1
|
Glial ATP and Large Pore Channels Modulate Synaptic Strength in Response to Chronic Inactivity. Mol Neurobiol 2020; 57:2856-2869. [PMID: 32388797 DOI: 10.1007/s12035-020-01919-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
A key feature of neurotransmission is its ability to adapt to changes in neuronal environment, which is essential for many brain functions. Homeostatic synaptic plasticity (HSP) emerges as a compensatory mechanism used by neurons to adjust their excitability in response to changes in synaptic activity. Recently, glial cells emerged as modulators for neurotransmission by releasing gliotransmitters into the synaptic cleft through pathways that include P2X7 receptors (P2X7R), connexons, and pannexons. However, the role of gliotransmission in the activity-dependent adjustment of presynaptic strength is still an open question. Here, we investigated whether glial cells participate in HSP upon chronic inactivity and the role of adenosine triphosphate (ATP), connexin43 hemichannels (Cx43HCs), and pannexin1 (Panx1) channels in this process. We used immunocytochemistry against vesicular glutamate transporter 1 (vGlut1) to estimate changes in synaptic strength in hippocampal dissociated cultures. Pharmacological manipulations indicate that glial-derived ATP and P2X7R are required for HSP. In addition, inhibition of Cx43 and Panx1 channels reveals a pivotal role for these channels in the compensatory adjustment of synaptic strength, emerging as new pathways for ATP release upon inactivity. The involvement of Panx1 channels was confirmed by using Panx1-deficient animals. Lacking Panx1 in neurons is sufficient to prevent the P2X7R-dependent upregulation of presynaptic strength; however, the P2X7R-dependent compensatory adjustment of synapse density requires both neuronal and glial Panx1. Together, our data supports an essential role for glial ATP signaling and Cx43HCs and Panx1 channels in the homeostatic adjustment of synaptic strength in hippocampal cultures upon chronic inactivity.
Collapse
|
2
|
Masoud HMM, Helmy MS, Darwish DA, Abdel-Monsef MM, Ibrahim MA. Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:349-361. [PMID: 31927645 DOI: 10.1007/s10493-020-00471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Apyrase is one of the essential platelet aggregation inhibitors in hematophagous arthropods due to its ability to hydrolyze ATP and ADP molecules. Here, an apyrase (TNapyrase) with antiplatelet aggregation activity was purified and characterized from the nymphs of the camel tick Hyalomma dromedarii through anion exchange and gel filtration columns. The homogeneity of TNapyrase was confirmed by native-PAGE, SDS-PAGE as well as with isoelectric focusing. Purified TNapyrase had a molecular mass of 25 kDa and a monomer structure. TNapyrase hydrolyzed various nucleotides in the order of ATP > PPi > ADP > UDP > 6GP. The Km value was 1.25 mM ATP and its optimum activity reached at pH 8.4. The influence of various ions on TNapyrase activity showed that FeCl2, FeCl3 and ZnCl2 are activators of TNapyrase. EDTA inhibited TNapyrase activity competitively with a single binding site on the molecule and Ki value of 2 mM. Finally, TNapyrase caused 70% inhibition of ADP-stimulated platelets aggregation and is a possible target for antibodies in future tick vaccine studies.
Collapse
Affiliation(s)
- Hassan M M Masoud
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed S Helmy
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Doaa A Darwish
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed M Abdel-Monsef
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mahmoud A Ibrahim
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
3
|
Braganhol E, Wink MR, Lenz G, Battastini AMO. Purinergic Signaling in Glioma Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:87-108. [PMID: 32034710 DOI: 10.1007/978-3-030-30651-9_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X7, is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.
Collapse
Affiliation(s)
- Elizandra Braganhol
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão S/N Caixa Postal 354, Pelotas, CEP 96010900, RS, Brazil.
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Rua Sarmento Leite, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica, IB e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 9500 Av. Bento Goncalves, Porto Alegre, 61501970, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, 2600-anexo Rua Ramiro Barcelos, Porto Alegre, CEP 90035-003, RS, Brazil
| |
Collapse
|
4
|
Liu W, Ni J, Shah FA, Ye K, Hu H, Wang Q, Wang D, Yao Y, Huang S, Hou J, Liu C, Wu L. Genome-wide identification, characterization and expression pattern analysis of APYRASE family members in response to abiotic and biotic stresses in wheat. PeerJ 2019; 7:e7622. [PMID: 31565565 PMCID: PMC6744936 DOI: 10.7717/peerj.7622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
APYRASEs, which directly regulate intra- and extra-cellular ATP homeostasis, play a pivotal role in the regulation of various stress adaptations in mammals, bacteria and plants. In the present study, we identified and characterized wheat APYRASE family members at the genomic level in wheat. The results identified a total of nine APY homologs with conserved ACR domains. The sequence alignments, phylogenetic relations and conserved motifs of wheat APYs were bioinformatically analyzed. Although they share highly conserved secondary and tertiary structures, the wheat APYs could be mainly categorized into three groups, according to phylogenetic and structural analysis. Additionally, these APYs exhibited similar expression patterns in the root and shoot, among which TaAPY3-1, TaAPY3-3 and TaAPY3-4 had the highest expression levels. The time-course expression patterns of the eight APYs in response to biotic and abiotic stress in the wheat seedlings were also investigated. TaAPY3-2, TaAPY3-3, TaAPY3-4 and TaAPY6 exhibited strong sensitivity to all kinds of stresses in the leaves. Some APYs showed specific expression responses, such as TaAPY6 to heavy metal stress, and TaAPY7 to heat and salt stress. These results suggest that the stress-inducible APYs could have potential roles in the regulation of environmental stress adaptations. Moreover, the catalytic activity of TaAPY3-1 was further analyzed in the in vitro system. The results showed that TaAPY3-1 protein exhibited high catalytic activity in the degradation of ATP and ADP, but with low activity in degradation of TTP and GTP. It also has an extensive range of temperature adaptability, but preferred relatively acidic pH conditions. In this study, the genome-wide identification and characterization of APYs in wheat were suggested to be useful for further genetic modifications in the generation of high-stress-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Wenbo Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Jun Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Faheem Afzal Shah
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qiaojian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongdong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yuanyuan Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinyan Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
5
|
Li J, Zhang Y, Zou Z, Qing Z, Yang S, Yang J, Zhang L, Feng F, Yang R. MIL/Aptamer as a Nanosensor Capable of Resisting Nonspecific Displacement for ATP Imaging in Living Cells. ACS OMEGA 2019; 4:9074-9080. [PMID: 31459995 PMCID: PMC6648595 DOI: 10.1021/acsomega.9b01009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2019] [Indexed: 05/27/2023]
Abstract
Fluorescent probes physisorbed on nanomaterials have emerged as a kind of useful and facile sensing platform for biological important molecules. However, nonspecific displacement in the physisorption systems is a non-negligible problem for the intracellular analysis. MIL (Materials of Institut Lavoisier), a subclass of metal-organic frameworks (MOFs), has high porosity, large surface area, and intriguing three-dimensional (3D) nanostructure with promising biological and biomedical applications such as molecular detection and drug delivery. Herein, we report MIL/aptamer-FAM as a nanosensor capable of resisting nonspecific displacement for intracellular adenosinetriphosphate (ATP) sensing and imaging. In this approach, by virtue of the remarkable quenching capability, high affinity of aptamers, and dramatic capability of resisting nonspecific displacement of 3D MIL-100, the assay and imaging of ATP in living cells were realized. Our results demonstrated that the MIL/aptamer-FAM nanosensor not only shows high selectivity for the detection of ATP in buffer but also is able to act as a "signal-on" nanosensor for specific imaging of ATP in living cells. The strategy reported here opens up a new way to develop MOF-based nanosensors for intracellular delivery and metabolite detection.
