1
|
Zhang Z, Zhao C, Sun L, Cheng C, Tian Q, Wu C, Xu Y, Dong X, Zhang B, Zhang L, Zhao Y. Trappc1 intrinsically prevents ferroptosis of naive T cells to avoid spontaneous autoinflammatory disease in mice. Eur J Immunol 2024; 54:e2350836. [PMID: 38234007 DOI: 10.1002/eji.202350836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
T lymphocytes are pivotal in adaptive immunity. The role of the trafficking protein particle complex (TRAPPC) in regulating T-cell development and homeostasis is unknown. Using CD4cre -Trappc1flox/flox (Trappc1 cKO) mice, we found that Trappc1 deficiency in T cells significantly decreased cell number of naive T cells in the periphery, whereas thymic T-cell development in Trappc1 cKO mice was identical as WT mice. In the culture assays and mouse models with adoptive transfer of the sorted WT (CD45.1+ CD45.2+ ) and Trappc1 cKO naive T cells (CD45.2+ ) to CD45.1+ syngeneic mice, Trappc1-deficient naive T cells showed significantly reduced survival ability compared with WT cells. RNA-seq and molecular studies showed that Trappc1 deficiency in naive T cells reduced protein transport from the endoplasmic reticulum to the Golgi apparatus, enhanced unfolded protein responses, increased P53 transcription, intracellular Ca2+ , Atf4-CHOP, oxidative phosphorylation, and lipid peroxide accumulation, and subsequently led to ferroptosis. Trappc1 deficiency in naive T cells increased ferroptosis-related damage-associated molecular pattern molecules like high mobility group box 1 or lipid oxidation products like prostaglandin E2, leukotriene B4, leukotriene C4, and leukotriene D4. Functionally, the culture supernatant of Trappc1 cKO naive T cells significantly promoted neutrophils to express inflammatory cytokines like TNFα and IL-6, which was rescued by lipid peroxidation inhibitor Acetylcysteine. Importantly, Trappc1 cKO mice spontaneously developed severe autoinflammatory disease 4 weeks after birth. Thus, intrinsic expression of Trappc1 in naive T cells plays an integral role in maintaining T-cell homeostasis to avoid proinflammatory naive T-cell death-caused autoinflammatory syndrome in mice. This study highlights the importance of the TRAPPC in T-cell biology.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chenxu Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lingyun Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changhong Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yong Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
2
|
Shi L, Xu Z, Yang Q, Huang Y, Gong Y, Wang F, Ke B. IL-7-Mediated IL-7R-JAK3/STAT5 signalling pathway contributes to chemotherapeutic sensitivity in non-small-cell lung cancer. Cell Prolif 2019; 52:e12699. [PMID: 31599032 PMCID: PMC6869130 DOI: 10.1111/cpr.12699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives The chemotherapy drug resistance is a major challenge for non‐small‐cell lung cancer (NSCLC) treatment. Combination of immunotherapy and chemotherapy has shown promise for cancer. The goal of this study was to evaluate the anti‐tumour efficacy of interleukin‐7 (IL‐7) combining cisplatin against NSCLC. Materials and Methods Cell proliferation was analysed using CCK‐8 assay, EdU proliferation assay and colony‐forming assay. Cell apoptosis was evaluated using HOECHST 33342 assay and flow cytometry. The protein expression levels were analysed by Western blot. The blocking antibody against the IL‐7 receptor and the inhibitors of STAT5 and JAK3 were used to investigate the pathway involved. A xenograft model was established to assess the anti‐tumour efficacy of IL‐7 combining cisplatin in vivo. Results Here we found IL‐7R was increased in A549/DDP cells compared with A549 cells. The block of IL‐7R reversed the inhibitory effects of IL‐7 combined with cisplatin and decreased the numbers of apoptosis cells induced by treatment of IL‐7 combined with cisplatin. The JAK3 inhibitor and STAT5 inhibitor were used to identify the pathway involved. The results showed that JAK3/STAT5 pathway was involved in enhancing role of cisplatin sensitivity of NSCLC cells by IL‐7. In vivo, cisplatin significantly inhibited tumour growth and IL‐7 combined with cisplatin achieved the best therapeutic effect. Conclusion Together, IL‐7 promoted the sensitivity of NSCLC cells to cisplatin via IL‐7R‐JAK3/STAT5 signalling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhaozhong Xu
- Department of Emergency, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Huang
- Department of VIP Ward, Affiliated Cancer Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuxin Gong
- Department of Respiratory Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Ke
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
High Thymic Output of Effector CD4 + Cells May Lead to a Treg : T Effector Imbalance in the Periphery in NOD Mice. J Immunol Res 2019; 2019:8785263. [PMID: 31281853 PMCID: PMC6594269 DOI: 10.1155/2019/8785263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in controlling autoreactive T cells, and quantitative and/or qualitative deficiencies in Tregs are associated with autoimmune diseases, including type 1 diabetes (T1D), in both humans and mice. Both the incidence of T1D and percentages of peripheral Tregs in NOD mice vary considerably between animal facilities. In our animal facility, the incidence of T1D in NOD mice is high at 90-100% and the percentages of peripheral CD4+Foxp3+ cells in ~9-10-week-old female NOD mice are decreased compared to control (B6) mice shortly before high glucose is first detected (~12 weeks). These data suggest that there is an imbalance between Tregs and potentially pathogenic effector T cells at this age that could have significant impact on disease progression to overt diabetes. The goal of the current study was to investigate mechanisms that play a role in peripheral Treg : T effector cell balance in NOD mice, including differences in persistence/survival, peripheral homeostatic proliferation, and thymic production and output of CD4+ T cells. We found no differences in persistence/survival or homeostatic proliferation of either Tregs or effector T cells between NOD and B6 mice. Furthermore, although the percentages and absolute numbers of CD4+Foxp3+ cells in thymus were not decreased in NOD compared to B6 mice, the percentage of CD4+ recent thymic emigrants (RTE) that were Foxp3+ was significantly lower in 9-week-old NOD mice. Interestingly, the thymic output of CD4+Foxp3+ cells was not lower in NOD mice, whereas the thymic output of CD4+Foxp3− cells was significantly higher in NOD mice at that age compared to B6 mice. These data suggest that the higher thymic output of CD4+Foxp3− T cells contributes, at least in part, to the lower percentages of peripheral CD4+Foxp3+ Tregs in NOD mice and an imbalance between Tregs and T effector cells that may contribute to the development of full-blown diabetes.
