1
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
2
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
3
|
Kang YH, Varghese PM, Aiyan AA, Pondman K, Kishore U, Sim RB. Complement-Coagulation Cross-talk: Factor H-mediated regulation of the Complement Classical Pathway activation by fibrin clots. Front Immunol 2024; 15:1368852. [PMID: 38933264 PMCID: PMC11199686 DOI: 10.3389/fimmu.2024.1368852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- MediMabBio Inc., Pangyo Business Growth Centre, Gyeonggi-do, Republic of Korea
| | - Praveen M. Varghese
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, Netherlands
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Robert B. Sim
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Xie HG, Jiang LP, Tai T, Ji JZ, Mi QY. The Complement System and C4b-Binding Protein: A Focus on the Promise of C4BPα as a Biomarker to Predict Clopidogrel Resistance. Mol Diagn Ther 2024; 28:189-199. [PMID: 38261250 DOI: 10.1007/s40291-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
The complement system plays a dual role in the body, either as a first-line defense barrier when balanced between activation and inhibition or as a potential driver of complement-associated injury or diseases when unbalanced or over-activated. C4b-binding protein (C4BP) was the first circulating complement regulatory protein identified and it functions as an important complement inhibitor. C4BP can suppress the over-activation of complement components and prevent the complement system from attacking the host cells through the binding of complement cleavage products C4b and C3b, working in concert as a cofactor for factor I in the degradation of C4b and C3b, and consequently preventing or reducing the assembly of C3 convertase and C5 convertase, respectively. C4BP, particularly C4BP α-chain (C4BPα), exerts its unique inhibitory effects on complement activation and opsonization, systemic inflammation, and platelet activation and aggregation. It has long been acknowledged that crosstalk or interplay exists between the complement system and platelets. Our unpublished preliminary data suggest that circulating C4BPα exerts its antiplatelet effects through inhibition of both complement activity levels and complement-induced platelet reactivity. Plasma C4BPα levels appear to be significantly higher in patients sensitive to, rather than resistant to, clopidogrel, and we suggest that a plasma C4BPα measurement could be used to predict clopidogrel resistance in the clinical settings.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
5
|
Budkowska M, Ostrycharz E, Serwin NM, Nazarewski Ł, Cecerska-Heryć E, Poręcka M, Rykowski P, Pietrzak R, Zieniewicz K, Siennicka A, Hukowska-Szematowicz B, Dołęgowska B. Biomarkers of the Complement System Activation (C3a, C5a, sC5b-9) in Serum of Patients before and after Liver Transplantation. Biomedicines 2023; 11:2070. [PMID: 37509709 PMCID: PMC10377212 DOI: 10.3390/biomedicines11072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The liver has a huge impact on the functioning of our body and the preservation of homeostasis. It is exposed to many serious diseases, which may lead to the chronic failure of this organ, which is becoming a global health problem today. Currently, the final form of treatment in patients with end-stage (acute and chronic) organ failure is transplantation. The proper function of transplanted organs depends on many cellular processes and immune and individual factors. An enormous role in the process of acceptance or rejection of a transplanted organ is attributed to, among others, the activation of the complement system. The aim of this study was the evaluation of the concentration of selected biomarkers' complement system activation (C3a, C5a, and sC5b-9 (terminal complement complex)) in the serum of patients before and after liver transplantation (24 h, two weeks). The study was conducted on a group of 100 patients undergoing liver transplantation. There were no complications during surgery and no transplant rejection in any of the patients. All patients were discharged home 2-3 weeks after the surgery. The levels of all analyzed components of the complement system were measured using the ELISA method. Additionally, the correlations of the basic laboratory parameters-C-reactive protein (CRP), hemoglobin (Hb), total bilirubin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), and albumin-with the parameters of the complement system (C3a, C5a, and sC5b-9) were determined. In our study, changes in the concentrations of all examined complement system components before and after liver transplantation were observed, with the lowest values before liver transplantation and the highest concentration two weeks after. The direct increase in components of the complement system (C3a, C5a, and sC5b-9) 24 h after transplantation likely affects liver damage after ischemia-reperfusion injury (IRI), while their increase two weeks after transplantation may contribute to transplant tolerance. Increasingly, attention is being paid to the role of C3a and CRP as biomarkers of damage and failure of various organs. From the point of view of liver transplantation, the most interesting correlation in our own research was found exactly between CRP and C3a, 24 h after the transplantation. This study shows that changes in complement activation biomarkers and the correlation with CRP in blood could be a prognostic signature of liver allograft survival or rejection.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Natalia Maria Serwin
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Poręcka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Radosław Pietrzak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Zhang QY, Guo J, Xu L, Wei Y, Zhou ST, Lu QY, Guo L, Sun QY. Salvianolic acid A alleviates lipopolysaccharide-induced disseminated intravascular coagulation by inhibiting complement activation. BMC Complement Med Ther 2022; 22:245. [PMID: 36127691 PMCID: PMC9487091 DOI: 10.1186/s12906-022-03720-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Disseminated intravascular coagulation (DIC) is a syndrome characterized by coagulopathy, microthrombus, and multiple organ failure. The complement system in DIC is overactivated, and the functions of complement and coagulation pathways are closely related. Our previous screening revealed that salvianolic acid A (SAA) has anti-complement activity. The hyper-activated complement system was involved in the lipopolysaccharide (LPS) induced DIC in rats. The effects of SAA anti-complement action on LPS-induced DIC in rats were investigated. Methods The complement activity of the classical pathway and alternative pathway was detected through an in vitro hemolysis assay. The binding sites of SAA and complement C3b were predicted by molecular docking. LPS-induced disseminated coagulation experiments were performed on male Wistar rats to assess coagulation function, complement activity, inflammation, biochemistry, blood routine, fibrinolysis, and survival. Results SAA had an anti-complement activity in vivo and in vitro and inhibited the complement activation in the classical and alternative pathway of complement. The infusion of LPS into the rats impaired the coagulation function, increased the plasma inflammatory cytokine level, complemented activation, reduced the clotting factor levels, fibrinogen, and platelets, damaged renal, liver, and lung functions, and led to a high mortality rate (85%). SAA treatment of rats inhibited complement activation and attenuated the significant increase in D-dimer, interleukin-6, alanine aminotransferase, and creatinine. It ameliorated the decrease in plasma levels of fibrinogen and platelets and reversed the decline in activity of protein C and antithrombin III. The treatment reduced kidney, liver, and lung damage, and significantly improved the survival rate of rats (46.2 and 78.6% for the low- and high-dose groups, respectively). Conclusion SAA reduced LPS-induced DIC by inhibiting complement activation. It has considerable potential in DIC treatment.