Collapse
Affiliation(s)
- Jun Li
- School
of Chemistry and Food Engineering, Changsha
University of Science and Technology, Changsha 410114, P. R. China
| | - Yuedong Zhang
- School
of Chemistry and Food Engineering, Changsha
University of Science and Technology, Changsha 410114, P. R. China
| | - Zhen Zou
- School
of Chemistry and Food Engineering, Changsha
University of Science and Technology, Changsha 410114, P. R. China
| | - Zhihe Qing
- School
of Chemistry and Food Engineering, Changsha
University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- School
of Chemistry and Food Engineering, Changsha
University of Science and Technology, Changsha 410114, P. R. China
| | - Jianxiao Yang
- College
of Materials Science and Engineering, Hunan
University, Changsha 410082, P. R. China
| | - Lihua Zhang
- College
of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| | - Feng Feng
- College
of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| | - Ronghua Yang
- School
of Chemistry and Food Engineering, Changsha
University of Science and Technology, Changsha 410114, P. R. China
- College
of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| |
Collapse
|
6
|
Veloria JR, Devkota AK, Cho EJ, Dalby KN. Optimization of a Luminescence-Based High-Throughput Screening Assay for Detecting Apyrase Activity. SLAS DISCOVERY 2016; 22:94-101. [PMID: 27821623 DOI: 10.1177/1087057116675859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apyrase is a calcium-activated enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP), adenosine monophosphate (AMP), and Pi. It is currently used in studies involving cancer and platelet aggregation in humans, as well as herbicide resistance in plants. Inhibitors of apyrase are being investigated for their use to suppress tumors and combat herbicide resistance. Only a few inhibitors of apyrase have been reported, many of which were identified through automated screening using a 96-well plate format and colorimetric phosphate detection. However, these screens have had limitations, including large volumes, inconsistent reproducibility, high incidence of false hits, and lack of higher-throughput compatibility. A luciferin/luciferase-based detection system has been reported to examine potential inhibitors of apyrase; however, these reactions were performed in tubes with the assay completion in seconds, which necessitate the development of a high-throughput screening (HTS)-compatible format for screening. Therefore, a more cost-effective biochemical assay that improved the limitations of the previous assay formats using a commercially available luminescence-based detection system was developed. This new robust mix-and-read platform incorporates a low-volume luminescence-based protocol, formatted for use in 384-well microplates. This new format provides a simple and cost-effective method to screen for apyrase inhibitors and will facilitate larger HTS efforts to identify potent inhibitors of apyrase.
Collapse
Affiliation(s)
- John R Veloria
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Ashwini K Devkota
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Eun Jeong Cho
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,2 Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Gruenbacher G, Gander H, Rahm A, Idzko M, Nussbaumer O, Thurnher M. Ecto-ATPase CD39 Inactivates Isoprenoid-Derived Vγ9Vδ2 T Cell Phosphoantigens. Cell Rep 2016; 16:444-456. [PMID: 27346340 DOI: 10.1016/j.celrep.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
In humans, Vγ9Vδ2 T cells respond to self and pathogen-associated, diphosphate-containing isoprenoids, also known as phosphoantigens (pAgs). However, activation and homeostasis of Vγ9Vδ2 T cells remain incompletely understood. Here, we show that pAgs induced expression of the ecto-ATPase CD39, which, however, not only hydrolyzed ATP but also abrogated the γδ T cell receptor (TCR) agonistic activity of self and microbial pAgs (C5 to C15). Only mevalonate-derived geranylgeranyl diphosphate (GGPP, C20) resisted CD39-mediated hydrolysis and acted as a regulator of CD39 expression and activity. GGPP enhanced macrophage differentiation in response to the tissue stress cytokine interleukin-15. In addition, GGPP-imprinted macrophage-like cells displayed increased capacity to produce IL-1β as well as the chemokine CCL2 and preferentially activated CD161-expressing CD4(+) T cells in an innate-like manner. Our studies reveal a previously unrecognized immunoregulatory function of CD39 and highlight a particular role of GGPP among pAgs.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Marco Idzko
- Department of Pulmonary Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
|
9
|
Frasson AP, Dos Santos O, Meirelles LC, Macedo AJ, Tasca T. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis. FEMS Microbiol Lett 2015; 363:fnv221. [PMID: 26590960 DOI: 10.1093/femsle/fnv221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis.
Collapse
Affiliation(s)
- Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Odelta Dos Santos
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Lúcia Collares Meirelles
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Laboratório de Diversidade Microbiana, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Ibuka S, Matsumoto S, Fujii S, Kikuchi A. The P2Y₂ receptor promotes Wnt3a- and EGF-induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci 2015; 128:2156-68. [PMID: 25908848 DOI: 10.1242/jcs.169060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial tubular structures are essential units in various organs. Here, we used rat intestinal epithelial IEC6 cells to investigate tubulogenesis and we found that tubular formation was induced by a combination of Wnt3a and EGF signaling during three-dimensional culture. Wnt3a and EGF induced the expression of the P2Y2 receptor (P2Y2R, also known as P2RY2), and knockdown of P2Y2R suppressed tubular formation. A P2Y2R mutant that lacks nucleotide responsiveness rescued the phenotypes resulting from P2Y2R knockdown, suggesting that nucleotide-dependent responses are not required for P2Y2R functions in tubular formation. The Arg-Gly-Asp (RGD) sequence of P2Y2R has been shown to interact with integrins, and a P2Y2R mutant lacking integrin-binding activity was unable to induce tubular formation. P2Y2R expression inhibited the interaction between integrins and fibronectin, and induced cell morphological changes and proliferation. Inhibition of integrin and fibronectin binding by treatment with the cyclic RGD peptide and fibronectin knockdown induced tubular formation in the presence of EGF alone, but a fibronectin coat suppressed Wnt3a- and EGF-induced tubular formation. These results suggest that Wnt3a- and EGF-induced P2Y2R expression causes tubular formation by preventing the binding of integrins and fibronectin rather than by mediating nucleotide responses.
Collapse
Affiliation(s)
- Souji Ibuka
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Pediatric Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Porowińska D, Czarnecka J, Komoszyński M. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells. Appl Biochem Biotechnol 2014; 173:1349-59. [PMID: 24801402 PMCID: PMC4082312 DOI: 10.1007/s12010-014-0858-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.
Collapse
Affiliation(s)
- Dorota Porowińska
- Biochemistry Department, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Torun, Poland,
| | | | | |
Collapse
|
12
|
Qiao Y, Pengsakul T. Cloning and expression of apyrase gene from Ancylostoma caninum in Escherechia coli. Acta Parasitol 2014. [PMID: 26204021 DOI: 10.1515/ap-2015-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apyrase encoding metal-ions activated plasma membrane protease is present in animal and plant tissues. This enzyme can hydrolyze ADP and ATP pyrophosphate bond, resulting in AMP and free phosphate groups, and plays an important role for insects and parasites to evade host immune system. However localization and function of apyrase in the canine hookworm, Ancylostoma caninum, remains unknown. To analyze apyrase gene in A. caninum (a eukaryotic parasitic hookworm), a pair of primers was designed according to the previous EST data. The full-length cDNA of apyrase gene was amplified from A. caninum by RT-PCR. The partial cDNA of apyrase encodes 249 amino acid protein was expressed in Escherechia coli. The recombinant protein was induced to express under proper conditions and the molecular size was as expected. The recombinant protein was purified. The transcripts of apyrase in different stages of A. caninum were analyzed by the Real-time PCR assay, and Immuno-localization assays were used to research the protein expression in different stages of A. caninum.
Collapse
|
13
|
Scribano D, Petrucca A, Pompili M, Ambrosi C, Bruni E, Zagaglia C, Prosseda G, Nencioni L, Casalino M, Polticelli F, Nicoletti M. Polar localization of PhoN2, a periplasmic virulence-associated factor of Shigella flexneri, is required for proper IcsA exposition at the old bacterial pole. PLoS One 2014; 9:e90230. [PMID: 24587292 PMCID: PMC3937361 DOI: 10.1371/journal.pone.0090230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Proper protein localization is critical for bacterial virulence. PhoN2 is a virulence-associated ATP-diphosphohydrolase (apyrase) involved in IcsA-mediated actin-based motility of S. flexneri. Herein, by analyzing a ΔphoN2 mutant of the S. flexneri strain M90T and by generating phoN2::HA fusions, we show that PhoN2, is a periplasmic protein that strictly localizes at the bacterial poles, with a strong preference for the old pole, the pole where IcsA is exposed, and that it is required for proper IcsA exposition. PhoN2-HA was found to be polarly localized both when phoN2::HA was ectopically expressed in a Escherichia coli K-12 strain and in a S. flexneri virulence plasmid-cured mutant, indicating a conserved mechanism of PhoN2 polar delivery across species and that neither IcsA nor the expression of other virulence-plasmid encoded genes are involved in this process. To assess whether PhoN2 and IcsA may interact, two-hybrid and cross-linking experiments were performed. While no evidence was found of a PhoN2-IcsA interaction, unexpectedly the outer membrane protein A (OmpA) was shown to bind PhoN2-HA through its periplasmic-exposed C-terminal domain. Therefore, to identify PhoN2 domains involved in its periplasmic polar delivery as well as in the interaction with OmpA, a deletion and a set of specific amino acid substitutions were generated. Analysis of these mutants indicated that neither the (183)PAPAP(187) motif of OmpA, nor the N-terminal polyproline (43)PPPP(46) motif and the Y155 residue of PhoN2 are involved in this interaction while P45, P46 and Y155 residues were found to be critical for the correct folding and stability of the protein. The relative rapid degradation of these amino acid-substituted recombinant proteins was found to be due to unknown S. flexneri-specific protease(s). A model depicting how the PhoN2-OmpA interaction may contribute to proper polar IcsA exposition in S. flexneri is presented.