Collapse
|
4
|
Baliu-Piqué M, Verheij MW, Drylewicz J, Ravesloot L, de Boer RJ, Koets A, Tesselaar K, Borghans JAM. Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells. Front Immunol 2018; 9:2054. [PMID: 30254637 PMCID: PMC6141715 DOI: 10.3389/fimmu.2018.02054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Memory T-cells are essential to maintain long-term immunological memory. It is widely thought that the bone marrow (BM) plays an important role in the long-term maintenance of memory T-cells. There is controversy however on the longevity and recirculating kinetics of BM memory T-cells. While some have proposed that the BM is a reservoir for long-lived, non-circulating memory T-cells, it has also been suggested to be the preferential site for memory T-cell self-renewal. In this study, we used in vivo deuterium labeling in goats to simultaneously quantify the average turnover rates—and thereby expected lifespans—of memory T-cells from BM, blood and lymph nodes (LN). While the fraction of Ki-67 positive cells, a snapshot marker for recent cell division, was higher in memory T-cells from blood compared to BM and LN, in vivo deuterium labeling revealed no substantial differences in the expected lifespans of memory T-cells between these compartments. Our results support the view that the majority of memory T-cells in the BM are self-renewing as fast as those in the periphery, and are continuously recirculating between the blood, BM, and LN.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrddin W Verheij
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| | - Ad Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Anson M, Amado I, Mailhé MP, Donnadieu E, Garcia S, Huetz F, Freitas AA. Regulation and Maintenance of an Adoptive T-Cell Dependent Memory B Cell Pool. PLoS One 2016; 11:e0167003. [PMID: 27880797 PMCID: PMC5120830 DOI: 10.1371/journal.pone.0167003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023] Open
Abstract
We investigated the ability of monoclonal B cells to restore primary and secondary T-cell dependent antibody responses in adoptive immune-deficient hosts. Priming induced B cell activation and expansion, AID expression, antibody production and the generation of IgM+IgG- and IgM-IgG+ antigen-experienced B-cell subsets that persisted in the lymphopenic environment by cell division. Upon secondary transfer and recall the IgM-IgG+ cells responded by the production of antigen-specific IgG while the IgM+ memory cells secreted mainly IgM and little IgG, but generated new B cells expressing germinal center markers. The recall responses were more efficient if the antigenic boost was delayed suggesting that a period of adaptation is necessary before the transferred cells are able to respond. Overall these findings indicate that reconstitution of a functional and complete memory pool requires transfer of all different antigen-experienced B cell subsets. We also found that the size of the memory B cell pool did not rely on the number of the responding naïve B cells, suggesting autonomous homeostatic controls for naïve and memory B cells. By reconstituting a stable memory B cell pool in immune-deficient hosts using a monoclonal high-affinity B cell population we demonstrate the potential value of B cell adoptive immunotherapy.
Collapse
Affiliation(s)
- Marie Anson
- Institut Pasteur, Départment d’Immunologie, Unité de Biologie des Populations Lymphocytaires, Paris, France
- CNRS, URA1961, Paris, France
| | - Inês Amado
- Institut Pasteur, Départment d’Immunologie, Unité de Biologie des Populations Lymphocytaires, Paris, France
- CNRS, URA1961, Paris, France
| | - Marie-Pierre Mailhé
- Institut Pasteur, Départment d’Immunologie, Unité de Biologie des Populations Lymphocytaires, Paris, France
- CNRS, URA1961, Paris, France
| | - Emmanuel Donnadieu
- Institut Cochin, Inserm, U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Garcia
- Institut Pasteur, Départment d’Immunologie, Unité de Biologie des Populations Lymphocytaires, Paris, France
- CNRS, URA1961, Paris, France
| | - François Huetz
- Institut Pasteur, Départment d’Immunologie, Unité de Biologie des Populations Lymphocytaires, Paris, France
- CNRS, URA1961, Paris, France
| | - Antonio A. Freitas
- Institut Pasteur, Départment d’Immunologie, Unité de Biologie des Populations Lymphocytaires, Paris, France
- CNRS, URA1961, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Di Rosa F. Two Niches in the Bone Marrow: A Hypothesis on Life-long T Cell Memory. Trends Immunol 2016; 37:503-512. [PMID: 27395354 DOI: 10.1016/j.it.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The concept is emerging that the bone marrow (BM) sustains life-long persistence of memory T cells, as it does for plasma cells. Recent studies revived the debate on how this is achieved: is the BM essentially a nest for the proliferation of recirculating memory T cells, or a storage depot for resting memory T cells? Learning from division of labor in hematopoietic stem cells, this article proposes that two distinct BM niches support memory T cell cycling and quiescence, thereby enabling memory T cells to maintain all their distinguishing features. This framework might be instrumental to interpret some puzzling findings and conceptualize the mechanisms preserving either stability of memory T cell numbers or the capacity to mount secondary responses.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
7
|
Valdez-Ortiz R, Bestard O, Llaudó I, Franquesa M, Cerezo G, Torras J, Herrero-Fresneda I, Correa-Rotter R, Grinyó JM. Induction of suppressive allogeneic regulatory T cells via rabbit antithymocyte polyclonal globulin during homeostatic proliferation in rat kidney transplantation. Transpl Int 2014; 28:108-19. [PMID: 25208307 DOI: 10.1111/tri.12448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/19/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022]
Abstract
Experimental studies have shown that rabbit antithymocyte polyclonal globulin (ATG) can expand human CD4+CD25++Foxp3+ cells (Tregs). We investigated the major biological effects of a self-manufactured rabbit polyclonal anti-rat thymoglobulin (rATG) in vitro, as well as its effects on different peripheral T-cell subsets. Moreover, we evaluated the allogeneic suppressive capacity of rATG-induced Tregs in an experimental rat renal transplant model. Our results show that rATG has the capacity to induce apoptosis in T lymphocyte lymphocytes as a primary mechanism of T-cell depletion. Our in vivo studies demonstrated a rapid but transient cellular depletion of the main T cell subsets, directly proportional to the rATG dose used, but not of the effector memory T cells, which required significantly higher rATG doses. After rATG administration, we observed a significant proliferation of Tregs in the peripheral blood of transplanted rats, leading to an increase in the Treg/T effector ratio. Importantly, rATG-induced Tregs displayed a strong donor-specific suppressive capacity when assessed in an antigen-specific allogeneic co-culture. All of these results were associated with better renal graft function in rats that received rATG. Our study shows that rATG has the biological capacity immunomodulatory to promote a regulatory alloimmune milieu during post-transplant homeostatic proliferation.
Collapse
Affiliation(s)
- Rafael Valdez-Ortiz
- Laboratory of Experimental Nephrology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Nephrology Department, Hospital General de México, Mexico City, México; Renal Transplant Unit, Department of Nephrology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gou HF, Huang J, Shi HS, Chen XC, Wang YS. Chemo-immunotherapy with oxaliplatin and interleukin-7 inhibits colon cancer metastasis in mice. PLoS One 2014; 9:e85789. [PMID: 24465710 PMCID: PMC3897491 DOI: 10.1371/journal.pone.0085789] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/05/2013] [Indexed: 02/05/2023] Open
Abstract
Combination of immunotherapy and chemotherapy has shown promise for cancer. Interleukin-7 (IL-7) can potentially enhance immune responses against tumor, while oxaliplatin (OXP), a platinum-based drug, can promote a favorable immune microenvironment and stimulate anticancer immune responses. We evaluated the anti-tumor activity of IL-7 combining OXP against a murine colon carcinoma in vitro and in vivo and studied the tumor immune microenvironment to investigate whether the combined treatment affects on the local immune cell populations. Utilizing lung and abdomen metastasis models by inoculation of CT26 mice colon cancer cells, we evaluated the anti-tumor efficacy of combining IL-7 and OXP in mice models. Tumor immune microenvironment was evaluated by flow cytometric analysis and immunohistochemical staining. Our study showed that the in vivo administration of IL-7 combined with OXP markedly inhibited the growth of tumors in lung and abdomen metastasis models of colon cancer. IL-7 alone had no effect on tumor growth in mice and IL-7 did not alter cell sensitivity to OXP in culture. The antitumor effect of combining IL-7 and OXP correlated with a marked increase in the number of tumor-infiltrating activated CD8+ T cells and a marked decrease in the number of regulatory T (Treg) cells in spleen. Our data suggest that OXP plus IL-7 treatment inhibits tumor cell growth by immunoregulation rather than direct cytotoxicity. Our findings justify further evaluation of combining IL-7 and chemotherapy as a novel experimental cancer therapy.