Collapse
|
8
|
Golomingi M, Kohler J, Jenny L, Hardy ET, Dobó J, Gál P, Pál G, Kiss B, Lam WA, Schroeder V. Complement lectin pathway components MBL and MASP-1 promote haemostasis upon vessel injury in a microvascular bleeding model. Front Immunol 2022; 13:948190. [PMID: 36032172 PMCID: PMC9412763 DOI: 10.3389/fimmu.2022.948190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundComplement lectin pathway components, in particular mannan-binding lectin (MBL) and MBL-associated serine proteases (MASPs) have been shown to interact with coagulation factors and contribute to clot formation. Here we investigated the role of MBL and MASP-1 in the haemostatic response following mechanical vessel injury in a human microfluidic bleeding model.MethodsWe studied haemostasis in a microvascular bleeding model in the presence of human endothelial cells and human whole blood under flow conditions. We monitored incorporation of proteins into the clot with fluorescently labelled antibodies and studied their effects on clot formation, platelet activation, and bleeding time with specific inhibitors. Platelet activation was also studied by flow cytometry.ResultsUpon vessel injury, MBL accumulated at the injury site in a well-defined wall-like structure. MBL showed partial colocalisation with fibrin, and strong colocalisation with von Willebrand factor and (activated) platelets. Flow cytometry ruled out direct binding of MBL to platelets, but confirmed a PAR4- and thrombin-dependent platelet-activating function of MASP-1. Inhibiting MBL during haemostasis reduced platelet activation, while inhibiting MASP-1 reduced platelet activation, fibrin deposition and prolonged bleeding time.ConclusionWe show in a microvascular human bleeding model that MBL and MASP-1 have important roles in the haemostatic response triggered by mechanical vessel injury: MBL recognises the injury site, while MASP-1 increases fibrin formation, platelet activation and shortens bleeding time. While the complement lectin pathway may be harmful in the context of pathological thrombosis, it appears to be beneficial during the physiological coagulation response by supporting the crucial haemostatic system.
Collapse
Affiliation(s)
- Murielle Golomingi
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
| | - Jessie Kohler
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
| | - Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
| | - Elaissa T. Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
- *Correspondence: Verena Schroeder,
| |
Collapse
|
9
|
Abstract
Classically, platelets have been described as the cellular blood component that mediates hemostasis and thrombosis. This important platelet function has received significant research attention for >150 years. The immune cell functions of platelets are much less appreciated. Platelets interact with and activate cells of all branches of immunity in response to pathogen exposures and infection, as well as in response to sterile tissue injury. In this review, we focus on innate immune mechanisms of platelet activation, platelet interactions with innate immune cells, as well as the intersection of platelets and adaptive immunity. The immune potential of platelets is dependent in part on their megakaryocyte precursor providing them with the molecular composition to be first responders and immune sentinels in initiating and orchestrating coordinated pathogen immune responses. There is emerging evidence that extramedullary megakaryocytes may be immune differentiated compared with bone marrow megakaryocytes, but the physiological relevance of immunophenotypic differences are just beginning to be explored. These concepts are also discussed in this review. The immune functions of the megakaryocyte/platelet lineage have likely evolved to coordinate the need to repair a vascular breach with the simultaneous need to induce an immune response that may limit pathogen invasion once the blood is exposed to an external environment.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605
| | - Alison Livada
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
10
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
11
|
Alternative Complement Pathway Activation Provokes a Hypercoagulable State with Diminished Fibrinolysis. Shock 2021; 53:560-565. [PMID: 31441792 DOI: 10.1097/shk.0000000000001437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Several disease processes trigger prolonged activation of the alternative complement pathway. Crosslinks between complement activation and physiologic changes in platelets and neutrophils have been identified, but how this interplay alters the hemostatic potential in humans remains undefined. We hypothesize that activation of the alternative pathway triggers a hypercoagulable state. METHODS C3/C5 convertase Cobra Venom Factor (CVF, 10 Units/mL) was employed to activate the alternative complement pathway in whole blood. Complement inhibition was completed with inhibitors for C3/C3b (Compstatin, 25 and 50 μM), C3a receptor (SB290157, 300 nM, C3aR), and C5a receptor (W54011, 6 nM, C5aR). Coagulation was assessed using native thrombelastography which produces the following: reaction time (R time); angle; maximum amplitude (MA); percent fibrinolysis at 30-min post-MA (LY30). RESULTS Inhibition with C3aR and C5aR inhibitors did not alter clot formation (R time, 11.2 vs 11.6 min, P = 0.36), clot strength (MA, 52.0 vs 52.3 mm, P = 0.43), or fibrinolysis (LY30, 1.6 vs 4.0%, P = 0.19). Compstatin did not influence clot formation or clot strength but did induce a dose-dependent increase in fibrinolysis (control LY30 3.0 vs 7.8% and 12.4% for 25 and 50 μM respectively, P = 0.0002). CVF increased MA (58.0 vs 62.8 mm, P < 0.0001), decreased LY30 (2.3 vs 1.4%, P = 0.004), and increased R time (8.4 vs 9.9 min, P = 0.008). Compstatin reversed the effects of CVF, while C5a reversed only the change in LY30. CONCLUSIONS C3 contributes to fibrinolysis, as inhibition with Compstatin enhanced fibrinolysis, and CVF cleavage of C3 decreased fibrinolysis. CVF also induced a hypercoagulable state with increased clot strength.
Collapse
|
12
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Delvasto-Nuñez L, Jongerius I, Zeerleder S. It takes two to thrombosis: Hemolysis and complement. Blood Rev 2021; 50:100834. [PMID: 33985796 DOI: 10.1016/j.blre.2021.100834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Thromboembolic events represent the most common complication of hemolytic anemias characterized by complement-mediated hemolysis such as paroxysmal nocturnal hemoglobinuria and autoimmune hemolytic anemia. Similarly, atypical hemolytic uremic syndrome is characterized by hemolysis and thrombotic abnormalities. The main player in the development of thrombosis in hemolytic diseases is suggested to be the complement system. However, the release of extracellular hemoglobin and heme by hemolysis itself can also drive procoagulant responses. Both, complement activation and hemolysis promote the activation of neutrophils resulting in the formation of neutrophil extracellular traps and induce inflammation and vascular damage which all together might (synergistically) lead to hypercoagulability. In this review we aim to summarize the current knowledge on the role of complement activation and hemolysis in the onset of thrombosis in hemolytic diseases. This review will discuss the interplay between different biological systems and neutrophil activation contributing to the pathogenesis of thrombosis. Finally, we will combine this fundamental knowledge and address the pathophysiology of hemolysis in prototypical complement-driven diseases.
Collapse
Affiliation(s)
- Laura Delvasto-Nuñez
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, University of Bern, Switzerland.
