESULTS Co-stimulation experiments with CCK, CCK-JMV-180, and bombesin revealed an inhibition of bombesin-stimulated enzyme secretion by low-affinity CCK-1 receptors. Binding of 125I-gastrin-releasing peptide (the mammalian analogue of bombesin) to acini after CCK preincubation was not altered. After a short preincubation of acini with high concentrations of CCK, intracellular calcium remained responsive to bombesin. In contrast to bombesin or CCK at concentrations of 10(-10) M or lower, high concentrations of CCK caused a strong activation of p125 focal adhesion kinase (p125(FAK)) and a marked reorganisation of the actin cytoskeleton. CONCLUSIONS Inhibitory mechanisms triggered by low-affinity CCK-1 receptors interrupt enzyme secretion from pancreatic acini at late stages in the signal transduction cascades since bombesin receptor binding and early signalling events remained intact after CCK preincubation. A reorganisation of the actin cytoskeleton is suggested to be the mechanism by which low-affinity CCK-1 receptors actively interrupt enzyme secretion stimulated by other receptors.
Collapse
Affiliation(s)
- Karlheinz Kiehne
- I. Medizinische Universitätsklinik, Christian-Albrechts Universität Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany.
| | | | | | | |
Collapse
|
31
|
Saitoh N, Hori T, Takahashi T. Activation of the epsilon isoform of protein kinase C in the mammalian nerve terminal. Proc Natl Acad Sci U S A 2001; 98:14017-21. [PMID: 11717460 PMCID: PMC61159 DOI: 10.1073/pnas.241333598] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of protein kinase C (PKC) by phorbol ester facilitates hormonal secretion and transmitter release, and phorbol ester-induced synaptic potentiation (PESP) is a model for presynaptic facilitation. A variety of PKC isoforms are expressed in the central nervous system, but the isoform involved in the PESP has not been identified. To address this question, we have applied immunocytochemical and electrophysiological techniques to the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) of rat auditory brainstem. Western blot analysis indicated that both the Ca(2+)-dependent "conventional" PKC and Ca(2+)-independent "novel" PKC isoforms are expressed in the MNTB. Denervation of afferent fibers followed by organotypic culture, however, selectively decreased "novel" epsilon PKC isoform expressed in this region. The afferent calyx terminal was clearly labeled with the epsilon PKC immunofluorescence. On stimulation with phorbol ester, presynaptic epsilon PKC underwent autophosphorylation and unidirectional translocation toward the synaptic side. Chelating presynaptic Ca(2+), by using membrane permeable EGTA analogue or high concentration of EGTA directly loaded into calyceal terminals, had only a minor attenuating effect on the PESP. We conclude that the Ca(2+)-independent epsilon PKC isoform mediates the PESP at this mammalian central nervous system synapse.
Collapse
Affiliation(s)
- N Saitoh
- Department of Neurophysiology, University of Tokyo, Graduate School of Medicine, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
32
|
Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 2001; 63:77-97. [PMID: 11181949 DOI: 10.1146/annurev.physiol.63.1.77] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular signaling mechanisms by which cholecystokinin (CCK) and other secretagogues regulate pancreatic acinar function are more complex than originally realized. CCK couples through heterotrimeric G proteins of the Gq family to lead to an increase in intracellular free Ca2+, which shows spatial and temporal patterns of signaling. The actions of Ca2+ are mediated in part by activation of a number of Ca2+-activated protein kinases and the protein phosphatase calcineurin. By the process of exocytosis the intracellular messengers Ca2+, diacylglycerol, and cAMP activate the release of the zymogen granule content in a manner that is poorly understood. This fusion event most likely involves SNARE and Rab proteins present on zymogen granules and cellular membrane domains. More likely related to nonsecretory aspects of cell function, CCK also activates three MAPK cascades leading to activation of ERKs, JNKs, and p38 MAPK. Although the function of these pathways is not well understood, ERKs are probably related to cell growth, and through phosphorylation of hsp27, p38 can affect the actin cytoskeleton. The PI3K (phosphatidylinositol 3-kinase)-mTOR (mammalian target of rapamycin) pathway is important for regulation of acinar cell protein synthesis because it leads to both activation of p70S6K and regulation of the availability of eIF4E in response to CCK. CCK also activates a number of tyrosyl phosphorylation events including that of p125FAK and other proteins associated with focal adhesions.