Collapse
Affiliation(s)
- Daniela Scribano
- Dipartimento di Scienze Sperimentali e Cliniche, Università “G. D'Annunzio”, Chieti, Italy
| | - Andrea Petrucca
- Dipartimento di Scienze Sperimentali e Cliniche, Università “G. D'Annunzio”, Chieti, Italy
| | - Monica Pompili
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Cecilia Ambrosi
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Elena Bruni
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Carlo Zagaglia
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università Sapienza di Roma, Rome, Italy
| | - Lucia Nencioni
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | | | - Fabio Polticelli
- Dipartimento di Scienze, Università di “Roma Tre”, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di “Roma Tre”, Rome, Italy
| | - Mauro Nicoletti
- Dipartimento di Scienze Sperimentali e Cliniche, Università “G. D'Annunzio”, Chieti, Italy
| |
Collapse
|
14
|
|
15
|
Rhett JM, Fann SA, Yost MJ. Purinergic signaling in early inflammatory events of the foreign body response: modulating extracellular ATP as an enabling technology for engineered implants and tissues. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:392-402. [PMID: 24279914 DOI: 10.1089/ten.teb.2013.0554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purinergic signaling is a ubiquitous and vital aspect of mammalian biology in which purines--mainly adenosine triphosphate (ATP)--are released from cells through loss of membrane integrity (cell death), exocytosis, or transport/diffusion across membrane channels, and exert paracrine or autocrine signaling effects through three subclasses of well-characterized receptors: the P1 adenosine receptors, the P2X ionotropic nucleotide receptors, and the P2Y metabotropic receptors. ATP and its metabolites are released by damaged and stressed cells in injured tissues. The early events of wound healing, hemostasis, and inflammation are highly regulated by these signals through activation of purinergic receptors on platelets and neutrophils. Recent data have demonstrated that ATP signaling is of particular importance to targeting leukocytes to sites of injury. This is particularly relevant to the subject of implanted medical devices, engineered tissues, and grafts as all these technologies elicit a wound healing response with varying degrees of encapsulation, rejection, extrusion, or destruction of the tissue or device. Here, we review the biology of purinergic signaling and focus on ATP release and response mechanisms that pertain to the early inflammatory phase of wound healing. Finally, therapeutic options are explored, including a new class of peptidomimetic drugs based on the ATP-conductive channel connexin43.
Collapse
Affiliation(s)
- J Matthew Rhett
- Division of General Surgery, Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | | | | |
Collapse
|
16
|
The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proc Natl Acad Sci U S A 2013; 110:21095-100. [PMID: 24324152 DOI: 10.1073/pnas.1319784110] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccines are the most effective agents to control infections. In addition to the pathogen antigens, vaccines contain adjuvants that are used to enhance protective immune responses. However, the molecular mechanism of action of most adjuvants is ill-known, and a better understanding of adjuvanticity is needed to develop improved adjuvants based on molecular targets that further enhance vaccine efficacy. This is particularly important for tuberculosis, malaria, AIDS, and other diseases for which protective vaccines do not exist. Release of endogenous danger signals has been linked to adjuvanticity; however, the role of extracellular ATP during vaccination has never been explored. Here, we tested whether ATP release is involved in the immune boosting effect of four common adjuvants: aluminum hydroxide, calcium phosphate, incomplete Freund's adjuvant, and the oil-in-water emulsion MF59. We found that intramuscular injection is always associated with a weak transient release of ATP, which was greatly enhanced by the presence of MF59 but not by all other adjuvants tested. Local injection of apyrase, an ATP-hydrolyzing enzyme, inhibited cell recruitment in the muscle induced by MF59 but not by alum or incomplete Freund's adjuvant. In addition, apyrase strongly inhibited influenza-specific T-cell responses and hemagglutination inhibition titers in response to an MF59-adjuvanted trivalent influenza vaccine. These data demonstrate that a transient ATP release is required for innate and adaptive immune responses induced by MF59 and link extracellular ATP with an enhanced response to vaccination.
Collapse
|
17
|
Wujak M, Banach M, Porowińska D, Piskulak K, Komoszyński M. Isolation and bioinformatic analysis of seven genes encoding potato apyrase. Bacterial overexpresssion, refolding and initial kinetic studies on some recombinant potato apyrases. PHYTOCHEMISTRY 2013; 93:8-17. [PMID: 23663929 DOI: 10.1016/j.phytochem.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Here we have isolated seven apyrase encoding cDNA sequences (StAPY4-StAPY10) from the potato variety Saturna tuber cDNA library by affecting necessary modifications in the screening protocol. The cDNA sequences were identified with a pair of primers complementary to the most conserved sequences identified in potato variety Desiree apyrase genes. Our data strongly suggest the multigenic nature of potato apyrase. All deduced amino acid sequences contain a putative signal sequence, one transmembrane region at the amino terminus and five apyrase conserved regions (ACRs) (except StAPY6). Phylogenetic analysis revealed that encoded proteins shared high level of DNA sequence identity among themselves, representing a family of proteins markedly distinct from other eukaryotic as well as prokaryotic apyrases. Two cDNA sequences (StAPY4 and StAPY6) were overexpressed in bacteria and recombinant proteins were found accumulated in inclusion bodies, even thought they were fused with thioredoxin-tag. Additionally, we present the first successful in vitro attempt at reactivation and purification of recombinant potato apyrase StAPY6. The ratio of ATPase/ADPase hydrolysis of recombinant StAPY6 was determined as 1.5:1. Unlike other apyrases the enzyme lacked ACR5 and was endowed with lower molecular weight, high specificity for purine nucleotides and very low specificity for pyrimidine, suggesting that StAPY6 is a potato apyrase, not described so far.
Collapse
Affiliation(s)
- Magdalena Wujak
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland
| | | | | | | | | |
Collapse
|
18
|
Okuhata R, Otsuka Y, Tsuchiya T, Kanzawa N. Mutagenesis of apyrase conserved region 1 alters the nucleotide substrate specificity. PLANT SIGNALING & BEHAVIOR 2013; 8:e24131. [PMID: 23470725 PMCID: PMC3908943 DOI: 10.4161/psb.24131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 05/29/2023]
Abstract
Two apyrases having different substrate specificity, MP67 and MpAPY2, are present in Mimosa pudica. The substrate specificity of MP67 is quite high against ADP, and is distinct from any other apyrase. This might be attributed to the nucleotide binding motif (DXG) in apyrase conserved region 1. We performed a single amino acid substitution at position X in the motif. The ratio of the velocity of ATP/ADP hydrolysis was higher (approximately 1) for the S63A-MP67 mutant than for wild type-MP67 (0.19). Binding affinity for ADP of A75S-MpAPY2 mutant was increased to a level higher than that of the wild type MpAPY2. Thus, the residue at position X in the DXG motif plays an important role in determining nucleotide preference.
Collapse
|
19
|
Simmons LW, Tan YF, Millar AH. Sperm and seminal fluid proteomes of the field cricket Teleogryllus oceanicus: identification of novel proteins transferred to females at mating. INSECT MOLECULAR BIOLOGY 2013; 22:115-130. [PMID: 23211034 DOI: 10.1111/imb.12007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reproductive proteins are amongst the most evolutionarily divergent proteins known, and research on genetically well-characterized species suggests that postcopulatory sexual selection might be important in their evolution; however, we lack the taxonomic breadth of information on reproductive proteins that is required to determine the general importance of sexual selection for their evolution. We used transcriptome sequencing and proteomics to characterize the sperm and seminal fluid proteins of a cricket, Teleogryllus oceanicus, that has been widely used in the study of postcopulatory sexual selection. We identified 57 proteins from the sperm of these crickets. Many of these had predicted function in glycolysis and metabolism, or were structural, and had sequence similarity to sperm proteins found across taxa ranging from flies to humans. We identified 21 seminal fluid proteins, some of which resemble those found to be involved in postmating changes to female reproduction in other species. Some 27% of sperm proteins and 48% of seminal fluid proteins were of unknown function. The characterization of seminal fluid proteins in this species will allow us to explore their adaptive significance, and to contribute comparative data that will facilitate a general appreciation of the evolution of reproductive proteins within and among animal taxa.
Collapse
Affiliation(s)
- L W Simmons
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
20
|
Purinergic signaling in glioma progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:81-102. [PMID: 22879065 DOI: 10.1007/978-94-007-4719-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X(7), is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.