| |
Collapse
|
14
|
Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020; 11:1212. [PMID: 32754149 PMCID: PMC7366831 DOI: 10.3389/fimmu.2020.01212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system, originally classified as part of innate immunity, is a tightly self-regulated system consisting of liquid phase, cell surface, and intracellular proteins. In the blood circulation, the complement system, platelets, coagulation system, and fibrinolysis system form a close and complex network. They activate and regulate each other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation of each cascade system results in clinical manifestations and the progression of different diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis, systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we summarize the crosstalk between the complement system, platelets, and coagulation, provide integrative insights into how complement dysfunction leads to hemopathic progression, and further discuss the therapeutic relevance of complement in hemolytic and thrombotic diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
|
16
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
17
|
Høiland II, Liang RA, Braekkan SK, Pettersen K, Ludviksen JK, Latysheva N, Snir O, Ueland T, Hindberg K, Mollnes TE, Hansen JB. Complement activation assessed by the plasma terminal complement complex and future risk of venous thromboembolism. J Thromb Haemost 2019; 17:934-943. [PMID: 30920726 DOI: 10.1111/jth.14438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND It remains uncertain whether activation of the complement system, assessed by the soluble terminal C5b-9 complement complex (plasma TCC), is associated with future risk of incident venous thromboembolism (VTE). OBJECTIVES To investigate the association between plasma levels of TCC and future risk of incident VTE in a nested case-control study, and to explore genetic variants associated with TCC using protein quantitative trait loci analysis of exome sequencing data. METHODS We sampled 415 VTE cases and 848 age- and sex-matched controls from a population-based cohort, the Tromsø study. Logistic regression models were used to calculate odds ratios with 95% confidence intervals for VTE across quartiles of plasma levels of TCC. Whole exome sequencing was conducted using the Agilent SureSelect 50 Mb capture kit. RESULTS The risk of VTE increased across increasing quartiles of plasma TCC, particularly for unprovoked VTE. Participants with TCC in the highest quartile (>1.40 complement arbitrary units/mL) had an odds ratio for unprovoked VTE of 1.74 (95% confidence interval: 1.10-2.78) compared with those with TCC in the lowest quartile (≤0.80 complement arbitrary units/mL) in analyses adjusted for age, sex, and body mass index. A substantially higher risk for VTE was observed in samples taken shortly before VTE event. We found no association between genome-wide or complement-related gene variants and plasma levels of TCC. CONCLUSIONS We found that high levels of plasma TCC were associated with VTE risk, and unprovoked events in particular. There was no genome-wide association between gene variants and plasma levels of TCC.
Collapse
Affiliation(s)
- Ina I Høiland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Robin A Liang
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Sigrid K Braekkan
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | | | | | - Nadezhda Latysheva
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Omri Snir
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Thor Ueland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Hindberg
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Tom E Mollnes
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - John-Bjarne Hansen
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
18
|
Rasmussen KL, Nordestgaard BG, Nielsen SF. Complement C3 and Risk of Diabetic Microvascular Disease: A Cohort Study of 95202 Individuals from the General Population. Clin Chem 2018. [PMID: 29523638 DOI: 10.1373/clinchem.2018.287581] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Whether the complement system is involved in the development of diabetic microvascular disease is unknown. We tested the hypothesis that high concentrations of complement C3 are associated with increased risk of diabetic retinopathy, nephropathy, and neuropathy in individuals from the general population. METHODS We studied 95202 individuals from the general population with baseline measurements of complement C3, genotyped for rs1065489, rs429608, and rs448260 determining concentrations of complement C3, and enrolled in the Copenhagen General Population Study from 2003 through 2013, following them until April 10, 2013. Rs1065489, rs429608, and rs448260 were identified with genome-wide association scans in 3752 individuals from the Copenhagen City Heart Study. RESULTS The cumulative incidence was increased from the lowest tertile to the highest tertile of complement C3 for diabetic retinopathy (log-rank trend, P = 1 × 10-20), nephropathy (P = 7 × 10-15), and neuropathy (P = 5 × 10-10). Multifactorially adjusted hazard ratios for a 1 SD higher concentration of complement C3 were 1.87 (95% CI, 1.61-2.18) for diabetic retinopathy, 1.90 (1.62-2.23) for diabetic nephropathy, and 1.56 (1.29-1.89) for diabetic neuropathy. The multifactorially adjusted hazard ratio for individuals with the highest vs lowest tertile of complement C3 was 3.29 (1.78-6.07) for retinopathy, 2.71 (1.42-5.16) for nephropathy, and 2.40 (1.26-4.54) for neuropathy. CONCLUSIONS High baseline concentrations of complement C3 were associated with increased risk of diabetic retinopathy, nephropathy, and neuropathy in individuals from the general population. These epidemiological findings were substantiated by a Mendelian randomization approach, potentially indicating causality.
Collapse
Affiliation(s)
- Katrine Laura Rasmussen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
19
|
Tabib A, Hindi I, Karbian N, Zelig O, Falach B, Mevorach D. Prothrombotic mechanisms in patients with congenital p.Cys89Tyr mutation in CD59. Thromb Res 2018; 168:67-77. [PMID: 29929138 DOI: 10.1016/j.thromres.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Thrombosis is the prognostic factor with the greatest effect on survival in patients with paroxysmal nocturnal hemoglobinuria (PNH), who lack dozens of membrane surface proteins. We recently described a primary homozygous Cys89Tyr congenital nonfunctioning CD59 in humans with clinical manifestation in infancy, associated with chronic hemolysis, recurrent strokes, and relapsing peripheral demyelinating neuropathy. Here we investigated hypercoagulability mechanisms characterizing the syndrome. METHODS Membrane attack complex (MAC) deposition (anti-SC5b-9) and free hemoglobin (colorimetric assay) were assessed. Platelet activation was identified (anti-CD61, anti-CD62P), and microparticles (MPs) of 0.5-0.9 μm, were characterized (Annexin V, anti-human GlyA, anti-CD15, anti-CD14, anti-CD61). Platelet-monocyte aggregation was assessed with FlowSight. FINDINGS 2/7 patients (29%) with homozygosity for Cys89Tyr and 6/12 (50%) with any of four described CD59 mutations had recurrent strokes. In plasma samples from four patients carrying identical mutations, MAC deposition was increased on RBCs (p < 0.0003), neutrophils (p < 0.009), and platelets (p < 0.0003). Free-plasma hemoglobin levels were abnormally high, up to 100 mg/dl. Patients with CD59 mutation had RBC-derived MP levels 9-fold higher than those in healthy controls (p < 0.01), and 2-2.5 fold higher than PNH patients (p < 0.09). Leukocyte-activated platelet aggregation was increased (p < 0.0062). Loss of CD59 was shown in the endothelium of these patients. INTERPRETATION Nonfunctioning CD59 is a major risk factor for stroke and hypercoagulability. Uncontrolled hemolysis causes massive MP release and endothelial heme damage. MAC attack on unprotected endothelium and platelet activation and aggregation with leukocytes mediate additional mechanisms leading to vascular occlusion. It is suggested that CD59 loss represents a major arterial prothrombotic factor in PNH and additional diseases.