Collapse
Affiliation(s)
- J A Williams
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
33
|
Tando Y, Algül H, Wagner M, Weidenbach H, Adler G, Schmid RM. Caerulein-induced NF-kappaB/Rel activation requires both Ca2+ and protein kinase C as messengers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G678-86. [PMID: 10484394 DOI: 10.1152/ajpgi.1999.277.3.g678] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The eukaryotic transcription factor NF-kappaB/Rel is activated by a large variety of stimuli. We have recently shown that NF-kappaB/Rel is induced during the course of caerulein pancreatitis. Here, we show that activation of NF-kappaB/Rel by caerulein, a CCK analog, requires increasing intracellular Ca2+ levels and protein kinase C activation. Caerulein induces a dose-dependent increase of nuclear NF-kappaB/Rel binding activity in pancreatic lobules, which is paralleled by degradation of IkappaBalpha. IkappaBbeta was only slightly affected by caerulein treatment. Consistent with an involvement of Ca2+, the endoplasmic reticulum-resident Ca2+-ATPase inhibitor thapsigargin activated NF-kappaB/Rel in pancreatic lobules. The intracellular Ca2+ chelator TMB-8 prevented IkappaBalpha degradation and subsequent nuclear translocation of NF-kappaB/Rel induced by caerulein. BAPTA-AM was less effective. Cyclosporin A, a Ca2+/calmodulin-dependent protein phosphatase (PP2B) inhibitor, decreased caerulein-induced NF-kappaB/Rel activation and IkappaBalpha degradation. The inhibitory effect of bisindolylmaleimide suggests that protein kinase C activity is also required for caerulein-induced NF-kappaB/Rel activation. These data suggest that Ca2+- as well as protein kinase C-dependent mechanisms are required for caerulein-induced NF-kappaB/Rel activation.
Collapse
Affiliation(s)
- Y Tando
- Department of Medicine I, University of Ulm, 89070 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Rodríguez-Martín E, Boyano-Adánez MC, Bodega G, Martín M, Hernández C, Quin Y, Vadillo M, Arilla-Ferreiro E. Redistribution of protein kinase C isoforms in rat pancreatic acini during lactation and weaning. FEBS Lett 1999; 445:356-60. [PMID: 10094489 DOI: 10.1016/s0014-5793(99)00133-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Freshly enzymatically isolated pancreatic acini from lactating and weaning Wistar rats were used to investigate the role of protein kinase C (PKC) isoforms during these physiologically relevant pancreatic secretory and growth processes. The combination of immunoblot and immunohistochemical analysis shows that the PKC isoforms alpha, delta, and epsilon are present in pancreatic acini from control, lactating and weaning rats. A vesicular distribution of PKC-alpha, -delta, and -epsilon was detected by immunohistochemical analysis in the pancreatic acini from all the experimental groups. PKC-delta showed the strongest PKC immunoreactivity (PKC-IR). In this vesicular distribution, PKC-IR was located at the apical region of the acinar cells. No differences were observed between control, lactating and weaning rats. However, the immunoblot analysis of pancreatic PKC isoforms during lactation and weaning showed a significant translocation of PKC-delta from the cytosol to the membrane fraction when compared with control animals. Translocation of PKC isoforms (alpha, delta and epsilon) in response to 12-O-tetradecanoyl phorbol 13-acetate (TPA) 1 microM (15 min, 37 degrees C) was comparable in pancreatic acini from control, lactating and weaning rats. In the control group, a significant translocation of all the isoforms (alpha, delta and epsilon) from the cytosol to the membrane was observed. The PKC isoform most translocated by TPA was PKC-delta. In contrast, no statistically significant increase in PKC-delta translocation was detected in pancreatic acini isolated from lactating or weaning rats. These results suggest that the PKC isoforms are already translocated to the surface of the acinar cells from lactating or weaning rats. In addition, they suggest that isoform specific spatial PKC distribution and translocation occur in association with the growth response previously described in the rat exocrine pancreas during lactation and weaning.