Collapse
Affiliation(s)
- Hong-Feng Gou
- Department of Abdominal Cancer, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Juan Huang
- Department of Abdominal Cancer, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hua-Shan Shi
- Department of Head and Neck Cancer, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xin-chuan Chen
- Department of Hematology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yong-Sheng Wang
- Department of Thoracic Cancer, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
9
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
10
|
Mathematical models of memory CD8+ T-cell repertoire dynamics in response to viral infections. Bull Math Biol 2013; 75:491-522. [PMID: 23377628 PMCID: PMC7088647 DOI: 10.1007/s11538-013-9817-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/17/2013] [Indexed: 01/29/2023]
Abstract
Immunity to diseases is conferred by pathogen-specific memory cells that prevent disease reoccurrences. A broad repertoire of memory T-cells must be developed and maintained to effectively protect against viral invasions; yet, the total number of memory T-cells is constrained between infections. Thus, creating memory to new infections can require attrition of some existing memory cells. Furthermore, some viruses induce memory T-cell death early in an infection, after which surviving cells proliferate to refill the memory compartment.We develop mathematical models of cellular attrition and proliferation in order to examine how new viral infections impact existing immunity. With these probabilistic models, we qualitatively and quantitatively predict how the composition and diversity of the memory repertoire changes as a result of viral infections. In addition, we calculate how often immunity to prior diseases is lost due to new infections. Comparing our results across multiple general infection types allows us to draw conclusions about, which types of viral effects most drastically alter existing immunity. We find that early memory attrition does not permanently alter the repertoire composition, while infections that spark substantial new memory generation drastically shift the repertoire and hasten the decline of existing immunity.
Collapse
|
11
|
Garcia S, Freitas AA. Humanized mice: Current states and perspectives. Immunol Lett 2012; 146:1-7. [DOI: 10.1016/j.imlet.2012.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 01/08/2023]
|
12
|
Andersson A, Srivastava MK, Harris-White M, Huang M, Zhu L, Elashoff D, Strieter RM, Dubinett SM, Sharma S. Role of CXCR3 ligands in IL-7/IL-7R alpha-Fc-mediated antitumor activity in lung cancer. Clin Cancer Res 2011; 17:3660-72. [PMID: 21636553 DOI: 10.1158/1078-0432.ccr-10-3346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE We evaluated the utility of chimeric γc homeostatic cytokine, IL-7/IL-7Rα-Fc, to restore host APC (antigen presenting cell) and T cell activities in lung cancer. EXPERIMENTAL DESIGN Utilizing murine lung cancer models we determined the antitumor efficacy of IL-7/IL-7Rα-Fc. APC, T cell, cytokine analyses, neutralization of CXCL9, CXCL10, and IFNγ were carried out to evaluate the mechanistic differences in the antitumor activity of IL-7/IL-7Rα-Fc in comparison to controls. RESULTS IL-7/IL-7Rα-Fc administration inhibited tumor growth and increased survival in lung cancer. Accompanying the tumor growth inhibition were increases in APC and T cell activities. In comparison to controls, IL-7/IL-7Rα-Fc treatment of tumor bearing mice led to increased: (i) levels of CXCL9, CXCL10, IFNγ, IL-12 but reduced IL-10 and TGFβ, (ii) tumor macrophage infiltrates characteristic of M1 phenotype with increased IL-12, iNOS but reduced IL-10 and arginase, (iii) frequencies of T and NK cells, (iv) T cell activation markers CXCR3, CD69 and CD127(low), (v) effector memory T cells, and (vi) T cell cytolytic activity against parental tumor cells. IL-7/IL-7Rα-Fc treatment abrogated the tumor induced reduction in splenic functional APC activity to T responder cells. The CXCR3 ligands played an important role in IL-7/IL-7Rα-Fc-mediated antitumor activity. Neutralization of CXCL9, CXCL10, or IFNγ reduced CXCR3 expressing activated T cells infiltrating the tumor and abrogated IL-7/IL-7Rα-Fc-mediated tumor growth inhibition. CONCLUSIONS Our findings show that IL-7/IL-7Rα-Fc promotes afferent and efferent antitumor responses in lung cancer.
Collapse
Affiliation(s)
- Asa Andersson
- Department of Medicine, UCLA Lung Cancer Research Program, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA , California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maintenance of long-term immunological memory by Ig+CD45R+ non-plasma B cells following mucosal immunizations. Immunol Lett 2011; 138:63-70. [PMID: 21421009 DOI: 10.1016/j.imlet.2011.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 03/13/2011] [Indexed: 11/21/2022]
Abstract
To determine whether long-term immunological B cell memory following mucosal vaccinations is maintained by terminally differentiated Ig-CD45R- plasma cells or Ig+CD45R+ B cells, we immunized mice orally with the non-toxic B subunit of cholera toxin (CTB) as a carrier protein haptenated with FITC (CTB-FITC) plus CT adjuvant. We found that the adoptive transfer of Ig+CD45R+ but not the Ig-CD45R- cells, resulted in higher numbers of FITC-specific IgA-secreting cells in the intestine as well as higher anti-FITC serum IgA titers, suggesting that long term B cell immunological memory following oral vaccinations preferentially resided within the Ig+CD45R+ B cell population.
Collapse
|
14
|
Rudd BD, Venturi V, Davenport MP, Nikolich-Zugich J. Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2056-2064. [PMID: 21248263 PMCID: PMC4119821 DOI: 10.4049/jimmunol.1003013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Defects in T cell responses against pathogens and reduced diversity of TCRs have been described at both extremes of the life span. Yet, we still lack information on how Ag-specific T cell populations are maintained and/or altered from birth to old age. In this study, for the first time to our knowledge, we provide insight into Ag-specific TCR repertoire changes over the life span at the single-cell level. We have examined the TCR diversity of the primary CD8(+) T cell response to the immunodominant HSV-1 epitope HSV glycoprotein B 495-502 (HSV gB(498-505); SSIEFARL) (gB-8p) in neonatal, adult, and old C57BL/6 mice. The global distinctive features of the gB-8p-specific TCR repertoire were preserved in mice of different ages. However, both old and especially neonatal mice exhibited significant decreases in TCR diversity compared with that of adult mice. Still, although the neonatal Ag-specific repertoire comprised expectedly shorter germline-biased CDR3β lengths, the repertoire was surprisingly complex, and only a minority of responding cells lacked random nucleotide additions. Changes with aging included increased use of the already dominant TCRVβ10 family, a trend for lower content of the TCR containing the germline WG motif in the CDR3, and a remarkable sharing of one dominant clonotype between individual old mice, implying operation of selective mechanisms. Implications for the rational design of vaccines for neonates and the elderly are discussed.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cellular Senescence/genetics
- Cellular Senescence/immunology
- Clone Cells
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Evolution, Molecular
- Herpesvirus 1, Human/immunology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Longevity/genetics
- Longevity/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Envelope Proteins/biosynthesis
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Immunobiology and, the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson ,AZ 85719
| | - Vanessa Venturi
- Computational Biology Unit, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Janko Nikolich-Zugich
- Department of Immunobiology and, the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson ,AZ 85719
| |
Collapse
|
15
|
Zhao C, Davies JD. A peripheral CD4+ T cell precursor for naive, memory, and regulatory T cells. ACTA ACUST UNITED AC 2010; 207:2883-94. [PMID: 21149551 PMCID: PMC3005223 DOI: 10.1084/jem.20100598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanisms that control the size of the T cell pool, the ratio between naive cells and memory cells, the number and frequency of regulatory T cells, and T cell receptor (TCR) diversity are necessary to maintain immune integrity and avoid disease. We have previously shown that a subset of naive CD4(+) T cells, defined by the expression on their surface of a very low density of CD44 (CD44(v.low) cells), can inhibit wasting and wasting-associated lymphopenia in mice with cancer. In this study, we further investigate the properties of CD44(v.low) cells and show that they are significantly more efficient than the remaining naive (CD44(low) or CD44(int)) and memory CD4(+) cell subsets in reconstituting the overall size of the CD4(+) T cell pool, creating a T cell pool with a diverse TCR repertoire, generating regulatory T cells that express forkhead box P3 (FoxP3), and promoting homeostatic equilibrium between naive, memory, and Foxp3(+) regulatory T cell numbers. T cell population reconstitution by CD44(v.low) cells is thymus independent. Compared with CD44(int) cells, a higher percentage of CD44(v.low) cells express B cell leukemia/lymphoma 2, interleukin-7 receptor, and CD5. The data support a key role for CD4(+) CD44(v.low) cells as peripheral precursors that maintain the integrity of the CD4(+) T cell pool.