Collapse
Affiliation(s)
- Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Issam Hindi
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netanel Karbian
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Zelig
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Batla Falach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
20
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
21
|
Xu C, Li E, Suo Y, Su Y, Lu M, Zhao Q, Qin JG, Chen L. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress. FISH & SHELLFISH IMMUNOLOGY 2018; 76:48-57. [PMID: 29486352 DOI: 10.1016/j.fsi.2018.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Hyperosmotic stress can adversely affect fish immunity, but little is known about the histological and transcriptomic responses of immune organs in fish in a hyperosmotic environment. This study evaluated the effects of long-term hypersaline conditions (16‰) on the growth, histology and transcriptomics of the two main immune organs, the spleen and head kidney, in Nile tilapia Oreochromis niloticus relative to those reared in freshwater for eight weeks. No differences in weight gain and specific growth rate were found between fish reared under these two salinities. Hyperosmotic stress induced a congestive or enlarged spleen. Platelet- and coagulation-related gene expression was significantly decreased in tilapia at 16‰. The red cell distribution width and value of the mean corpuscular hemoglobin were significantly greater in fish at 16‰ salinity than in control fish in freshwater. A large volume of melano-macrophages in the spleen and pigment deposition in both the spleen and head kidney were observed in the histological sections in fish at 16‰ salinity. Transmission electron microscopic results showed abnormal macrophages with deposition granules in the spleen and head kidney and more neutrophils in the head kidney of fish at 16‰ than in control fish. In total, 772 and 502 genes were annotated for significantly different expression in the spleen and head kidney, respectively, and corresponded to five and one significantly changed immune system pathways, respectively. The complement pathway in the spleen was significantly down-regulated at 16‰. This study indicates that long-term exposure of Nile tilapia to a hyperosmotic environment can induce splenomegaly, reduce coagulation function, enhance phagocytic activity and down-regulate the complement pathway in the spleen. The spleen is a more sensitive organ for immune responses to chronic ambient salinity stress than the head kidney in Nile tilapia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Yantong Suo
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yujie Su
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Minghui Lu
- Hainan Dingda Aquaculture Co., Ltd., Wenchang, Hainan 571343, China
| | - Qun Zhao
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Langer HF, Verschoor A. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2017; 110:910-9. [DOI: 10.1160/th13-02-0102] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
SummaryPlatelets have a central function in repairing vascular damage and stopping acute blood loss. They are equally central to thrombus formation in cardiovascular diseases such as myocardial infarction and ischaemic stroke. Beyond these classical prothrombotic diseases, immune mediated pathologies such as haemolytic uraemic syndrome (HUS) or paroxysmal nocturnal haemoglobinuria (PNH) also feature an increased tendency to form thrombi in various tissues. It has become increasingly clear that the complement system, part of the innate immune system, has an important role in the pathophysiology of these diseases. Not only does complement influence prothrombotic disease, it is equally involved in idiopathic thrombocytopenic purpura (ITP), an autoimmune disease characterised by thrombocytopenia. Thus, there are complex interrelationships between the haemostatic and immune systems, and platelets and complement in particular. Not only does complement influence platelet diseases such as ITP, HUS and PNH, it also mediates interaction between microbes and platelets during systemic infection, influencing the course of infection and development of protective immunity. This review aims to provide an integrative overview of the mechanisms underlying the interactions between complement and platelets in health and disease.
Collapse
|
23
|
Bayly-Jones C, Bubeck D, Dunstone MA. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160221. [PMID: 28630159 PMCID: PMC5483522 DOI: 10.1098/rstb.2016.0221] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The membrane attack complex (MAC) is an important innate immune effector of the complement terminal pathway that forms cytotoxic pores on the surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique 'split-washer' shape, coupled with an irregular giant β-barrel architecture, enable an atypical mechanism of hole punching and represent a novel system for which to study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC. Moreover, it will discuss how structures of the pore and component proteins underpin a mechanism for MAC function, modulation and inhibition.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW2 7AZ, UK
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| |
Collapse
|
24
|
Tabib A, Karbian N, Mevorach D. Demyelination, strokes, and eculizumab: Lessons from the congenital CD59 gene mutations. Mol Immunol 2017. [PMID: 28622911 DOI: 10.1016/j.molimm.2017.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurological symptoms of patients with p.Cys89Tyr mutation in the CD59 gene include recurrent peripheral neuropathy resembling Guillain-Barré syndrome, characterized by sensory-motor demyelinating neuropathy with secondary axonal damage and moderate enhancement of the nerve roots on spine MRI, together with recurrent strokes and retinal involvement. Three additional mutations in CD59, leading to loss of function, have been described, and overall, 12/12 (100%) of patients with any mutation presented with neurological symptoms; 11/12 (92%) patients presented with recurrent peripheral neuropathy, 6/12 (50%) with recurrent strokes, and 1/12 (8%) with retinal involvement. We review the possible thrombophilic profile associated with the mutations. In these patients, excessive intravascular hemolysis saturates scavenger mechanisms resulting in free hemoglobin in plasma that irreversibly reacts with nitric oxide to form nitrate and methemoglobin, leading to arterial thrombosis. CD59 loss of function is also one of the major thrombophilic mechanisms in patients with paroxysmal nocturnal hemoglobinuria. We then describe the relationship with demyelination. The lack of CD59 allows uncontrolled complement amplification following low-level spontaneous-, viral-, or post viral-induced complement activation, resulting in severe demyelination in the peripheral nervous system. It is interesting, and certainly encouraging, that after 3 years, following 4 patients with Cys89Tyr mutations who are treated with eculizumab, no strokes occurred and non-permanent neurological insults underwent resolution without any new neurological exacerbations.
Collapse
Affiliation(s)
- Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netanel Karbian
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
25
|
Makowski M, Smorag I, Makowska J, Bissinger A, Grycewicz T, Paśnik J, Kidawa M, Lubiński A, Zielińska M, Baj Z. Platelet reactivity and mean platelet volume as risk markers of thrombogenesis in atrial fibrillation. Int J Cardiol 2017; 235:1-5. [PMID: 28302320 DOI: 10.1016/j.ijcard.2017.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
Atrial fibrillation (AF) is associated with increased risk of thromboembolic complications. One of the markers of the increased risk of hypercoagulable state is platelet hyperreactivity. The aim of the study was to assess impact of arrhythmia on platelet reactivity. METHODS The study included 36 (mean age 48,3; range 21-60) male patients with lone atrial fibrillation, with exclusion of concomitant diseases known to trigger hypercoagulable state. The AF patients underwent cardioversion to restore sinus rhythm and were subsequently under observation for 1month. Echocardiography, ECG and blood collection was performed before cardioversion (T0) and 4weeks after successful cardioversion (T1). During the study period patients have been contacted and examined every week and 24h ECG monitoring was performed. Platelet reactivity was assessed based on changes of CD62 and CD42b expression on platelet surface after stimulation with thrombin. Also changes in MPV were assessed. RESULTS In all patients sinus rhythm was maintained at the end of the study period, however in 14 patients recurrences of AF were observed, confirmed by 24h ECG monitoring (atrial fibrillation recurrence group - AFR) and 22 patients maintained sinus rhythm throughout the whole study period (SR group). Mean fluorescence intensity (MFI) of CD62 on thrombin stimulated platelets decreased significantly 4weeks after electrical cardioversion as compared to T0 (48.04±22.42 vs 41.47±16.03; p<0.01). Also MFI of CD42b on thrombin stimulated platelets decreased significantly 4weeks after electrical cardioversion as compared to T0 (22.16±10.82 vs 12.06±5.99; p<0.0001). Platelets reactivity estimated by CD 62 expression in SR group decreased significantly after 4weeks observation (58.01±15.26 vs 46.57±13.44; p<0.001) opposite to AFR group 35.66±21.87 vs 34.54±16.4; p-ns). Moreover there were significant differences between basal reactivity during AF between SR and AFR groups (58.01±15.26 vs 35.66±21.87; p-0.01). MFI of CD42b on thrombin stimulated platelets decreased significantly both in AFR and SR groups (22.05±11.36 vs 13.8±6.03; p<0.001 and 21.87±14.18 vs 10.04±5.09; p<0005). MPV decreased significantly 4weeks after electrical cardioversion as compared to T0 (8.81±0.19 vs 8.42±0.14; p<0.0001). CONCLUSION The changes of platelet reactivity to thrombin observed after restoration of sinus rhythm in patients prove that arrhythmia intrinsically leads to increased reactivity of platelets.