Collapse
Affiliation(s)
- E Rodríguez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Franco P, Massa O, Garcia-Rocha M, Chiaradonna F, Iaccarino C, Correas I, Mendez E, Avila J, Blasi F, Stoppelli MP. Protein kinase C-dependent in vivo phosphorylation of prourokinase leads to the formation of a receptor competitive antagonist. J Biol Chem 1998; 273:27734-40. [PMID: 9765311 DOI: 10.1074/jbc.273.42.27734] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported that in vivo phosphorylation of urokinase-type plasminogen activator on Ser138/303 prevents its catalytic-independent ability to promote myelomonocytic cell adherence and motility. We now show that Ca2+ activated, phospholipid-dependent protein kinase C from rat brain phosphorylates in vitro a peptide corresponding to prourokinase residues 133-143 (DGKKPSSPPEE) and the full-length molecule on Ser138/139. The in vivo involvement of the protein kinase C isoenzyme family is supported by the finding that inhibition of kinase C activity prevents prourokinase phosphorylation on Ser138/303 in A431 human carcinoma cells. Conversely, a short treatment of A431 cells with phorbol myristate acetate increases the extent of phosphorylated prourokinase and, concomitantly, affects its function; under these conditions, the capability of prourokinase to up-regulate U937 monocyte-like cell adherence is severely impaired, although receptor binding is unaltered. By the aid of a "phosphorylation-like" variant (Ser138 to Glu) we show that modification of Ser138 is sufficient to confer to prourokinase the antagonistic properties observed following in vivo stimulation of protein kinase C activity. These observations provide the first evidence that protein kinase C directs the formation of a receptor competitive antagonist by regulating the in vivo phosphorylation state of prourokinase.
Collapse
Affiliation(s)
- P Franco
- International Institute of Genetics and Biophysics, C.N.R., 80125 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Raffaniello RD, Nam J, Cho I, Lin J, Bao LY, Michl J, Raufman JP. Protein kinase C isoform expression and function in transformed and non-transformed pancreatic acinar cell lines. Biochem Biophys Res Commun 1998; 246:166-71. [PMID: 9600087 DOI: 10.1006/bbrc.1998.8579] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the protein kinase C (PKC) family of multifunctional serine/threonine phosphorylating enzymes are believed to play a role in regulating cellular differentiation and proliferation in many cell types. In the present study, we examined the expression of PKC isoforms in non-transformed (BMRPA.430) and transformed (TUC3) rat pancreatic acinar cell lines and compared this to PKC expression in freshly dispersed acini from rat pancreas. BMRPA.430 cells maintain characteristics of normal acini and are not tumorigenic, whereas TUC3 cells do not express tight junctions or polygonal morphology and are tumorigenic. As reported previously, PKC alpha, delta, epsilon, and zeta are expressed in freshly prepared acini. Likewise, these isoforms were detected in both the BMRPA.430 and TUC3 cell lines. In addition, PKC theta, a novel isoform, was detected in all three cell types at low levels. We used two PKC inhibitors to examine the role of PKC in acinar cell proliferation. CGP 41 251, a selective PKC inhibitor, and Go 6976, an agent which specifically inhibits calcium-dependent PKC isoforms, inhibited cell proliferation of both cell lines. Translocation of PKC alpha to the membrane was not observed in either cell line. Hence, our data indicate that ras-induced transformation does not alter PKC isoform expression in pancreatic acinar cells and that activation of PKC alpha is involved with acinar cell growth.
Collapse
Affiliation(s)
- R D Raffaniello
- Department of Medicine, State University of New York-Health Science Center at Brooklyn 11203, USA
| | | | | | | | | | | | | |
Collapse
|