Collapse
|
21
|
Schiller M, Massalski C, Kurth T, Steinebrunner I. The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC PLANT BIOLOGY 2012; 12:123. [PMID: 22849572 PMCID: PMC3511161 DOI: 10.1186/1471-2229-12-123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/09/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The two highly similar Arabidopsis apyrases AtAPY1 and AtAPY2 were previously shown to be involved in plant growth and development, evidently by regulating extracellular ATP signals. The subcellular localization of AtAPY1 was investigated to corroborate an extracellular function. RESULTS Transgenic Arabidopsis lines expressing AtAPY1 fused to the SNAP-(O(6)-alkylguanine-DNA alkyltransferase)-tag were used for indirect immunofluorescence and AtAPY1 was detected in punctate structures within the cell. The same signal pattern was found in seedlings stably overexpressing AtAPY1-GFP by indirect immunofluorescence and live imaging. In order to identify the nature of the AtAPY1-positive structures, AtAPY1-GFP expressing seedlings were treated with the endocytic marker stain FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-hexatrienyl)-pyridinium dibromide) and crossed with a transgenic line expressing the trans-Golgi marker Rab E1d. Neither FM4-64 nor Rab E1d co-localized with AtAPY1. However, live imaging of transgenic Arabidopsis lines expressing AtAPY1-GFP and either the fluorescent protein-tagged Golgi marker Membrin 12, Syntaxin of plants 32 or Golgi transport 1 protein homolog showed co-localization. The Golgi localization was confirmed by immunogold labeling of AtAPY1-GFP. There was no indication of extracellular AtAPY1 by indirect immunofluorescence using antibodies against SNAP and GFP, live imaging of AtAPY1-GFP and immunogold labeling of AtAPY1-GFP. Activity assays with AtAPY1-GFP revealed GDP, UDP and IDP as substrates, but neither ATP nor ADP. To determine if AtAPY1 is a soluble or membrane protein, microsomal membranes were isolated and treated with various solubilizing agents. Only SDS and urea (not alkaline or high salt conditions) were able to release the AtAPY1 protein from microsomal membranes. CONCLUSIONS AtAPY1 is an integral Golgi protein with the substrate specificity typical for Golgi apyrases. It is therefore not likely to regulate extracellular nucleotide signals as previously thought. We propose instead that AtAPY1 exerts its growth and developmental effects by possibly regulating glycosylation reactions in the Golgi.
Collapse
Affiliation(s)
- Madlen Schiller
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, Helmholtzstraße 10, Dresden 01069, Germany
| | - Carolin Massalski
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, Helmholtzstraße 10, Dresden 01069, Germany
| | - Thomas Kurth
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, Dresden 01307, Germany
| | - Iris Steinebrunner
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, Helmholtzstraße 10, Dresden 01069, Germany
| |
Collapse
|
22
|
Monocytes P2X7 purinergic receptor is modulated by glatiramer acetate in multiple sclerosis. J Neuroimmunol 2012; 245:93-7. [DOI: 10.1016/j.jneuroim.2012.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/16/2012] [Accepted: 02/01/2012] [Indexed: 11/21/2022]
|
23
|
Okuhata R, Takishima T, Nishimura N, Ueda S, Tsuchiya T, Kanzawa N. Purification and biochemical characterization of a novel ecto-apyrase, MP67, from Mimosa pudica. PLANT PHYSIOLOGY 2011; 157:464-75. [PMID: 21788364 PMCID: PMC3165892 DOI: 10.1104/pp.111.180414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/21/2011] [Indexed: 05/04/2023]
Abstract
We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP.
Collapse
Affiliation(s)
| | | | | | | | | | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 102–8554, Japan
| |
Collapse
|
24
|
Dong F, Fu Y, Li X, Jiang J, Sun J, Cheng X. Cloning, expression, and characterization of salivary apyrase from Aedes albopictus. Parasitol Res 2011; 110:931-7. [PMID: 21842387 DOI: 10.1007/s00436-011-2579-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022]
Abstract
Apyrases (ATP diphosphohydrolase) hydrolyze the phosphodiester bonds of nucleoside tri- and diphosphates to orthophosphate and mononucleodides. They can inhibit platelet activation by depletion of adenosine diphosphate. In the current study, the Escherichia coli expression vector pET-19b equipped with an N-terminal histidine tag was applied to express the apyrase of Aedes albopictus. The gene-coding mature apyrase protein was amplified by RT-PCR and cloned into pET-19b. Soluble apyrase protein with high purity was successfully obtained by utilization of the suitable renaturation approach and Ni-NTA purification column. Four monoclonal antibodies to apyrase from A. albopictus were produced in male BALB/c mice immunized with the renatured apyrase. Using immunofluorescence assay and immunoblotting analysis, recombinant apyrase showed fine consistency with native apyrase. From kinetic analysis, it had a K (m) of 11.6 μM and V (max) of 1.02 nM/S/μg protein for adenosine triphosphate. Adenosine diphosphate-induced platelet aggregation was inhibited by approximately 6% when 0.4 μM recombinant apyrase was added and by about 9.5% when the concentration of recombinant apyrase was 0.8 μM. The effect on platelet aggregation was dose dependent. In conclusion, the apyrase of A. albopictus was cloned and expressed highly in the E. coli expression system. Recombinant apyrase protein showed biological activity, and anti-apyrase monoclonal antibody was also prepared.
Collapse
Affiliation(s)
- Fang Dong
- Department of Microbiology and Parasitology, Shanghai Medical College of Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
25
|
Chivasa S, Tomé DFA, Hamilton JM, Slabas AR. Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Mol Cell Proteomics 2011; 10:M110.003905. [PMID: 21156838 PMCID: PMC3047153 DOI: 10.1074/mcp.m110.003905] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/24/2010] [Indexed: 12/27/2022] Open
Abstract
Extracellular ATP is an important signal molecule required to cue plant growth and developmental programs, interactions with other organisms, and responses to environmental stimuli. The molecular targets mediating the physiological effects of extracellular ATP in plants have not yet been identified. We developed a well characterized experimental system that depletes Arabidopsis cell suspension culture extracellular ATP via treatment with the cell death-inducing mycotoxin fumonisin B1. This provided a platform for protein profile comparison between extracellular ATP-depleted cells and fumonisin B1-treated cells replenished with exogenous ATP, thus enabling the identification of proteins regulated by extracellular ATP signaling. Using two-dimensional difference in-gel electrophoresis and matrix-assisted laser desorption-time of flight MS analysis of microsomal membrane and total soluble protein fractions, we identified 26 distinct proteins whose gene expression is controlled by the level of extracellular ATP. An additional 48 proteins that responded to fumonisin B1 were unaffected by extracellular ATP levels, confirming that this mycotoxin has physiological effects on Arabidopsis that are independent of its ability to trigger extracellular ATP depletion. Molecular chaperones, cellular redox control enzymes, glycolytic enzymes, and components of the cellular protein degradation machinery were among the extracellular ATP-responsive proteins. A major category of proteins highly regulated by extracellular ATP were components of ATP metabolism enzymes. We selected one of these, the mitochondrial ATP synthase β-subunit, for further analysis using reverse genetics. Plants in which the gene for this protein was knocked out by insertion of a transfer-DNA sequence became resistant to fumonisin B1-induced cell death. Therefore, in addition to its function in mitochondrial oxidative phosphorylation, our study defines a new role for ATP synthase β-subunit as a pro-cell death protein. More significantly, this protein is a novel target for extracellular ATP in its function as a key negative regulator of plant cell death.
Collapse
Affiliation(s)
- Stephen Chivasa
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Daniel F. A. Tomé
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - John M. Hamilton
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Antoni R. Slabas
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
26
|
Xi C, Wu J. dATP/ATP, a multifunctional nucleotide, stimulates bacterial cell lysis, extracellular DNA release and biofilm development. PLoS One 2010; 5:e13355. [PMID: 20976227 PMCID: PMC2954796 DOI: 10.1371/journal.pone.0013355] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background Signaling by extracellular adenosine 5′-triphosphase (eATP) is very common for cell-to-cell communication in many basic patho-physiological development processes. Rapid release of ATP into the extracellular environment from distressed or injured eukaryotic cells due to pathogens or other etiological factors can serve as a “danger signal”, activating host innate immunity. However, little is known about how or whether pathogenic bacteria respond to this “danger signal”. Methods and Principal Findings Here we report that extracellular dATP/ATP can stimulate bacterial adhesion and biofilm formation via increased cell lysis and extracellular DNA (eDNA) release. We demonstrate that extracellular dATP/ATP also stimulates bacterial adherence in vitro to human bronchial epithelial cells. Conclusions and Significance These data suggest that bacteria may sense extracellular dATP/ATP as a signal of “danger” and form biofilms to protect them from host innate immunity. This study reveals a very important and unrecognized phenomenon that both bacteria and host cells could respond to a common important signal molecule in a race to adapt to the presence of one another. We propose that extracellular dATP/ATP functions as an “inter-domain” warning signal that serves to induce protective measures in both Bacterial and Eukaryotic cells.