Collapse
Affiliation(s)
- Marcin Makowski
- Department of Interventional Cardiology and Cardiac Arrhythmias, Medical University of Lodz, Poland.
| | - Ireneusz Smorag
- Department of Pathophysiology and Immunology, Medical University of Lodz, Poland
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, Poland
| | - Andrzej Bissinger
- Department of Interventional Cardiology and Cardiac Arrhythmias, Medical University of Lodz, Poland
| | - Tomasz Grycewicz
- Department of Interventional Cardiology and Cardiac Arrhythmias, Medical University of Lodz, Poland
| | - Jarek Paśnik
- Department of Paediatrics, Preventive Cardiology and Immunology of Developmental Age, Medical University of Lodz, Poland
| | - Michal Kidawa
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Poland
| | - Andrzej Lubiński
- Department of Interventional Cardiology and Cardiac Arrhythmias, Medical University of Lodz, Poland
| | | | - Zbigniew Baj
- Department of Pathophysiology and Immunology, Medical University of Lodz, Poland
| |
Collapse
|
26
|
Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:387. [PMID: 27890016 PMCID: PMC5125043 DOI: 10.1186/s13054-016-1570-4] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a technology capable of providing short-term mechanical support to the heart, lungs or both. Over the last decade, the number of centres offering ECMO has grown rapidly. At the same time, the indications for its use have also been broadened. In part, this trend has been supported by advances in circuit design and in cannulation techniques. Despite the widespread adoption of extracorporeal life support techniques, the use of ECMO remains associated with significant morbidity and mortality. A complication witnessed during ECMO is the inflammatory response to extracorporeal circulation. This reaction shares similarities with the systemic inflammatory response syndrome (SIRS) and has been well-documented in relation to cardiopulmonary bypass. The exposure of a patient’s blood to the non-endothelialised surface of the ECMO circuit results in the widespread activation of the innate immune system; if unchecked this may result in inflammation and organ injury. Here, we review the pathophysiology of the inflammatory response to ECMO, highlighting the complex interactions between arms of the innate immune response, the endothelium and coagulation. An understanding of the processes involved may guide the design of therapies and strategies aimed at ameliorating inflammation during ECMO. Likewise, an appreciation of the potentially deleterious inflammatory effects of ECMO may assist those weighing the risks and benefits of therapy.
Collapse
Affiliation(s)
- Jonathan E Millar
- Critical Care Research Group, University of Queensland, Brisbane, Australia. .,Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Queensland, 4032, Australia.
| | - Jonathon P Fanning
- Critical Care Research Group, University of Queensland, Brisbane, Australia
| | - Charles I McDonald
- Critical Care Research Group, University of Queensland, Brisbane, Australia
| | - Daniel F McAuley
- Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - John F Fraser
- Critical Care Research Group, University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
The dysfunction of platelets in paroxysmal nocturnal hemoglobinuria. Thromb Res 2016; 148:50-55. [PMID: 27780113 DOI: 10.1016/j.thromres.2016.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/06/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Thrombosis is a dangerous complication of paroxysmal nocturnal hemoglobinuria (PNH) and has a high mortality rate. However, the mechanism underlying the development of thrombosis in PNH remains unclear. To explore this, platelet function and serum complement activity were investigated in 14 patients with classical PNH, 11 with PNH aplastic anemia (AA) and 30 healthy controls. MATERIAL AND METHODS Serum concentrations of the terminal complement complex (sC5b-9) were determined by enzyme-linked immunofluorescence assay (ELISA), and the levels of C5b-9, CD61 and CD62p on platelet membranes were determined by flow cytometry. Clinical parameters were assessed, including D-dimer and platelet aggregation induced by adenosine diphosphate (ADP) and arachidonic acid (ARA). RESULTS Serum sC5b-9 concentrations were significantly lower in the PNH/PNH-AA than in the control group (P<0.01). C5b-9 deposition was significantly higher on CD59- platelets than on CD59+ platelets in PNH/PNH-AA patients and healthy controls (P<0.01 for each). D-dimer concentration was significantly higher in PNH/PNH-AA patients - especially those with lactate dehydrogenase (LDH) concentrations>1000U/L - than in controls (P<0.05). CD61 (P<0.05) expression was lower on CD59+ platelets in PNH than in controls and CD5- platelets in PNH. Expression of CD62p (P<0.01) was lower on CD59- and CD59+ platelets (P<0.01) in PNH cases than in controls. Platelet aggregation stimulated by the agonists ADP and ARA in the PNH/PNH-AA patients was significantly lower than that in controls (P<0.05). CONCLUSIONS The adhesion and aggregation of platelets, especially of CD59+ platelets, were compensatively decreased in PNH/PNH-AA patients without active thrombosis.
Collapse
|
28
|
Tiede MP, Ahn ER, Jy W, Scagnelli T, Bidot CJ, Horstman LL, Jimenez JJ, Ahn YS. Life-Threatening Hypercoagulable State Following Splenectomy in ITP: Successful Management with Aggressive Antithrombotic Therapy and Danazol. Clin Appl Thromb Hemost 2016; 11:347-52. [PMID: 16015423 DOI: 10.1177/107602960501100316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A life-threatening hypercoagulable state (HCS) is reported that developed after splenectomy in idiopathic thrombocytopenic purpura (ITP). A 50-year-old active male was rejected for blood donation because of an incidental finding of low platelet counts, 40,000/uL. The diagnosis was ITP. Although asymptomatic, he underwent splenectomy because of poor response to steroids and intravenous (IV) gamma globulin. One month after splenectomy, he suffered pulmonary emboli without deep venous embolism (DVT), followed by bilateral DVT, threatening amputation of the legs. Emergency thrombolysis, insertion of stent, and IV heparin saved his legs. Extensive workup for HCS was negative. IV heparin was witheld for colonoscopy for possible gastrointestinal neoplasm, at which time DVT recurred, necessitating another thrombolysis and heparin infusion. He was discharged on enoxaparin, antiplatelet therapy, and danazol. Platelet hyperactivation, characterized by high platelet microparticles (PMP) and CD62P, was present throughout his course of active ITP, resolving when ITP went into remission with danazol therapy. ITP has remained in remission for 4 years after stopping enoxaparin and danazol. In vitro, his plasma in active ITP induced activation of normal platelets, generating PMP and inducing CD62p-positive platelets and platelet aggregates; his plasma from remission had no effect. This indicates the presence of a platelet activating factor, possibly anti-platelet antibodies. Splenectomy may have allowed procoagulant PMP to accumulate to high levels resulting in HCS. We advise awareness of thrombotic complications post-splenectomy in the subset of ITP patients who are largely asymptomatic and exhibit persisting platelet activation.