Collapse
Affiliation(s)
- Chunfang Zhao
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | | |
Collapse
|
16
|
Cheng FWT, Leung TF, Chan PKS, Leung WK, Lee V, Shing MK, Yuen PMP, Li CK. Recovery of humoral and cellular immunities to vaccine-preventable infectious diseases in pediatric oncology patients. Pediatr Hematol Oncol 2010; 27:195-204. [PMID: 20367263 DOI: 10.3109/08880011003621752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The recovery of antibodies to various vaccine-preventable infectious diseases, humoral and cellular immunity in pediatric oncology patients were evaluated by a prospective longitudinal study for 18 months. Lymphocyte subset (CD3+, CD4+, CD8+, CD16/56+, CD19+), CD4/CD8 ratio, immunoglobulin levels, antibodies to diphtheria, pertussis, tetanus, hepatitis B, measles, mumps, and rubella were measured serially at 6 months till 18 months after stopping all chemotherapy (including maintenance chemotherapy). Twenty-eight children (hematological malignancies, n = 14; solid tumors, n = 14) were studied. The median age was 7.0 +/- 3.8 years old (range 2.6-16.2 years old). Although there was significant increase in CD3+, CD4+, CD8+, CD19+ cells, IgG, IgA, and IgM levels (P < .05), CD4+ and CD8+ counts were still below the age-specific normal range at the end of study period. At 18 months after stopping chemotherapy, 11%, 15%, 60%, 30%, 49%, and 30% of subjects remained seronegative against diphtheria, tetanus, hepatitis B, measles, mumps, and rubella. This will evolve to a significant health care problem if no further intervention is implemented, as the survival rate of pediatric oncology patients improves significantly with the improvement in various cancer treatment protocols. Near complete immune recovery was demonstrated in the subjects. Significant proportion of subjects remained susceptible to vaccine-preventable infectious diseases up to 18 months after stopping all chemotherapy.
Collapse
Affiliation(s)
- Frankie Wai Tsoi Cheng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Andersson Å, Yang SC, Huang M, Zhu L, Kar UK, Batra RK, Elashoff D, Strieter RM, Dubinett SM, Sharma S. IL-7 Promotes CXCR3 Ligand-Dependent T Cell Antitumor Reactivity in Lung Cancer. THE JOURNAL OF IMMUNOLOGY 2009; 182:6951-8. [DOI: 10.4049/jimmunol.0803340] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Tanaka K, Kohda A, Satoh K, Toyokawa T, Ichinohe K, Ohtaki M, Oghiso Y. Dose-rate effectiveness for unstable-type chromosome aberrations detected in mice after continuous irradiation with low-dose-rate gamma rays. Radiat Res 2009; 171:290-301. [PMID: 19267556 DOI: 10.1667/rr1238.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chronological changes in the chromosome aberration rates of splenocytes from specific-pathogen-free (SPF) mice after continuous and long-term exposure to low-dose-rate gamma rays were studied. Incidences of dicentrics plus centric rings (Dic+Rc), detected by conventional Giemsa staining, and dicentric chromosomes, detected by fluorescence in situ hybridization (Dic by FISH) using a centromere probe, showed an essentially linear increase up to a total accumulated dose of 8000 mGy after irradiation for about 400 days at a low dose rate of 20 mGy/day. For comparison, acute high-dose-rate and medium-dose-rate irradiation were performed. The values of the alpha coefficients in the linear regression lines for these unstable-type aberrations decreased as the dose rates were lowered from medium dose rates (200 and 400 mGy/day) to low dose rates (1 and 20 mGy/day). The dose and dose-rate effectiveness factor (DDREF), estimated by the ratio of calculated incidences using the best-fit regression lines at a high dose rate (890 mGy/min) and low dose rate (20 mGy/day), was 4.5 for Dic by FISH and 5.2 for Dic+Rc, respectively, at the same dose of 100 mGy, while different DDREFs were obtained for different accumulated doses. This is the first study to provide information regarding the effects of long-term exposure to low-dose-rate radiation on chromosomes.
Collapse
Affiliation(s)
- Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Hacchazawa 2-121, Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Milica P, D. K, I. P, Katarina R, Vesna P, Ana R, Gordana L. Peripubertal ovariectomy provides long-term postponement of age-associated decline in thymic cellularity and T-cell output. ACTA VET-BEOGRAD 2009. [DOI: 10.2298/avb0901003p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Wang Z, Zhao C, Moya R, Davies JD. A novel role for CD4+ T cells in the control of cachexia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4676-84. [PMID: 18802070 PMCID: PMC4664528 DOI: 10.4049/jimmunol.181.7.4676] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cachexia is the dramatic weight loss and muscle atrophy seen in chronic disease states, including autoimmunity, cancer, and infection, and is often associated with lymphopenia. We have previously shown that CD4(+) T cells that express the lowest density of CD44 (CD4(+)CD44(v.low)) are significantly reduced in diabetic NOD mice that are cachexic compared with diabetic mice that are not cachexic. Using this model, and a model of cancer cachexia, we test the hypothesis that CD4(+)CD44(v.low) cells play an active role in protecting the host from cachexia. CD4(+)CD44(v.low) cells, but not CD4(+) cells depleted of CD44(v.low) cells, delay the onset of wasting when infused into either diabetic or prediabetic NOD recipients. However, no significant effect on the severity of diabetes was detected. In a model of cancer cachexia, they significantly reduce muscle atrophy, and inhibit muscle protein loss and DNA loss, even when given after the onset of cachexia. Protection from wasting and muscle atrophy by CD4(+)CD44(v.low) cells is associated with protection from lymphopenia. These data suggest, for the first time, a role for an immune cell subset in protection from cachexia, and further suggest that the mechanism of protection is independent of protection from autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Joanna D. Davies
- Address correspondence and reprint requests to Dr. Joanna D. Davies, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121. address:
| |
Collapse
|
21
|
Stirk ER, Molina-París C, van den Berg HA. Stochastic niche structure and diversity maintenance in the T cell repertoire. J Theor Biol 2008; 255:237-49. [PMID: 18692074 DOI: 10.1016/j.jtbi.2008.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 01/09/2023]
Abstract
The reliability of the immune response to pathogenic challenge depends critically on the size and diversity of the T cell repertoire. We study naïve T cell repertoire diversity maintenance by a stochastic model that incorporates the concept of competition between T cells for survival stimuli emanating from self-antigen presenting cells (APCs). In the mean field approximation we show that clonotype extinction is certain and compute mean extinction times. We introduce the concept of mean niche overlap and show that clones with a mean niche overlap greater than one have a short repertoire lifespan. This selection differential induces minimal recognition commonality between T cell receptors (TCRs) resulting in a diverse T cell repertoire.