Collapse
Affiliation(s)
- Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | |
Collapse
|
27
|
de Souza MC, de Assis EA, Gomes RS, Marques da Silva EDA, Melo MN, Fietto JLR, Afonso LCC. The influence of ecto-nucleotidases on Leishmania amazonensis infection and immune response in C57B/6 mice. Acta Trop 2010; 115:262-9. [PMID: 20399737 DOI: 10.1016/j.actatropica.2010.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/30/2010] [Accepted: 04/12/2010] [Indexed: 12/20/2022]
Abstract
Previous results from our laboratory and from the literature have implicated the expression of ecto-nucleotidases in the establishment of Leishmania infection. In the present study we evaluated the correlation between ecto-nucleotidasic activity and the infectivity of L. amazonensis promastigotes that were kept in culture for short or extended numbers of passages, a condition that is known to decrease parasite infectivity. We also analyzed the immune response associated with the infection by these parasites. As expected, we found that long-term cultured parasites induce the development of smaller lesions than the short-term cultured counterparts. Interestingly, long-term cultured parasites presented reduced ecto-nucleotidasic activity. In addition, cells recovered from animals infected with long-term cultured parasites produced higher amounts of IFN-gamma and have smaller parasite load, after 8weeks of infection. Furthermore, after 1week of infection, there is increased expression of the chemokine CCL2 mRNA in animals infected with short-term cultured parasites. Finally, infection of peritoneal macrophages by these parasites also shows marked differences. Thus, while short-term cultured parasites are able to infect a greater proportion of macrophages, cells infected by long-term cultured parasites express higher amounts of CXCL10 mRNA, which may activate these cells to kill the parasites. We suggest that the enzymes involved in metabolism of extracellular nucleotides may have an important role in infection by L. amazonensis, by acting directly in its adhesion to target cells and by modulating host cell chemokine production.
Collapse
|
28
|
Chivasa S, Simon WJ, Murphy AM, Lindsey K, Carr JP, Slabas AR. The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome. Proteomics 2010; 10:235-44. [PMID: 19899079 DOI: 10.1002/pmic.200900454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular adenosine 5'-triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca(2+), nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non-hydrolysable analogue as probes to identify the molecular and physiological effects of eATP-mediated signalling in tobacco. 2-DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence-related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.
Collapse
Affiliation(s)
- Stephen Chivasa
- Creative Gene Technology Ltd., The Integrative Cell Biology Laboratory, Durham, UK
| | | | | | | | | | | |
Collapse
|
29
|
Chen B, Sysoeva TA, Chowdhury S, Guo L, Nixon BT. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli. FEBS J 2009; 276:807-15. [PMID: 19143839 DOI: 10.1111/j.1742-4658.2008.06825.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Except for apyrases, ATPases generally target only the gamma-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10,000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.
Collapse
Affiliation(s)
- Baoyu Chen
- Integrative Biosciences Graduate Degree Program-Chemical Biology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | |
Collapse
|
30
|
Govindarajulu M, Kim SY, Libault M, Berg RH, Tanaka K, Stacey G, Taylor CG. GS52 ecto-apyrase plays a critical role during soybean nodulation. PLANT PHYSIOLOGY 2009; 149:994-1004. [PMID: 19036836 PMCID: PMC2633840 DOI: 10.1104/pp.108.128728] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/15/2008] [Indexed: 05/20/2023]
Abstract
Apyrases are non-energy-coupled nucleotide phosphohydrolases that hydrolyze nucleoside triphosphates and nucleoside diphosphates to nucleoside monophosphates and orthophosphates. GS52, a soybean (Glycine soja) ecto-apyrase, was previously shown to be induced very early in response to inoculation with the symbiotic bacterium Bradyrhizobium japonicum. Overexpression of the GS52 ecto-apyrase in Lotus japonicus increased the level of rhizobial infection and enhanced nodulation. These data suggest a critical role for the GS52 ecto-apyrase during nodulation. To further investigate the role of GS52 during nodulation, we used RNA interference to silence GS52 expression in soybean (Glycine max) roots using Agrobacterium rhizogenes-mediated root transformation. Transcript levels of GS52 were significantly reduced in GS52 silenced roots and these roots exhibited reduced numbers of mature nodules. Development of the nodule primordium and subsequent nodule maturation was significantly suppressed in GS52 silenced roots. Transmission electron micrographs of GS52 silenced root nodules showed that early senescence and infected cortical cells were devoid of symbiosome-containing bacteroids. Application of exogenous adenosine diphosphate to silenced GS52 roots restored nodule development. Restored nodules contained bacteroids, thus indicating that extracellular adenosine diphosphate is important during nodulation. These results clearly suggest that GS52 ecto-apyrase catalytic activity is critical for the early B. japonicum infection process, initiation of nodule primordium development, and subsequent nodule organogenesis in soybean.
Collapse
|
31
|
Sivuk VF, Rusina IM, Makarchikov AF. Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain. BIOCHEMISTRY (MOSCOW) 2008; 73:1047-52. [PMID: 18976223 DOI: 10.1134/s0006297908090137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soluble NTPase, differing in its properties from known proteins exhibiting NTPase activity, was purified from bovine brain to homogeneity. The enzyme has pH optimum at 7.5 and shows absolute dependence on bivalent cations and broad substrate specificity towards nucleoside-5 -tri- and -diphosphates, characteristics of apyrases. The NTPase follows Michaelis-Menten kinetics in the range of investigated substrate concentrations, the apparent K(m) values for UTP, ITP, GTP, CTP, CDP, and ATP being 86, 25, 41, 150, 500, and 260 microM, respectively. According to gel-filtration and SDS-PAGE data, the molecular mass of the enzyme is 60 kD. The NTPase is localized in the cytosol fraction and expressed in different bovine organs and tissues. Total NTPase activity of extracts of bovine organs and tissues decreases in the following order: liver > heart > skeletal muscle > lung > brain > spleen > kidney ~ small intestine. The enzyme activity can be regulated by acetyl-CoA, alpha-ketoglutarate, and fructose-1,6-diphosphate acting as activators in physiological concentrations, whereas propionate exhibits an inhibitory effect.
Collapse
Affiliation(s)
- V F Sivuk
- Laboratory of Biochemical Toxicology and Narcology, Institute of Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Grodno, 230030, Belarus
| | | | | |
Collapse
|
32
|
Bavaresco CS, Chiarani F, Kolling J, Ramos DB, Cognato GP, Bonan CD, Bogo MR, Sarkis JJF, Netto CA, Wyse ATS. Intrastriatal injection of hypoxanthine alters striatal ectonucleotidase activities: a time-dependent effect. Brain Res 2008; 1239:198-206. [PMID: 18775418 DOI: 10.1016/j.brainres.2008.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effects of intrastriatal injection of hypoxanthine on ectonucleotidase (E-NTPDases and ecto-5'-nucleotidase) activities and expressions in the striatum of rats. The effect of pre-treatment with vitamins E and C on the effects elicited by this oxypurine on enzymatic activities and on thiobarbituric reactive substances (TBARS) was also investigated. The effect of pre-incubation with hypoxanthine on nucleotide hydrolysis in striatum homogenate was also determined. Adult Wistar rats were divided into (1) control and (2) hypoxanthine-injected groups. For ectonucleotidase activity determination, the animals were sacrificed at 30 min, 24 h and 7 days after drug infusion. For the evaluation of the expression of NTPDase 1-3 and also ecto-5'-nucleotidase, TBARS assay and the influence of the pre-treatment with vitamins on ectonucleotidase activities, the animals were sacrificed 24 h after hypoxanthine infusion. Results show that hypoxanthine infusion significantly inhibited ectonucleotidase activities and increased TBARS only 24 h after administration. Pre-treatment with vitamins was able to prevent these effects. Moreover, ecto-5'-nucleotidase expression was increased (80%) at 24 h after hypoxanthine infusion. We suggest that these hypoxanthine-induced biochemical modifications could, at least in part, participate in the pathophysiology of Lesch Nyhan disease.
Collapse
Affiliation(s)
- Caren S Bavaresco
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fujita R, Ma Y, Ueda H. Lysophosphatidic acid-induced membrane ruffling and brain-derived neurotrophic factor gene expression are mediated by ATP release in primary microglia. J Neurochem 2008; 107:152-60. [PMID: 18680554 DOI: 10.1111/j.1471-4159.2008.05599.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We examined the effects of lysophosphatidic acid (LPA) on microglia, which may play an important role in the development and maintenance of neuropathic pain. LPA caused membrane ruffling as detected by scanning electron microscopy, and increased the expression of brain-derived neurotrophic factor (BDNF) in a primary culture of rat microglia, which express LPA(3), but not LPA(1) or LPA(2) receptors. These actions were inhibited by a Galpha(q/11)-antisense oligodeoxynucleotide (AS-ODN), U73122, an inhibitor of phospholipase C (PLC), and apyrase, which specifically degrades ATP and ADP. When ATP release was measured using a luciferin-luciferase bioluminescence assay, LPA was shown to increase it in an LPA(3) and PLC inhibitor-reversible manner. However, LPA-induced ATP release was also blocked by the Galpha(q/11) AS-ODN, but not by pertussis toxin. These results suggest that LPA induces the release of ATP from rat primary cultured microglia via the LPA(3) receptor, Galpha(q/11) and PLC, and that the released ATP or ectopically converted ADP may in turn cause membrane ruffling via P2Y(12) receptors and Galpha(i/o) activation, and BDNF expression via activation of P2X(4) receptors.