Collapse
Affiliation(s)
- Maike P Tiede
- Wallace H. Coulter Platelet Laboratory, Division of Hematology/Oncology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ekdahl KN, Huang S, Nilsson B, Teramura Y. Complement inhibition in biomaterial- and biosurface-induced thromboinflammation. Semin Immunol 2016; 28:268-77. [PMID: 27211838 PMCID: PMC7129373 DOI: 10.1016/j.smim.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Therapeutic medicine today includes a vast number of procedures involving the use of biomaterials, transplantation of therapeutic cells or cell clusters, as well as of solid organs. These treatment modalities are obviously of great benefit to the patient, but also present a great challenge to the innate immune system, since they involve direct exposure of non-biological materials, cells of non-hematological origin as well as endothelial cells, damaged by ischemia-perfusion in solid organs to proteins and cells in the blood. The result of such an exposure may be an inappropriate activation of the complement and contact/kallikrein systems, which produce mediators capable of triggering the platelets and PMNs and monocytes, which can ultimately result in thrombotic and inflammatory (i.e., a thrombo-inflammatory) response to the treatment modality. In this concept review, we give an overview of the mechanisms of recognition within the innate immunity system, with the aim to identify suitable points for intervention. Finally, we discuss emerging and promising techniques for surface modification of biomaterials and cells with specific inhibitors in order to diminish thromboinflammation and improve clinical outcome.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden; Linnæus Center of Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Shan Huang
- Linnæus Center of Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden; Department of Bioengineering, The University of Tokyo, 7-3-1Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
30
|
Nørgaard I, Nielsen SF, Nordestgaard BG. Complement C3 and High Risk of Venous Thromboembolism: 80517 Individuals from the Copenhagen General Population Study. Clin Chem 2016; 62:525-34. [DOI: 10.1373/clinchem.2015.251314] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Complement activation may contribute to venous thromboembolism, including deep venous thrombosis and pulmonary embolism. We tested the hypothesis that high complement C3 concentrations are associated with high risk of venous thromboembolism in the general population.
METHODS
We included 80 517 individuals without venous thromboembolism from the Copenhagen General Population Study recruited in 2003–2012. Plasma complement C3 concentrations were measured at baseline, and venous thromboembolism (n = 1176) was ascertained through April 2013 in nationwide registries. No individuals were lost to follow-up.
RESULTS
Complement C3 concentrations were approximately normally distributed, with a mean value of 1.13 g/L (interquartile range 0.98–1.26; SD 0.21). The cumulative incidence of venous thromboembolism was higher with progressively higher tertiles of complement C3 (log-rank trend: P = 3 × 10−8): at age 80, 7%, 9%, and 11% of individuals in the first, second, and third tertiles, respectively, had developed venous thromboembolism. Multivariable-adjusted hazard ratios for venous thromboembolism compared with individuals in the first tertile were 1.36 (95% CI, 1.16–1.59) for those in the second tertile and 1.58 (1.33–1.88) for those in the third tertile. Corresponding values were 1.36 (1.16–1.60) and 1.57 (1.33–1.87) after additional adjustment for C-reactive protein and 1.27 (1.09–1.49) and 1.31(1.10–1.57) after additional adjustment for body mass index. These results were similar for deep venous thrombosis and pulmonary embolism separately. The multivariable-adjusted hazard ratio for venous thromboembolism for a 1-g/L increase in complement C3 was 2.43 (1.74–3.40).
CONCLUSIONS
High concentrations of complement C3 were associated with high risk of venous thromboembolism in the general population.
Collapse
Affiliation(s)
- Ina Nørgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sune F Nielsen
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Mevorach D. Paroxysmal nocturnal hemoglobinuria (PNH) and primary p.Cys89Tyr mutation in CD59: Differences and similarities. Mol Immunol 2015; 67:51-5. [DOI: 10.1016/j.molimm.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
|
32
|
Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis. Front Physiol 2015; 6:49. [PMID: 25784879 PMCID: PMC4345806 DOI: 10.3389/fphys.2015.00049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/04/2015] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis and its late sequels are still the number one cause of death in western societies. Platelets are a driving force not only during the genesis of atherosclerosis, but especially in its late stages, as evidenced by complications such as arterial thrombosis, myocardial infarction, and ischemic stroke. Atherosclerosis is increasingly recognized as an inflammatory disease, influenced by various immune mechanisms. The complement system is part of our innate immune system, and its diverse roles in atherosclerosis have become evident over the past years. In this review we identify points of intersection between platelets and the complement system and discuss their relevance for atherosclerosis. Specifically, we will focus on roles for platelets in the onset as well as progression of the disease, a possible dual role for complement in the genesis and development of atherosclerosis, and review emerging literature revealing previously unrecognized cross-talk between platelets and the complement system and discuss its possible impact for atherosclerosis. Finally, we identify limitations of current research approaches and discuss perspectives of complement modulation in the control of the disease.
Collapse
Affiliation(s)
- Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen Tuebingen, Germany
| | - Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München Munich, Germany
| | - Harald F Langer
- University Clinic for Cardiovascular Medicine, University of Tuebingen Tuebingen, Germany ; Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
33
|
Patzelt J, Mueller K, Breuning S, Karathanos A, Schleicher R, Seizer P, Gawaz M, Langer H, Geisler T. Expression of anaphylatoxin receptors on platelets in patients with coronary heart disease. Atherosclerosis 2015; 238:289-95. [DOI: 10.1016/j.atherosclerosis.2014.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/15/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023]
|
34
|
Nilsson B, Teramura Y, Ekdahl KN. The role and regulation of complement activation as part of the thromboinflammation elicited in cell therapies. Mol Immunol 2014; 61:185-90. [PMID: 24998801 DOI: 10.1016/j.molimm.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
Cell therapies in which the cells come into direct contact with blood and other body fluids are emerging treatment procedures for patients with various diseases, such as diabetes mellitus, liver insufficiency, and graft-versus-host disease. However, despite recent progress, these procedures are associated with tissue loss caused by thromboinflammatory reactions. These deleterious reactions involve the activation of the complement and coagulation cascades and platelet and leukocyte activation, ultimately resulting in clot formation and damage to the implanted cells. In this concept review, we discuss the basic mechanisms underlying the thrombininflammatory process, with special reference to the engagement of complement and emerging strategies for the therapeutic regulation of these reactions that include the use of selective systemic inhibitors and various procedures to coat the surfaces of the cells. The coating procedures may also be applied to other treatment modalities in which similar mechanisms are involved, including whole organ transplantation, treatment with biomaterials in contact with blood, and extracorporeal procedures.
Collapse
Affiliation(s)
- Bo Nilsson
- Dept. of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Yuji Teramura
- Dept. of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden; Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Kristina N Ekdahl
- Dept. of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden; Linnæus Center of Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
35
|
Liu S, Xing T, Sheng T, Yang S, Huang L, Peng Z, Sun X. The reduction rate of serum C3 following liver transplantation is an effective predictor of non-anastomotic strictures. Hepatol Int 2014. [DOI: 10.1007/s12072-014-9524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, Alexander JS, Kelley RE, Ahn YS. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res 2013; 31:799-806. [DOI: 10.1179/016164109x12445505689526] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Herring JM, McMichael MA, Smith SA. Microparticles in health and disease. J Vet Intern Med 2013; 27:1020-33. [PMID: 23815149 DOI: 10.1111/jvim.12128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/09/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Microparticles (MPs), small membrane-derived vesicles, are derived from many cell types and released into the circulation. Microparticles can express antigens, and contain cell surface proteins, cytoplasmic contents, and nuclear components from their cell of origin that determines their composition, characterization, and transfer of biologic information. Certain prompts for this release include shear stress, complement activation, proapoptotic stimulation, cellular damage, or agonist interaction with cell surface receptors. Release can be physiologic or pathologic and is associated with proinflammatory and procoagulant effects and has been implicated in thrombotic states. Microparticles also contribute to systemic inflammation and cardiovascular, hematologic, and oncologic disease states. The study of MPs in human medicine is rapidly advancing and extends into the physiology of health, the pathophysiology of disease, and the role of MPs in transfusion medicine. In veterinary medicine, published work on MPs has been limited to the area of inherited disorders, blood storage, and leukoreduction (LR). Microparticle research is still in its infancy, and this review should be seen as a snapshot of what is currently known. As research continues important limitations, including variations in preanalytic variables such as collection, storage, or centrifugation, and limitations of quantitation are coming to the forefront. Correlation of quantitation of MPs with assays of activity will hopefully shed light on the true nature of MPs in health and disease. This review will focus on the role of cellular exocytic vesiculation in health, disease, and transfusion medicine.