Collapse
Affiliation(s)
- Emily R Stirk
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
22
|
Takahashi H, Amagai M, Nishikawa T, Fujii Y, Kawakami Y, Kuwana M. Novel System Evaluating In Vivo Pathogenicity of Desmoglein 3-Reactive T Cell Clones Using Murine Pemphigus Vulgaris. THE JOURNAL OF IMMUNOLOGY 2008; 181:1526-35. [DOI: 10.4049/jimmunol.181.2.1526] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Treml LS, Quinn WJ, Treml JF, Scholz JL, Cancro MP. Manipulating B cell homeostasis: a key component in the advancement of targeted strategies. Arch Immunol Ther Exp (Warsz) 2008; 56:153-64. [PMID: 18512030 DOI: 10.1007/s00005-008-0017-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/04/2008] [Indexed: 11/28/2022]
Abstract
Understanding the homeostatic mechanisms governing lymphocyte pools achieves critical importance as lymphocyte-targeted therapies expand in use and scope. The primacy of B lymphocyte stimulator (BLyS) family ligands and receptors in governing B lymphocyte homeostasis has become increasingly clear in recent years, affording insight into novel opportunities and potential pitfalls for targeted B cell therapeutics. Interclonal competition for BLyS-BR3 interactions determines the size of naïve B cell pools and can regulate the stringency of selection applied as cells complete maturation. Thus one of the predicted consequences of ablative therapies targeting primary pools is relaxed negative selection. This suggests that BLyS levels and B cell reconstitution rates may serve useful prognostic roles and that BLyS itself might be targeted to circumvent relapse. Alternatively, manipulations that allow rare, minimally autoreactive specificities to survive and mature may lead to opportunities in cases where antibody-based vaccine development has heretofore been unsuccessful. BLyS family ligands and receptors also play a role in activated and memory B cell pools, suggesting they might likewise be targeted to promote or delete particular antigen-experienced subpopulations in a similar way.
Collapse
Affiliation(s)
- Laura S Treml
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | | | | | | | |
Collapse
|
24
|
Thomas-Vaslin V, Altes HK, de Boer RJ, Klatzmann D. Comprehensive assessment and mathematical modeling of T cell population dynamics and homeostasis. THE JOURNAL OF IMMUNOLOGY 2008; 180:2240-50. [PMID: 18250431 DOI: 10.4049/jimmunol.180.4.2240] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our current view of T cell differentiation and population dynamics is assembled from pieces of data obtained from separate experimental systems and is thus patchy. We reassessed homeostasis and dynamics of T cells 1) by generating a mathematical model describing the spatiotemporal features of T cell differentiation, and 2) by fitting this model to experimental data generated by disturbing T cell differentiation through transient depletion of dividing T cells in mice. This specific depletion was obtained by administration of ganciclovir to mice expressing the conditional thymidine kinase suicide gene in T cells. With this experimental approach, we could derive quantitative parameters describing the cell fluxes, residence times, and rates of import, export, proliferation, and death across cell compartments for thymocytes and recent thymic emigrants (RTEs). Among other parameters, we show that 93% of thymocytes produced before single-positive stages are eliminated through the selection process. Then, a postselection peripheral expansion of naive T cells contributes three times more to naive T cell production than the thymus, with half of the naive T cells consisting of dividing RTEs. Altogether, this work provides a quantitative population dynamical framework of thymocyte development, RTEs, and naive T cells.
Collapse
Affiliation(s)
- Véronique Thomas-Vaslin
- Unité Mixte de Recherche 7087, Biologie et Thérapeutique des Pathologies Immunitaires, Université Pierre et Marie Curie-Paris 06, 83 Boulevard de l'Hôpital, Paris, France.
| | | | | | | |
Collapse
|
25
|
Jovanovic V, Lair D, Soulillou JP, Brouard S. Transfer of tolerance to heart and kidney allografts in the rat model. Transpl Int 2008; 21:199-206. [DOI: 10.1111/j.1432-2277.2007.00599.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Belak M, Valeri CR, Wright DG. Exploring the feasibility of selective depletion of T lymphocyte subsets by whole blood immunoadsorption cytapheresis. Clin Exp Immunol 2007; 150:477-86. [PMID: 17924969 DOI: 10.1111/j.1365-2249.2007.03518.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Normal turnover of T lymphocytes is slow relative to other blood cells. Consequently, the physical removal of circulating leucocytes by thoracic duct drainage, repeated leukapheresis or blood filtration results in T cell depletion and immunosuppression. However, clinical use of such procedures is impractical compared with immunosuppressive drugs or radiation. None the less, immunosuppression by physical depletion of T cells, avoiding the systemic toxicities of drugs and radiation, might have clinical advantages if immunophenotypically distinct T cell subsets could be depleted selectively. Recent advances in targeted plasma protein apheresis using adsorbent macrobead columns prompted us to determine whether analogous techniques might permit CD4+ T lymphocytes to be removed selectively from whole blood. To explore this possibility, we linked murine anti-human-CD4 and isotype-identical control monoclonal antibodies (mAbs) to agarose, polyacrylamide and polystyrene macrobeads (150-350 microm) and then evaluated the selectivity, specificity and efficiency of macrobead columns to remove CD4+ T cells from anti-coagulated whole blood at varying mAb densities and flow rates. We also examined saturation kinetics and Fc-oriention versus random coupling of mAbs to macrobeads. Sepharose 6MB macrobead (250-350 microm) columns proved to be most effective, selectively removing up to 98% of CD4+ T cells from whole blood. Moreover, depletion efficiency and selectivity were retained when these columns were reused after elution of adherent CD4+ cells. These studies indicate that selective depletion of T lymphocyte subsets by whole blood immunoadsorption apheresis using mAb-linked macrobead columns may be feasible on a clinical scale. It is possible that such apheresis techniques could achieve targeted forms of immunosuppression not possible with drugs or radiation.
Collapse
Affiliation(s)
- M Belak
- Section of Hematology and Oncology, Department of Medicine, Boston University Medical Center, Boston, MA, USA.
| | | | | |
Collapse
|
27
|
Abstract
Non-human primates (NHP) have become an indispensable model in studying the common and dangerous human chronic infections, including HIV/SIV, Hepatitis C virus, and tuberculosis. More recently, we and others have used aged NHP to model human immune aging. Chronic infections and aging are both characterized by a significant depletion of defined lymphocyte subsets and the compensatory attempts to regenerate the immune system. As the efficacious antiviral drugs and novel methods to improve and boost the immune system emerge, therapeutic immune regeneration has become a realistic goal in both the physiologic and pathologic settings. This article will summarize our current knowledge on this topic and will discuss future research directions as well as the potential and power of translational studies in non-human primate models of infection, aging and bone marrow transplantation.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health & Science University, West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
28
|
Cassese G, Parretta E, Pisapia L, Santoni A, Guardiola J, Di Rosa F. Bone marrow CD8 cells down-modulate membrane IL-7Rα expression and exhibit increased STAT-5 and p38 MAPK phosphorylation in the organ environment. Blood 2007; 110:1960-9. [PMID: 17510323 DOI: 10.1182/blood-2006-09-045807] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
By comparing mature CD8-cell turnover in different organs, we previously demonstrated that CD8 cells proliferate predominantly in the bone marrow (BM). To investigate the mechanisms underlying such increased turnover, we compared BM, lymph nodes, and spleen CD8 cells from untreated C57BL/6 mice regarding in vivo proliferation within the organ; in vitro response to interleukin-7 (IL-7), IL-15, IL-21; ex vivo expression of membrane CD127 (IL-7Rα), intracellular Bcl-2, phospho–STAT-5 (signal transducer and activator of transcription 5), phospho-p38 mitogen activated protein kinase (MAPK); and in vivo proliferation on adoptive transfer. In the BM, the proliferation rate was increased for either total CD8 cells or individual CD44 and CD122 subsets. In contrast, purified CD8+ cells from the BM did not show an enhanced in vitro proliferative response to IL-7, IL-15, and IL-21 compared with corresponding spleen cells. After transfer and polyinosinic-polycytidylic acid (polyI:C) treatment, both spleen-derived and BM-derived CD8 cells from congenic donors proliferated approximately twice more in the recipient BM than in spleen and lymph nodes. Our results suggest that BM CD8 cells are not committed to self-renewal, but rather are stimulated in the organ. Molecular events constantly induced in the CD8 cells within the BM of untreated mice include increase of both phosphorylated STAT-5 and phosphorylated p38 intracellular levels, and the reduction of CD127 membrane expression.