Collapse
Affiliation(s)
- Ryousuke Fujita
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Bunkyo-machi, Nagasaki, Japan
| | | | | |
Collapse
|
34
|
Nicoletti M, Santino I, Petrucca A, Del Chierico F, Cannavacciuolo S, Casalino M, Sessa R, Cipriani P. Evaluation by Real-Time PCR of the Expression of S. Flexneri Virulence-Associated Genes ospB and phoN2 under Different Genetical Backgrounds. Int J Immunopathol Pharmacol 2008; 21:707-14. [DOI: 10.1177/039463200802100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Under conditions of activated type III secretion Shigella flexneri up-regulates the expression of numerous genes, including the virulence plasmid (pINV)-encoded ospB and phoN2 genes. ospB and phoN2 are virulence-associated genes which are part of a bicistronic transcriptional unit encoding OspB, a protein (effector) of unknown function secreted by the type III secretion (TTS) apparatus, and PhoN2 (apyrase or ATP-diphosphohydrolase), a periplasmic protein involved in polar IcsA localization on the surface of S. flexneri. In this work we used real-time PCR to measure transcription of ospB and phoN2 of wild-type S. flexneri strain M90T as well as of derivative mutants impaired in definite virulence traits. The results obtained confirmed and extended previous reports indicating that the expression of ospB and phoN2 genes is modulated in a virB-dependent, mxiE-independent manner under conditions of non-activated secretion, while their expression is considerably induced in a mxiE-dependent manner under conditions of activated secretion. That the expression of the ospB-phoN2 operon is up-regulated in condition of activated secretion, indicates that probably the expression of these two genes might be important, especially during the later stages of infection of S. flexneri.
Collapse
Affiliation(s)
- M. Nicoletti
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
| | - I. Santino
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - A. Petrucca
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
- Laboratorio di Microbiologia Clinica, II Facoltà di Medicina e Chirurgia, Ospedale “Sant'Andrea”, Rome
| | - F. Del Chierico
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
| | - S. Cannavacciuolo
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - M. Casalino
- Dipartimento di Biologia, Università di “Roma Tre”, Rome, Italy
| | - R. Sessa
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - P. Cipriani
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
- Laboratorio di Microbiologia Clinica, II Facoltà di Medicina e Chirurgia, Ospedale “Sant'Andrea”, Rome
| |
Collapse
|
35
|
Wolf C, Hennig M, Romanovicz D, Steinebrunner I. Developmental defects and seedling lethality in apyrase AtAPY1 and AtAPY2 double knockout mutants. PLANT MOLECULAR BIOLOGY 2007; 64:657-72. [PMID: 17534719 DOI: 10.1007/s11103-007-9184-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 05/06/2007] [Indexed: 05/08/2023]
Abstract
Previously it was shown that the Arabidopsis apyrase genes AtAPY1 and AtAPY2 are crucial for male fertility because mutant pollen (apy1-1; apy2-1) with T-DNA insertions in both genes could not germinate (Steinebrunner et al. (2003) Plant Physiol. 131: 1638-1647). In this study, pollen germination was restored and apyrase T-DNA double knockouts (DKO) apy1-1/apy1-1; apy2-1/apy2-1 were generated by complementation with AtAPY2 under the control of a pollen-specific promoter. The DKO phenotype displayed developmental defects including the lack of functional root and shoot meristems. In cotyledons, morphogenetic and patterning abnormalities were apparent, e.g., unlobed pavement cells and stomatal clusters. Another set of lines was created which carried either AtAPY1 or AtAPY2 under a dexamethasone-(DEX)-inducible promoter as an additional transgene to the pollen-specific gene construct. Application of DEX did not reverse the DKO phenotype to wild-type, but some inducible lines exhibited less severe defects even in the absence of the inducer, probably due to some background expression. However, even these DKO mutants were seedling-lethal and shared other defects regarding cell division, cell expansion and stomatal patterning. Taken together, the defects in the DKO mutants demonstrate that AtAPY1 and AtAPY2 are essential for normal plant development.
Collapse
Affiliation(s)
- Carolin Wolf
- Department of Biology, Section of Molecular Biotechnology, Technical University of Dresden, 01062, Dresden, Germany
| | | | | | | |
Collapse
|
36
|
Vandeputte O, Vereecke D, Mol A, Lenjou M, Van Bockstaele D, El Jaziri M, Baucher M. Rhodococcus fascians infection accelerates progression of tobacco BY-2 cells into mitosis through rapid changes in plant gene expression. THE NEW PHYTOLOGIST 2007; 175:140-154. [PMID: 17547674 DOI: 10.1111/j.1469-8137.2007.02062.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
* To characterize plant cell cycle activation following Rhodococcus fascians infection, bacterial impact on cell cycle progression of tobacco BY-2 cells was investigated. * S-phase-synchronized BY-2 cells were cocultivated with R. fascians and cell cycle progression was monitored by measuring mitotic index, cell cycle gene expression and flow cytometry parameters. Cell cycle alteration was further investigated by cDNA-AFLP (amplified fragment length polymorphism). * It was shown that cell cycle progression of BY-2 cells was accelerated only upon infection with bacteria whose virulence gene expression was induced by a leafy gall extract. Thirty-eight BY-2 genes showed a differential expression within 6 h post-infection. Among these, seven were previously associated with specific plant cell cycle phases (in particular S and G2/M phases). Several genes also showed a differential expression during leafy gall formation. * R. fascians-infected BY-2 cells provide a simple model to identify plant genes related to leafy gall development. R. fascians can also be regarded as a useful biotic agent to alter cell cycle progression and, thereby, gain a better understanding of cell cycle regulation in plants.
Collapse
Affiliation(s)
- Olivier Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Danny Vereecke
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Marc Lenjou
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Dirk Van Bockstaele
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
| |
Collapse
|
37
|
Santapaola D, Del Chierico F, Petrucca A, Uzzau S, Casalino M, Colonna B, Sessa R, Berlutti F, Nicoletti M. Apyrase, the product of the virulence plasmid-encoded phoN2 (apy) gene of Shigella flexneri, is necessary for proper unipolar IcsA localization and for efficient intercellular spread. J Bacteriol 2006; 188:1620-7. [PMID: 16452446 PMCID: PMC1367242 DOI: 10.1128/jb.188.4.1620-1627.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role in virulence of the Shigella flexneri ospB-phoN2 operon has been evaluated. Here we confirm that OspB is an effector and show that apyrase, the product of phoN2, may be a virulence factor, since it is required for efficient intercellular spreading. Apyrase may be important in a deoxynucleoside triphosphate-hydrolyzing activity-independent manner, suggesting that it may act as an interaction partner in the process of IcsA localization.
Collapse
Affiliation(s)
- D Santapaola
- Dipartimento di Scienze Biomediche, Università G. D'Annunzio, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sarli S, Nicoletti M, Schippa S, Del Chierico F, Santapaola D, Valenti P, Berlutti F. Ala160 and His116 residues are involved in activity and specificity of apyrase, an ATP-hydrolysing enzyme produced by enteroinvasive Escherichia coli. MICROBIOLOGY-SGM 2005; 151:2853-2860. [PMID: 16151198 DOI: 10.1099/mic.0.28142-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virulence plasmid-carried apy (phoN2) gene of Shigella and related enteroinvasive Escherichia coli (EIEC) encodes apyrase, an ATP-diphosphohydrolase belonging to class A of the non-specific acid phosphatases (A-NSAPs). Apyrase and A-NSAPs share three domains of conserved amino acids (domains D1-D3) containing residues forming the putative active site of apyrase. In spite of their similarity, apyrase and A-NSAPs show different substrate specificity, apyrase being able to hydrolyse nucleotide tri- and diphosphates, but not monophosphates, as well as p-nitrophenyl phosphate (pNPP), while A-NSAPs are also active towards monophosphates and pNPP. In this paper, to get further insights into the structure-function relationship of apyrase, a random and site-directed mutagenesis of the apy gene of EIEC strain HN280 was conducted. Results indicate that amino acids located within the D2 and D3 conserved domains (Ser157 and Arg192, respectively) as well as residues located in the N-terminal (Ser97) and C-terminal (Glu233) domains are required for enzyme activity. Surprisingly, Ala160, located near the D2 domain and considered to be important for enzyme specificity, is required for enzyme activity, as its substitution with Thr led to the inactivation of enzyme activity. Furthermore, residue His116 is involved in apyrase specificity, since the H116L apyrase mutant shows substrate specificity resembling that of A-NSAPs.