Collapse
Affiliation(s)
- J M Herring
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Urbana, IL
| | | | | |
Collapse
|
38
|
Inhibition of instant blood-mediated inflammatory responses by co-immobilization of sCR1 and heparin on islets. Biomaterials 2013; 34:5019-24. [PMID: 23578554 DOI: 10.1016/j.biomaterials.2013.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023]
Abstract
Intraportal transplantation of islets of Langerhans is followed by marked islet loss, mainly caused by instant blood-mediated inflammatory responses (IBMIR). We previously developed a method of co-immobilizing sCR1 and heparin on islets. Here we examined whether this process could reduce islet loss following intraportal islet transplantation in a syngeneic mouse model. sCR1-heparin islets or unmodified islet controls were transplanted into the livers of streptozotocin-induced diabetic mice. Transplantation of 100 and 125 sCR1-heparin islets normalized blood glucose levels in 8 of 9 (88.9%) and 9 of 9 diabetic mice (100%), respectively, whereas transplantation of 100 and 125 non-treated islets induced normoglycemia in 0 of 9 and 2 of 9 diabetic mice, respectively. Fibrin staining and plasma insulin measurements indicated that, compared to non-treated islets, sCR1-heparin islet transplantation was associated with fewer blood clots around islets, and significantly less insulin leakage from damaged islets at 1 h post-transplantation. Long-term follow-up of the sCR1-heparin islet group showed islet cells in the livers and insulin expression. In conclusion, co-immobilization of sCR1 and heparin on islets could effectively reduce islet damage by IBMIR, and might be useful to enable transplantation with only one donor and one recipient.
Collapse
|
39
|
Kuo HH, Morrell CN, Baldwin WM. Alloantibody induced platelet responses in transplants: potent mediators in small packages. Hum Immunol 2012; 73:1233-8. [PMID: 22789623 PMCID: PMC3496803 DOI: 10.1016/j.humimm.2012.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/11/2012] [Accepted: 06/29/2012] [Indexed: 12/11/2022]
Abstract
The early histological studies of organ allografts noted platelets attached to vascular endothelium. Platelets adhere to vessels before any morphological evidence of endothelial injury. Subsequently, in vitro and in vivo experiments have demonstrated that alloantibodies can induce exocytosis of von Willebrand factor and P-selectin from endothelial cells and attachment of platelets within minutes. Platelets also adhere to and stimulate leukocytes. These interactions are increased by complement activation. After attachment platelets degranulate, releasing preformed mediators. Some chemokines stored together in platelet granules can form heteromers with synergistic functions. Heteromers containing platelet factor 4 (PF4; CXCL4) are specific to platelets and provide insights to unique platelet functions and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Hsiao-Hsuan Kuo
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, New York 14642
| | - William M. Baldwin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
40
|
Réti M, Farkas P, Csuka D, Rázsó K, Schlammadinger Á, Udvardy ML, Madách K, Domján G, Bereczki C, Reusz GS, Szabó AJ, Prohászka Z. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10:791-8. [PMID: 22372946 DOI: 10.1111/j.1538-7836.2012.04674.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Ultra-large von Willebrand factor and deficiency of its cleaving protease are important factors in the events leading to thrombotic microangiopathy; however, the mechanisms involved are only partly understood. Whereas pathological activation of the alternative complement pathway is linked to atypical hemolytic uremic syndrome, the role of complement activation in thrombotic thrombocytopenic purpura (TTP) is unknown. The aim of this study was to investigate whether signs of complement activation are characteristic of TTP. PATIENTS AND METHODS Twenty-three patients with TTP (18 women, median age 38 years) and 17 healthy controls (13 women, median age 38 years) were included. Complement parameters (C3, Factors H, I, B and total alternative pathway activity) together with complement activation fragments (C3a) or complexes (C1rs-INH, C3bBbP, sC5b9) were measured by ELISA or RID. ADAMTS13 activity and anti-ADAMTS13 inhibitory antibodies were measured by the VWF-FRET73 assay. RESULTS Increased levels of C3a, and SC5b9 were observed in TTP during acute episodes, as compared with healthy controls. Decreased complement C3 levels indicative of complement consumption occurred in 15% of acute TTP patients. Significant decrease of complement activation products C3a and SC5b9 was observed during plasma exchange (PEX). The sustained presence of anti-ADAMTS13 inhibitory antibodies in complete remission was associated with increased complement activation. CONCLUSION These data document in an observational study the presence of complement activation in TTP. Further investigation is needed to determine its potential pathogenetic significance.
Collapse
Affiliation(s)
- M Réti
- Department of Hematology and Stem Cell Transplantation, St István and St László Hospital of Budapest, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Platelets, Complement, and Contact Activation: Partners in Inflammation and Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:185-205. [DOI: 10.1007/978-1-4614-0106-3_11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Van Bijnen STA, Van Heerde WL, Muus P. Mechanisms and clinical implications of thrombosis in paroxysmal nocturnal hemoglobinuria. J Thromb Haemost 2012; 10:1-10. [PMID: 22077430 DOI: 10.1111/j.1538-7836.2011.04562.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disease characterized by a clone of blood cells lacking glycosyl phosphatidylinositol (GPI)-anchored proteins at the cell membrane. Deficiency of the GPI-anchored complement inhibitors CD55 and CD59 on erythrocytes leads to intravascular hemolysis upon complement activation. Apart from hemolysis, another prominent feature is a highly increased risk of thrombosis. Thrombosis in PNH results in high morbidity and mortality. Often, thrombosis occurs at unusual locations, with the Budd–Chiari syndrome being the most frequent manifestation. Primary prophylaxis with vitamin K antagonists reduces the risk but does not completely prevent thrombosis. Eculizumab, a mAb against complement factor C5, effectively reduces intravascular hemolysis and also thrombotic risk. Therefore, eculizumab treatment has dramatically improved the prognosis of PNH. The mechanism of thrombosis in PNH is still unknown, but the highly beneficial effect of eculizumab on thrombotic risk suggests a major role for complement activation. Additionally, a deficiency of GPI-anchored proteins involved in hemostasis may be implicated.
Collapse
Affiliation(s)
- S T A Van Bijnen
- Department of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
43
|
Nguyen BNH, Azimzadeh AM, Schroeder C, Buddensick T, Zhang T, Laaris A, Cochrane M, Schuurman HJ, Sachs DH, Allan JS, Pierson RN. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection. Xenotransplantation 2011; 18:94-107. [PMID: 21496117 DOI: 10.1111/j.1399-3089.2011.00633.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. METHODS We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF(+/+) ) pig lungs. RESULTS GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF(+/+) lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF(+/+) lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF(+/+) lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. CONCLUSIONS In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms.