Collapse
Affiliation(s)
- Giuliana Cassese
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Cho JH, Boyman O, Kim HO, Hahm B, Rubinstein MP, Ramsey C, Kim DM, Surh CD, Sprent J. An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. ACTA ACUST UNITED AC 2007; 204:1787-801. [PMID: 17664294 PMCID: PMC2118670 DOI: 10.1084/jem.20070740] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In conditions of T lymphopenia, interleukin (IL) 7 levels rise and, via T cell receptor for antigen–self–major histocompatibility complex (MHC) interaction, induce residual naive T cells to proliferate. This pattern of lymphopenia-induced “homeostatic” proliferation is typically quite slow and causes a gradual increase in total T cell numbers and differentiation into cells with features of memory cells. In contrast, we describe a novel form of homeostatic proliferation that occurs when naive T cells encounter raised levels of IL-2 and IL-15 in vivo. In this situation, CD8+ T cells undergo massive expansion and rapid differentiation into effector cells, thus closely resembling the T cell response to foreign antigens. However, the responses induced by IL-2/IL-15 are not seen in MHC-deficient hosts, implying that the responses are driven by self-ligands. Hence, homeostatic proliferation of naive T cells can be either slow or fast, with the quality of the response to self being dictated by the particular cytokine (IL-7 vs. IL-2/IL-15) concerned. The relevance of the data to the gradual transition of naive T cells into memory-phenotype (MP) cells with age is discussed.
Collapse
Affiliation(s)
- Jae-Ho Cho
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li B, VanRoey MJ, Jooss K. Recombinant IL-7 enhances the potency of GM-CSF-secreting tumor cell immunotherapy. Clin Immunol 2007; 123:155-65. [PMID: 17320482 DOI: 10.1016/j.clim.2007.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/16/2006] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
IL-7 is known for its role in lymphopoiesis and T-cell homeostasis. In addition, its capacity to augment the immune response to weak or low affinity antigens makes it an ideal candidate to evaluate in combination with a GM-CSF-secreting tumor cell immunotherapy, which has been shown to elicit broad humoral and cellular immune responses. The studies reported here show that IL-7, when combined with a GM-CSF-secreting tumor cell immunotherapy, significantly prolonged the survival of tumor-bearing mice. The enhanced anti-tumor protection correlated with an increased number of activated dendritic cells (DC) and T cells in lymphoid tissues, such as the draining lymph nodes (DLN) and spleen. Moreover, an increased number of activated effector T cells were found in the tumor microenvironment, correlating with a more potent systemic tumor-specific T-cell response than each monotherapy alone. Taken together, these studies demonstrate that IL-7 augments the anti-tumor response of a GM-CSF-secreting tumor cell immunotherapy in preclinical models.
Collapse
Affiliation(s)
- Betty Li
- Cell Genesys Inc., 500 Forbes Boulevard, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
31
|
Abstract
The pool of memory T cells is regulated by homeostatic mechanisms to persist for prolonged periods at a relatively steady overall size. Recent work has shown that two members of the common gamma chain (gammac) family of cytokines, interleukin-7 (IL-7) and IL-15, govern homeostasis of memory T cells. These two cytokines work in conjunction to support memory T-cell survival and intermittent background proliferation. Normal animals contain significant numbers of spontaneously arising memory-phenotype (MP) cells, though whether these cells are representative of true antigen-specific memory T cells is unclear. Nevertheless, it appears that the two types of memory cells do not display identical homeostatic requirements. For antigen-specific memory CD8+ T cells, IL-7 is primarily important for survival while IL-15 is crucial for their background proliferation. For memory CD4+ T cells, IL-7 has an important role, whereas the influence of IL-15 is still unclear.
Collapse
Affiliation(s)
- Charles D Surh
- The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
32
|
Nowak AK, Lake RA, Robinson BWS. Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 2006; 58:975-90. [PMID: 17005292 DOI: 10.1016/j.addr.2006.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/10/2006] [Indexed: 11/16/2022]
Abstract
Cytotoxic chemotherapy not only affects the tumour but also targets dividing lymphocytes, the very cells required to develop an immune response. Hence, chemo- and immunotherapy have been seen as antagonistic. It is now clear that the way a chemotherapeutic drug kills a tumour cell determines how that dying cell interacts with the immune system and whether the interaction leads to an immune response. Chemotherapy also depletes regulatory T cells, potentially enhancing immune responses. Furthermore, lymphodepletion triggers homeostatic T cell reconstitution, creating new populations of pre-T cells that need education in the thymic environment. Post-chemotherapy immune system reconstitution may provide a unique opportunity for therapeutic intervention by shaping the repertoire towards reactivity to tumour antigens. An understanding of the underlying cellular and immunological events in both animal models and patients undergoing chemotherapy will guide decisions about which immunomodulatory approaches may be effective with different cytostatic drugs and hence to develop appropriate scheduling for integration of the treatment modalities.
Collapse
Affiliation(s)
- Anna K Nowak
- Department of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, 4th Floor, G block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia.
| | | | | |
Collapse
|
33
|
Almeida ARM, Zaragoza B, Freitas AA. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:192-200. [PMID: 16785514 DOI: 10.4049/jimmunol.177.1.192] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To fulfill its mission, the immune system must maintain a complete set of different cellular subpopulations that play specific roles in immune responses. We have investigated the mechanisms regulating CD4+CD25+ regulatory T (Treg) cell homeostasis. We show that the expression of the high-affinity IL-2Ralpha endows these cells with the capacity to explore the IL-2 resource, ensuring their presence while keeping their number tied to the number of CD4+ T cells that produce IL-2. We show that such a homeostatic mechanism allows the increased expansion of T cells without causing disease. The indexing of Treg cells to the number of activated IL-2-producing cells may constitute a feedback mechanism that controls T cell expansion during immune responses, thus preventing autoimmune or lymphoproliferative diseases. The present study highlights that maintenance of proportions between different lymphocyte subsets may also be critical for the immune system and are under strict homeostatic control.
Collapse
Affiliation(s)
- Afonso R M Almeida
- Lymphocyte Population Biology Unit, Unité de Recherche Associée, Centre National de la Recherche Scientifique, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | | | | |
Collapse
|
34
|
Managlia EZ, Landay A, Al-Harthi L. Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway. Virology 2006; 350:443-52. [PMID: 16542695 DOI: 10.1016/j.virol.2006.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 11/23/2022]
Abstract
Interleukin (IL)-7 plays several roles critical to T cell maturation, survival, and homeostasis. Because of these functions, IL-7 is under investigation as an immune-modulator for therapeutic use in lymphopenic clinical conditions, including HIV. We reported that naive T cells, typically not permissive to HIV, can be productively infected when pre-treated with IL-7. We evaluated the mechanism by which IL-7-mediates this effect. IL-7 potently up-regulated the transcriptional factor NFAT, but had no effect on NFkappaB. Blocking NFAT activity using a number of reagents, such as Cyclosporin A, FK-506, or the NFAT-specific inhibitor known as VIVIT peptide, all markedly reduced IL-7-mediated induction of HIV replication in naive T cells. Additional neutralization of cytokines present in IL-7-treated cultures and/or those that have NFAT-binding sequences within their promotors indicated that IL-10, IL-4, and most significantly IFNgamma, all contribute to IL-7-induction of HIV productive replication in naive T cells. These data clarify the mechanism by which IL-7 can overcome the block to HIV productive infection in naive T cells, despite their quiescent cell status. These findings are relevant to the treatment of HIV disease and understanding HIV pathogenesis in the naive CD4+ T cell compartment, especially in light of the vigorous pursuit of IL-7 as an in vivo immune modulator.