Collapse
Affiliation(s)
- Serena Sarli
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| | - Mauro Nicoletti
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia, Università G. D'Annunzio, Chieti, Italy
| | - Serena Schippa
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| | - Federica Del Chierico
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| | - Daniela Santapaola
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia, Università G. D'Annunzio, Chieti, Italy
| | - Piera Valenti
- Dipartimento di Medicina Sperimentale, Seconda Università, Naples, Italy
| | - Francesca Berlutti
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| |
Collapse
|
39
|
Ahmadian A, Ehn M, Hober S. Pyrosequencing: history, biochemistry and future. Clin Chim Acta 2005; 363:83-94. [PMID: 16165119 DOI: 10.1016/j.cccn.2005.04.038] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 04/27/2005] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pyrosequencing is a DNA sequencing technology based on the sequencing-by-synthesis principle. METHODS The technique is built on a 4-enzyme real-time monitoring of DNA synthesis by bioluminescence using a cascade that upon nucleotide incorporation ends in a detectable light signal (bioluminescence). The detection system is based on the pyrophosphate released when a nucleotide is introduced in the DNA-strand. Thereby, the signal can be quantitatively connected to the number of bases added. Currently, the technique is limited to analysis of short DNA sequences exemplified by single-nucleotide polymorphism analysis and genotyping. Mutation detection and single-nucleotide polymorphism genotyping require screening of large samples of materials and therefore the importance of high-throughput DNA analysis techniques is significant. In order to expand the field for pyrosequencing, the read length needs to be improved. CONCLUSIONS Th pyrosequencing system is based on an enzymatic system. There are different current and future applications of this technique.
Collapse
Affiliation(s)
- Afshin Ahmadian
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Svantesson A, Westermark PO, Kotaleski JH, Gharizadeh B, Lansner A, Nyrén P. A mathematical model of the Pyrosequencing reaction system. Biophys Chem 2005; 110:129-45. [PMID: 15223150 DOI: 10.1016/j.bpc.2004.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 01/29/2004] [Accepted: 01/29/2004] [Indexed: 11/26/2022]
Abstract
The Pyrosequencing technology is a newly developed DNA sequencing method that monitors DNA nucleotide incorporation in real-time. A set of coupled enzymatic reactions, together with bioluminescence, detects incorporated nucleotides in the form of light pulses, yielding a characteristic light profile. In this study, a biochemical model of the Pyrosequencing reaction system is suggested and implemented. The model is constructed utilizing an assumption of irreversible Michaelis-Menten rate equations and a constant incorporation efficiency. The kinetic parameters are studied and values are chosen to obtain as reliable simulation results as possible. The results presented here show strong resemblance with real experiments. The model is able to capture the dynamics of a single light pulse with great accuracy, as well as the overall characteristics of a whole pyrogram trade mark. The plus- and minus-shift effects observed in experiments are successfully reconstructed by two constant efficiency factors. Furthermore, pulse broadening can partly be explained by apyrase inhibition and successive dilution.
Collapse
Affiliation(s)
- Anna Svantesson
- PSCI/SANS, Department of Numerical Analysis and Computer Science, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Eriksson AC, Whiss PA. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates. J Pharmacol Toxicol Methods 2005; 52:356-65. [PMID: 16005248 DOI: 10.1016/j.vascn.2005.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/19/2005] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Platelet adhesion is an initial, crucial and complex event for inhibiting blood loss upon vascular injury. Activation and adhesion of platelets also play a fundamental role in the development of thrombosis. A combination of exposed extracellular matrix proteins in the vascular wall and release of activating compounds from the participating cells activate the platelets. New potent anti-platelet agents are in progress but there is a shortage of methods that measure the concerted action of adhesive surfaces and soluble compounds upon platelet adhesion in vitro. The aim of this work was to develop a method to measure adhesion of platelets in plasma with standard laboratory equipment. METHODS Platelet-rich plasma from healthy humans was used in studies to optimise the conditions of the present assay. Different proteins were coated in microplate wells and various soluble platelet activators and inhibitors were added to establish the ability of the current method to detect increased as well as decreased platelet adhesion. The amount of platelet adhesion was measured by the reaction between p-nitrophenyl phosphate and the intracellular enzyme acid phosphatase. RESULTS Adhesion of platelets in plasma to microplate wells coated with albumin, collagen, fibrinogen and activated plasma showed significant surface dependency. The known soluble platelet activators adenosine diphosphate, adrenaline and ristocetin enhanced the levels of adhesion. Available anti-platelet agents such as prostacyclin, forskolin, acetylsalicylic acid and RGD containing peptides caused dose-dependent inhibition of platelet adhesion. DISCUSSION This report describes a further development of a previously described method and offers the advantage to use platelets in plasma to measure platelet adhesion to protein surfaces. The assay is simple and flexible and is suitable in basic research for screening and characterisation of platelet adhesion responsiveness.
Collapse
Affiliation(s)
- Andreas C Eriksson
- Division of Pharmacology, Department of Medicine and Care, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | |
Collapse
|
42
|
Liu M, Karjalainen EL, Barth A. Use of helper enzymes for ADP removal in infrared spectroscopic experiments: application to Ca2+-ATPase. Biophys J 2005; 88:3615-24. [PMID: 15731382 PMCID: PMC1305508 DOI: 10.1529/biophysj.104.055368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/08/2005] [Indexed: 11/18/2022] Open
Abstract
Adenylate kinase (AdK) and apyrase were employed as helper enzymes to remove ADP in infrared spectroscopic experiments that study the sarcoplasmic reticulum Ca(2+)-ATPase. The infrared absorbance changes of their enzymatic reactions were characterized and used to monitor enzyme activity. AdK transforms ADP to ATP and AMP, whereas apyrase consumes ATP and ADP to generate AMP and inorganic phosphate. The benefits of using them as helper enzymes are severalfold: i), both remove ADP generated after ATP hydrolysis by ATPase, which enables repeat of ATP-release experiments several times with the same sample without interference by ADP; ii), AdK helps maintain the presence of ATP for a longer time by regenerating 50% of the initial ATP; iii), apyrase generates free P(i), which can help stabilize the ADP-insensitive phosphoenzyme (E2P); and iv), apyrase can be used to monitor ADP dissociation from transient enzyme intermediates with relatively high affinity to ADP, as shown here for ADP dissociation from the ADP-sensitive phosphoenzyme intermediate (Ca(2)E1P). The respective infrared spectra indicate that ADP dissociation relaxes the closed conformation immediately after phosphorylation partially back toward the open conformation of Ca(2)E1 but does not trigger the transition to E2P. The helper enzyme approach can be extended to study other nucleotide-dependent proteins.
Collapse
Affiliation(s)
- Man Liu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
43
|
McAlvin CB, Stacey G. Transgenic expression of the soybean apyrase in Lotus japonicus enhances nodulation. PLANT PHYSIOLOGY 2005; 137:1456-62. [PMID: 15793071 PMCID: PMC1088334 DOI: 10.1104/pp.104.055939] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/01/2005] [Accepted: 02/03/2005] [Indexed: 05/18/2023]
Abstract
The soybean apyrase, GS52, was previously characterized as an early nodulin that is expressed in roots and localized to the plasma membrane. Transgenic Lotus japonicus plants were constructed constitutively expressing the GS52 apyrase. Segregation and Southern-blot analysis identified four single-copy sense lines, several double-copy sense lines, and one double-copy antisense line for further analysis. The single- and double-copy sense gs52 L. japonicus lines had enhanced nodulation that correlated with expression of the transgene. The sense transgenic lines were also found to have increased infection thread formation and enhanced infection zone length when infected by Mesorhizobium loti, the natural symbiont of L. japonicus. The data presented show that expression of the GS52 apyrase can enhance nodulation in L. japonicus and points to an important role for this group of enzymes in nodulation.
Collapse
Affiliation(s)
- Crystal B McAlvin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
44
|
Rezende AA, Petenusci SO, Furriel RPM, Leone FA. Streptozotocin-induced diabetes influences the activity of ecto-nucleoside triphosphate diphosphohydrolase 1 of rat osseous plate membranes. Mol Cell Biochem 2005; 267:99-106. [PMID: 15663191 DOI: 10.1023/b:mcbi.0000049371.82041.ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the kinetic characterization of an ecto-nucleosidetriphosphate diphosphohydrolase 1 from rat osseous plate membranes in streptozotocin-induced diabetic rats, which arises during ectopic mineralization twenty days after a subcutaneous implantation of demineralized bone matrix, Insulin deficiency decreased the ecto-nucleoside triphosphate diphosphohydrolase activity from 1293.1 +/- 39.8 (control rats) to 556.0 +/- 8.2 nmol Pi/(min mg). Two families of ATP hydrolyzing sites showed cooperative effects with specific activities of 256.2 +/- 7.7 nmol Pi/(min mg) and 299.8 +/- 8.9 nmol Pi/(min mg), and studies on the stimulation of the enzyme by magnesium and calcium ions showed that the decrease in enzyme activity results from changes in the affinity of the enzyme for these ions. To our knowledge this is the first study associating the effects of type I diabetes with an ecto-nucleoside triphosphate diphosphohydrolase activity from rat osseous plate membranes.