Collapse
Affiliation(s)
- Bao-Ngoc H Nguyen
- Department of Surgery, University of Maryland and Baltimore VAMC, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement--their role in inflammation. Semin Immunopathol 2011; 34:151-65. [PMID: 21811895 DOI: 10.1007/s00281-011-0280-x] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/21/2011] [Indexed: 12/11/2022]
Abstract
The parallel expression of activation products of the coagulation, fibrinolysis, and complement systems has long been observed in both clinical and experimental settings. Several interconnections between the individual components of these cascades have also been described, and the list of shared regulators is expanding. The co-existence and interplay of hemostatic and inflammatory mediators in the same microenvironment typically ensures a successful host immune defense in compromised barrier settings. However, dysregulation of the cascade activities or functions of inhibitors in one or both systems can result in clinical manifestations of disease, such as sepsis, systemic lupus erythematosus, or ischemia-reperfusion injury, with critical thrombotic and/or inflammatory complications. An appreciation of the precise relationship between complement activation and thrombosis may facilitate the development of novel therapeutics, as well as improve the clinical management of patients with thrombotic conditions that are characterized by complement-associated inflammatory responses.
Collapse
Affiliation(s)
- Katerina Oikonomopoulou
- Department of Pathology & Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | | | | | | |
Collapse
|
45
|
Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6543-52. [PMID: 21525379 DOI: 10.4049/jimmunol.1002788] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microparticles (MP) shed by platelets (PLT) during storage have procoagulant activities, but little is known about their properties to modify inflammation or immunity. In this study, we studied the capacity of MP present in PLT concentrates to alter the function of macrophages and dendritic cells (DC). The size of the purified MP was between 100 and 1000 nm, and they expressed phosphatidylserine; surface proteins of PLT (CD61, CD36, CD47), including complement inhibitors (CD55, CD59), but not CD63; and proteins acquired from plasma (C1q, C3 fragments, factor H). These characteristics suggest that the MP shed by PLT are formed by budding from the cell surface, corresponding to ectosomes. The purified PLT ectosomes (PLT-Ect) reduced the release of TNF-α and IL-10 by macrophages activated with LPS or zymosan A. In addition, PLT-Ect induced the immediate release of TGF-β from macrophages, a release that was not modified by LPS or zymosan A. Macrophages had a reduced TNF-α release even 24 h after their exposure to PLT-Ect, suggesting that PLT-Ect induced a modification of the differentiation of macrophages. Similarly, the conventional 6-d differentiation of monocytes to immature DC by IL-4 and GM-CSF was modified by the presence of PLT-Ect during the first 2 d. Immature DC expressed less HLA-DP DQ DR and CD80 and lost part of their phagocytic activity, and their LPS-induced maturation was downmodulated when exposed to PLT-Ect. These data indicate that PLT-Ect shed by stored PLT have intrinsic properties that modify macrophage and DC differentiation toward less reactive states.
Collapse
Affiliation(s)
- Salima Sadallah
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.
| | | | | | | |
Collapse
|
46
|
Jy W, Ricci M, Shariatmadar S, Gomez-Marin O, Horstman LH, Ahn YS. Microparticles in stored red blood cells as potential mediators of transfusion complications. Transfusion 2011; 51:886-93. [PMID: 21496051 PMCID: PMC3095366 DOI: 10.1111/j.1537-2995.2011.03099.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article reviews evidence for the involvement of cell-derived microparticles (MPs) in transfusion-related adverse events. The controversy concerning possible added risk of older versus fresher stored blood is also reviewed and is consistent with the hypothesis that MPs are involved with adverse events. Although all types of circulating MPs are discussed, the emphasis is on red blood cell-derived MPs (RMPs). The evidence is particularly strong for involvement of RMPs in transfusion-related acute lung injury, but also for postoperative thrombosis. However, this evidence is largely circumstantial. Work in progress to directly test the hypothesis is also briefly reviewed.
Collapse
Affiliation(s)
- Wenche Jy
- Wallace H. Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami School of Medicine, Miami, Florida 33176, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 2010; 116:1002-10. [PMID: 20466856 DOI: 10.1182/blood-2010-02-269746] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Severe sepsis leads to massive activation of coagulation and complement cascades that could contribute to multiple organ failure and death. To investigate the role of the complement and its crosstalk with the hemostatic system in the pathophysiology and therapeutics of sepsis, we have used a potent inhibitor (compstatin) administered early or late after Escherichia coli challenge in a baboon model of sepsis-induced multiple organ failure. Compstatin infusion inhibited sepsis-induced blood and tissue biomarkers of complement activation, reduced leucopenia and thrombocytopenia, and lowered the accumulation of macrophages and platelets in organs. Compstatin decreased the coagulopathic response by down-regulating tissue factor and PAI-1, diminished global blood coagulation markers (fibrinogen, fibrin-degradation products, APTT), and preserved the endothelial anticoagulant properties. Compstatin treatment also improved cardiac function and the biochemical markers of kidney and liver damage. Histologic analysis of vital organs collected from animals euthanized after 24 hours showed decreased microvascular thrombosis, improved vascular barrier function, and less leukocyte infiltration and cell death, all consistent with attenuated organ injury. We conclude that complement-coagulation interplay contributes to the progression of severe sepsis and blocking the harmful effects of complement activation products, especially during the organ failure stage of severe sepsis is a potentially important therapeutic strategy.
Collapse
|
48
|
Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B. Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. THE JOURNAL OF IMMUNOLOGY 2010; 184:2686-92. [PMID: 20139276 DOI: 10.4049/jimmunol.0902810] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been reported that complement is activated on the surface of activated platelets, despite the presence of multiple regulators of complement activation. To reinvestigate the mechanisms by which activated platelets bind to complement components, the presence of complement proteins on the surfaces of nonactivated and thrombin receptor-activating peptide-activated platelets was analyzed by flow cytometry and Western blot analyses. C1q, C4, C3, and C9 were found to bind to thrombin receptor-activating peptide-activated platelets in lepirudin-anticoagulated platelet-rich plasma (PRP) and whole blood. However, inhibiting complement activation at the C1q or C3 level did not block the binding of C3 to activated platelets. Diluting PRP and chelating divalent cations also had no effect, further indicating that the deposition of complement components was independent of complement activation. Furthermore, washed, activated platelets bound added C1q and C3 to the same extent as platelets in PRP. The use of mAbs against different forms of C3 demonstrated that the bound C3 consisted of C3(H(2)O). Furthermore, exogenously added soluble complement receptor 1 was shown to bind to this form of platelet-bound C3. These observations indicate that there is no complement activation on the surface of platelets under physiological conditions. This situation is in direct contrast to a number of pathological conditions in which regulators of complement activation are lacking and thrombocytopenia and thrombotic disease are the ultimate result. However, the generation of C3(H(2)O) represents nonproteolytic activation of C3 and after factor I cleavage may act as a ligand for receptor binding.
Collapse
Affiliation(s)
- Osama A Hamad
- Division of Clinical Immunology, Rudbeck Laboratory C5, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
50
|
Røger M, Høgåsen K, Holme PA, Halstensen TS, Mollnes TE, Hovig T. The Fluid-phase SC5b-9 Terminal Complement Complex Binds to the GPIIb/IIIa Complex of Thrombin-stimulated Human Blood Platelets Inhibiting Platelet Aggregation. Platelets 2009; 6:160-8. [DOI: 10.3109/09537109509013269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|