Collapse
Affiliation(s)
- Elizabeth Z Managlia
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 West Harrison Street, 614 Cohn, Chicago, IL 60612, USA
| | | | | |
Collapse
|
35
|
Ganusov VV, Pilyugin SS, Ahmed R, Antia R. How does cross-reactive stimulation affect the longevity of CD8+ T cell memory? PLoS Comput Biol 2006; 2:e55. [PMID: 16789812 PMCID: PMC1475713 DOI: 10.1371/journal.pcbi.0020055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 04/10/2006] [Indexed: 12/03/2022] Open
Abstract
Immunological memory—the ability to “remember” previously encountered pathogens and respond faster upon re-exposure is a central feature of the immune response in vertebrates. The cross-reactive stimulation hypothesis for the maintenance of memory proposes that memory cells specific for a given pathogen are maintained by cross-reactive stimulation following infections with other (unrelated) pathogens. We use mathematical models to examine the cross-reactive stimulation hypothesis. We find that: (i) the direct boosting of cross-reactive lineages only provides a very small increase in the average longevity of immunological memory; (ii) the expansion of cross-reactive lineages can indirectly increase the longevity of memory by reducing the magnitude of expansion of new naive lineages which occupy space in the memory compartment and are responsible for the decline in memory; (iii) cross-reactive stimulation results in variation in the rates of decline of different lineages of memory cells and enrichment of memory cell population for cells that are cross-reactive for the pathogens to which the individual has been exposed. Immunological memory—the ability to “remember” previously encountered pathogens and respond faster on re-exposure—is a central feature of the immune response of vertebrates. Exposure to a pathogen results in the clonal expansion of a few relatively rare clones of immune cells which are specific for the pathogen to form a population large enough to control the pathogen. Immunological memory arises from the maintenance of an elevated numbers of these pathogen-specific immune cells. There has been much debate on the contribution of different processes such as the persistence of antigen, cross-reactive stimulation, and homeostasis to the maintenance of the elevated number of “memory” cells. Models have been useful in understanding the contributions of these various processes to the maintenance of memory. The models have shown that the decline rate of memory specific for previously encountered pathogens arises due to exposure to new pathogens—this causes the replacement of a fraction of “old” memory cells with memory cells specific for new pathogens. In this paper Ganusov, Antia, and colleagues use mathematical models to explore how the ability of cross-reactive memory cells to respond to the antigens on more than one pathogen can help in the maintenance of immunological memory.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Sergei S Pilyugin
- Department of Mathematics, University of Florida, Gainesville Florida, United States of America
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Abstract
Thymic production of T cells declines rapidly with age, and therefore homeostatic cycling (HC) of mature lymphocytes plays an important role in maintaining stable numbers of mature T lymphocytes bearing sufficient repertoire diversity. Following lymphocyte depletion, HC changes in quality and magnitude, resulting in homeostatic peripheral expansion (HPE), a state of widespread T-cell cycling that serves to increase T-cell number and to maintain T-cell repertoire diversity to the greatest extent possible. Recent studies delineating the requirements for HC and HPE have shown that naive CD4+ cells and naive CD8+ cells require both IL7 and TCR engagement for survival, cycling, and homeostatic expansion, whereas CD8+ memory cells are maintained and expanded by cytokine signals alone, independent of TCR engagement. While basal levels of IL15 are sufficient for HC and HPE of CD8+ memory cells, supranormal levels of IL7 will also suffice. The requirements for memory CD4+ cells remain unclear, but current models hypothesize that either IL7 or TCR triggering may be sufficient. Thus, the changes in immune physiology that are present in lymphopenic hosts can be largely accounted for by cytokine-driven signals, especially those rendered by IL7 or IL15. As the alterations in immune physiology present in lymphopenic hosts may be conducive to stronger antitumor immune responsiveness, careful delineation of the factors responsible may be expected to give rise to approaches to augment the effectiveness of current antitumor immunotherapies.
Collapse
Affiliation(s)
- Martin Guimond
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1104, USA
| | | | | |
Collapse
|
37
|
Porter DL, June CH. T-cell reconstitution and expansion after hematopoietic stem cell transplantation: 'T' it up! Bone Marrow Transplant 2005; 35:935-42. [PMID: 15806121 DOI: 10.1038/sj.bmt.1704953] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adoptive immunotherapy is the isolation and infusion of antigen-specific or nonspecific lymphocytes. Adoptive therapy with T cells may have a role in replacing, repairing, or enhancing immune function damaged by cytotoxic therapies, and rapid lymphocyte recovery may improve outcome after autologous and allogeneic stem cell transplantation (SCT). Recently, a plethora of information on the basic mechanisms of T-cell biology and regulation of cellular immune responses has emerged, permitting the development of new forms of adoptive cell therapy. Efficient ex vivo culture method for T-cell subsets affords the possibility of adoptive transfer of T cells engineered with enhanced capacity for central memory, effector cytotoxicity, Th1, Th2, veto cell, and T regulatory functions. Studies show that homeostatic T-cell proliferation is important for effective adoptive immunotherapy and pretreatment with chemotherapy may enhance the effects of infused T cells. Replicative senescence, in part due to telomere erosion, likely limits successful adoptive immunotherapy, though it may be possible to maintain T-cell pools by enforced expression of telomerase. Clinical trials now demonstrate that it is possible to enhance immune reconstitution after SCT with cytokines or infusions of ex vivo costimulated expanded T cells. These data all support the premise that adoptive therapy can accelerate reconstitution of cellular immunity with enhanced antitumor effects following SCT.
Collapse
Affiliation(s)
- D L Porter
- Department of Medicine, Hematology-Oncology Division, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
38
|
Almeida ARM, Rocha B, Freitas AA, Tanchot C. Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Semin Immunol 2005; 17:239-49. [PMID: 15826829 DOI: 10.1016/j.smim.2005.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A system under homeostatic control tends to maintain its structure and functions by establishing dynamic equilibriums controlled by multiple regulatory mechanisms. We have shown that this is the case for immune system. Several different mechanisms seem to participate in the homeostatic control of T cell numbers and population distribution. In other words, besides a quantitative dimension, there is also a qualitative dimension in T cell homeostasis. This is achieved through competition by driving the specialization of sub-populations of lymphocytes to occupy specific niches in the peripheral pool and by developing independent homeostatic mechanisms for each particular cell sub-set. Thus, the sizes of the naïve and memory T cell compartments are governed by independent homeostatic mechanisms, which preserve the capacity to deal with any novel infection (conferred by the presence of naïve T cells) whilst ensuring the efficacy of memory responses when dealing with recurring antigens. Peripheral T cell homeostasis also depends on the integrity of sub-population structure and the presence of regulatory CD4+ CD25+ T cells. The indexation of regulatory CD4+ CD25+ T cell numbers to the numbers of peripheral activated CD4+ T cells is another mechanism of homeostasis that has major advantages in the control of immune responses. It ensures continuous regulation of T cell numbers throughout immune responses, allowing for increases in cell numbers as long as the proportion of CD4+ CD25+ regulatory T cells is kept.