Collapse
Affiliation(s)
- Adriana A Rezende
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
45
|
Dooher JE, Lingappa JR. Conservation of a stepwise, energy-sensitive pathway involving HP68 for assembly of primate lentivirus capsids in cells. J Virol 2004; 78:1645-56. [PMID: 14747530 PMCID: PMC369511 DOI: 10.1128/jvi.78.4.1645-1656.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we have described a stepwise, energy-dependent pathway for human immunodeficiency virus type 1 (HIV-1) capsid assembly in a cell-free system. In this pathway, Gag polypeptides utilize the cellular factor HP68 and assemble into immature capsids by way of assembly intermediates that have defined biochemical characteristics. Here we address whether this pathway is universally conserved among primate lentiviruses and can be observed in mammalian cells. We demonstrate that HIV-2 Gag associates with human HP68 in a cell-free system and that Gag proteins of HIV-2, simian immunodeficiency virus SIVmac239, and SIVagm associate with endogenous HP68 in primate cells, as is seen for HIV-1. Analysis of primate cells expressing lentivirus Gag proteins revealed Gag-containing complexes with the same sedimentation values as seen for previously described HIV-1 assembly intermediates in the cell-free system (10S, 80-150S, and 500S). These complexes fit criteria for assembly intermediates as judged by energy sensitivity, pattern of HP68 association, and the failure of specific complexes to be formed by assembly-incompetent Gag mutants. We also demonstrate that virus-like particles released from cells do not appear to contain HP68, suggesting that HP68 is released from Gag upon completion of capsid assembly in cells, as was observed previously in the cell-free system. Together these findings support a model in which all primate lentivirus capsids assemble by a conserved pathway of HP68-containing, energy-dependent assembly intermediates that have specific biochemical features.
Collapse
Affiliation(s)
- Julia E Dooher
- Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
46
|
Nishiwaki K, Kubota Y, Chigira Y, Roy SK, Suzuki M, Schvarzstein M, Jigami Y, Hisamoto N, Matsumoto K. An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans. Nat Cell Biol 2003; 6:31-7. [PMID: 14688791 DOI: 10.1038/ncb1079] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 11/25/2003] [Indexed: 11/09/2022]
Abstract
In the nematode Caenorhabditis elegans, the gonad acquires two U-shaped arms through the directed migration of its distal tip cells (DTCs), which are located at the tip of the growing gonad arms. A member of the ADAM (a disintegrin and metalloprotease) family, MIG-17, regulates directional migration of DTCs: MIG-17 is synthesized and secreted from the muscle cells of the body wall, and diffuses to the gonad where it is required for DTC migration. The mig-23 mutation causes defective migration of DTCs and interacts genetically with mig-17. Here, we report that mig-23 encodes a membrane-bound nucleoside diphosphatase (NDPase) required for glycosylation and proper localization of MIG-17. Our findings indicate that an NDPase affects organ morphogenesis through glycosylation of the MIG-17 ADAM protease.
Collapse
Affiliation(s)
- Kiyoji Nishiwaki
- RIKEN Center for Developmental Biology and PRESTO, Japan Science and Technology Corporation, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cannon SB, McCombie WR, Sato S, Tabata S, Denny R, Palmer L, Katari M, Young ND, Stacey G. Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol Genet Genomics 2003; 270:347-61. [PMID: 14598165 DOI: 10.1007/s00438-003-0928-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 09/03/2003] [Indexed: 10/26/2022]
Abstract
Apyrases have been suggested to play important roles in plant nutrition, photomorphogenesis, and nodulation. To help trace the evolution of these genes in the legumes--and possibly, the acquisition of new functions for nodulation--apyrase-containing BACs were sequenced from three legume genomes. Genomic sequences from Medicago truncatula, Glycine max and Lotus japonicus were compared to one another and to corresponding regions in Arabidopsis thaliana. A phylogenetic analysis of apyrase homologs from these regions and sequences from other legume species, as well as other plant families, identified a potentially legume-specific clade that contains a well-characterized soybean ( G. soja) apyrase, Gs52, as well as homologs from Dolichos, Lotus, Medicago and Pisum. Sister clades contain homologs from members of Brassicaceae, Solanaceae, Poaceae and Fabaceae. Comparisons of rates of change at synonymous and nonsynonymous sites in the Gs52 and sister clades show rapid evolution in the potentially legume-specific Gs52 clade. The genomic organization of the apyrase-containing BACs shows evidence of gene duplication, genomic rearrangement, and gene conversion among Gs52 homologs. Taken together, these results suggest a scenario of local apyrase gene duplication in an ancestor of the legumes, followed by functional diversification and increased rates of change in the new genes, and further duplications in the Galegae (which include the genera Medicago and Pisum). The study also provides a detailed comparison of genomic regions between two model genomes which are now being sequenced ( M. truncatulaand L. japonicus), and a genome from an economically important legume species ( G. max).
Collapse
Affiliation(s)
- S B Cannon
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wink MR, Lenz G, Braganhol E, Tamajusuku ASK, Schwartsmann G, Sarkis JJF, Battastini AMO. Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 2003; 198:211-8. [PMID: 12957360 DOI: 10.1016/s0304-3835(03)00308-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to characterize the enzymes involved in the purine nucleotide catabolism as indicators of invasiveness and aggressiveness of malignant gliomas, the degradation of extracellular nucleotides by five different glioma cell lines was investigated and compared with primary astrocytes. Rapid hydrolysis of extracellular ATP and ADP by astrocytes was observed, whereas all glioma cell lines examined presented low rates of ATP hydrolysis. In contrast, ecto-5'-nucleotidase activity was increased in glioma cell lines when compared to astrocytes. Considering that ATP is recognized as a mitogenic factor that induces proliferation in human glioma cells, the substantial decrease in ATP and ADP hydrolysis observed in gliomas leads us to suggest that alterations in the ecto-nucleotidases pathway may represent an important mechanism associated with malignant transformation of glioma cell lines.
Collapse
Affiliation(s)
- Marcia R Wink
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ. Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Heart Circ Physiol 2003; 285:H693-700. [PMID: 12689860 DOI: 10.1152/ajpheart.01026.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, it was reported that red blood cells (RBCs) are required to demonstrate participation of nitric oxide (NO) in the regulation of rabbit pulmonary vascular resistance (PVR). RBCs do not synthesize NO; hence, we postulated that ATP, present in millimolar amounts in RBCs, was the mediator, which evoked NO synthesis in the vascular endothelium. First, we found that deformation of RBCs, as occurs on passage across the pulmonary circulation with increasing flow rate, evoked increments in ATP release. Here, ATP (300 nM), administered to isolated, salt solution-perfused (PSS) rabbit lungs, decreased total and upstream (arterial) PVR, a response inhibited by NG-nitro-L-arginine methyl ester (L-NAME, 100 microM). In lungs perfused with PSS containing RBCs, L-NAME increased total and upstream PVR. In lungs perfused with PSS containing glibenclamide-treated RBCs, which inhibits ATP release, L-NAME was without effect. Apyrase grade VII (8 U/ml), which degrades ATP to AMP, was without effect on PVR in PSS-perfused lungs. These results are consistent with the hypothesis that ATP, released from RBCs as they traverse the pulmonary circulation, evokes endogenous NO synthesis.
Collapse
Affiliation(s)
- Randy S Sprague
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 South Grand Blvd., St. Louis, MO 63104, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Kukulski F, Komoszyński M. Purification and characterization of NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) from porcine brain cortex synaptosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3447-54. [PMID: 12899702 DOI: 10.1046/j.1432-1033.2003.03734.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We purified to homogeneity and characterized NTPDase1 and NTPDase2 from porcine brain cortex synaptosomes. SDS/PAGE and immunoblotting with antibodies specific to these enzymes revealed a molecular mass estimated at 72 kDa for NTPDase1 and 66 for NTPDase2. Both enzymes exhibited kinetic properties typical for all members of the NTPDase family, e.g. low substrate specificity for tri- and diphosphonucleosides, divalent cations dependency and insensitivity towards ATPase inhibitors. The calculated Km value for NTPDase1 in respect to ATP as a substrate (97 microm) was three times lower in comparison to analogous values for NTPDase2 (270 microm). Additionally, NTPDase1 had a three times higher Kcat/Km coefficient than NTPDase2 (860 and 833 micromol product.s(-1), respectively). We have also demonstrated that in spite of differences in the affinity of ATP for both hydrolases, these enzymes have similar molecular activity. Taken together, these results indicate that NTPDase1 would terminate P2 receptor-mediated signal transmission whereas activity of NTPDase2 may contribute to decreasing high (toxic) concentrations of ATP and/or to production of another signal molecule, ADP.
Collapse
Affiliation(s)
- Filip Kukulski
- Department of Biochemistry, Institute of General and Molecular Biology, N. Copernicus University, Toruń, Poland
| | | |
Collapse
|