Collapse
Affiliation(s)
- Afonso R M Almeida
- Lymphocyte Population Biology Unit, URA CNRS 1961, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
39
|
Managlia EZ, Landay A, Al-Harthi L. Interleukin-7 signalling is sufficient to phenotypically and functionally prime human CD4 naive T cells. Immunology 2005; 114:322-35. [PMID: 15720434 PMCID: PMC1782087 DOI: 10.1111/j.1365-2567.2004.02089.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by bone marrow and lymphoid stromal cells and is involved in the synthesis, survival and homeostasis of T cells. These attributes are the basis for current strategies to utilize IL-7 as an immune modulator for several clinical conditions to replenish depleted T-cell numbers. Because we had previously determined that IL-7 can induce potent human immunodeficiency virus replication in the otherwise non-permissive CD4(+) naive T-cell compartment, we evaluated here the impact of IL-7 on the phenotype and functional potential of naive CD4(+) T cells in an attempt to understand the mechanism of this induction. We demonstrate that IL-7 mediated the up-regulation of CD25, CD95 and human leucocyte antigen-DR, while it did not alter the expression of CD45RO, CD69, CD40, or CD154. Examination of the cytokine profile of IL-7-treated naive T cells using a Type1/Type2 Proteome Array indicated a remarkable IL-7-mediated induction of interferon-gamma production, while the other cytokines evaluated (IL-2, IL-12, tumour necrosis factor-alpha, IL-4, IL-5, IL-10 and IL-13) were not affected. Intracellular staining of IL-7-treated naive T cells for interferon-gamma verified the Proteome data. IL-7 did not induce cell cycle proliferation of naive CD4(+) T cells, as evaluated by 7-AAD/pyronin immunostaining and carboxyfluorescein diacetate succinimidyl ester dye tracking. IL-7 treatment of naive CD4(+) T cells induced their ability to prime monocytes, as was indicated by induction of CD80 and CD86 expression on monocytes cocultured with IL-7-treated naive CD4(+) T cells. Collectively, these data indicate that IL-7 signalling is sufficient to phenotypically and functionally prime human CD4(+) naive T cells independent of antigen stimulation.
Collapse
Affiliation(s)
- Elizabeth Z Managlia
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
40
|
Abstract
Immunological memory - the ability to 'remember' previously encountered pathogens and respond faster on re-exposure - is a central feature of the immune response of vertebrates. We outline how mathematical models have contributed to our understanding of CD8(+) T-cell memory. Together with experimental data, models have helped to quantitatively describe and to further our understanding of both the generation of memory after infection with a pathogen and the maintenance of this memory throughout the life of an individual.
Collapse
Affiliation(s)
- Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
41
|
Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. ACTA ACUST UNITED AC 2005; 200:1347-58. [PMID: 15545358 PMCID: PMC2211915 DOI: 10.1084/jem.20040437] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral T cell diversity is virtually constant in the young, but is invariably reduced in aged mice and humans. CD8+ T cell clonal expansions (TCE) are the most drastic manifestation of, and possible contributors to, this reduced diversity. We show that the presence of TCE results in reduced CD8+, but not CD4+, T cell diversity, and in functional inability to mobilize parts of the CD8+ T cell repertoire affected by TCE. In the model of herpes simplex virus (HSV)-1 infection of B6 mice, >90% of the responding CD8+ T cells use Vbeta10 or Vbeta8 and are directed against a single glycoprotein B (gB498-505) epitope, gB-8p. We found that old animals bearing CD8+ TCE within Vbeta10 or Vbeta8 families failed to mount an effective immune response against HSV-1, as judged by reduced numbers of peptide-major histocompatibility complex tetramer+ CD8 T cells and an absence of antiviral lytic function. Furthermore, Vbeta8 TCE experimentally introduced into young mice resulted in lower resistance to viral challenge, whereas Vbeta5+ TCE induced in a similar fashion did not impact viral resistance. These results demonstrate that age-related TCE functionally impair the efficacy of antiviral CD8+ T cell immunity in an antigen-specific manner, strongly suggesting that TCE are not the mere manifestation of, but are also a contributing factor to, the immunodeficiency of senescence.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, West Campus, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
42
|
Clay CC, Rodrigues DSS, Brignolo LL, Spinner A, Tarara RP, Plopper CG, Leutenegger CM, Esser U. Chemokine networks and in vivo T-lymphocyte trafficking in nonhuman primates. J Immunol Methods 2004; 293:23-42. [PMID: 15541274 DOI: 10.1016/j.jim.2004.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/30/2022]
Abstract
T-lymphocyte migratory circuits in human and nonhuman primates remain largely unexplored due to the difficulty of defining cell trafficking in vivo. However, this knowledge may reveal critical aspects of immunity and T-lymphocyte homeostasis in both health and disease. Furthermore, in vivo T-lymphocyte trafficking studies may facilitate defining mechanism(s) of immune dysfunction in the nonhuman primate model for acquired immunodeficiency syndrome (AIDS). Here, we developed a model for in vivo T-lymphocyte trafficking in nonhuman primates, and delineated homing characteristics of unstimulated peripheral blood mononuclear cells (PBMCs) to lymphoid and nonlymphoid compartments in healthy rhesus macaques. T-lymphocyte homing of autologous, carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled PBMCs was defined within 48 h of intravenous transfer. The highest relative frequency of CFSE+ T lymphocytes was observed in peripheral blood and spleen. Expression of chemokine receptor CCR7 and its ligands correlated with recirculation of T lymphocytes through the periphery and homing to paracortical regions of lymph node, where cells remained largely excluded from B-cell follicles. T-lymphocyte trafficking was also detected to the liver and bone marrow, and at low levels to the thymus and small intestine. The liver contained the highest proportion of CD45RA- T lymphocytes, consistent with homing of activated/memory T lymphocytes to this nonlymphoid site. Our data suggest that lymphoid and nonlymphoid organs are under continuous immunosurveillance in healthy macaques, and that this model may serve to investigate aberrant patterns in disease.
Collapse
Affiliation(s)
- Candice C Clay
- Immunology Graduate Program, University of California at Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Shanker A. Is thymus redundant after adulthood? Immunol Lett 2004; 91:79-86. [PMID: 15019273 DOI: 10.1016/j.imlet.2003.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/20/2003] [Accepted: 12/28/2003] [Indexed: 11/29/2022]
Abstract
Thymus is considered to involute with age with a decline in thymic function. However, this generality is not universally and incontrovertibly true. Many studies performed in animals and men have proved to the contrary that thymic activity and function appear to be well maintained in the old age and may be indispensable for T cell reconstitution in different immunological settings. During some clinical situations where T cell pool needs to be regenerated, renewal of thymic activity and mass has been observed in an otherwise dormant thymic remnant. New studies have revealed a dynamic interplay between postnatal thymus output and peripheral T cell pool. Moreover, age-related loss of thymic function appears to be only quantitative and not qualitative. This review, thus, focuses on the different conditions that lead to thymic involution and attempts to bring about the emerging notion and the clinical relevance of continuous thymic activity well beyond the adulthood to optimise the function of the immune system in the context of cancer and infectious diseases.
Collapse
Affiliation(s)
- Anil Shanker
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, 163 Avenue de Luminy, Case 906, Marseille Cedex 09, 13288 France.
| |
Collapse
|
44
|
Kieper WC, Burghardt JT, Surh CD. A role for TCR affinity in regulating naive T cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2004; 172:40-4. [PMID: 14688307 DOI: 10.4049/jimmunol.172.1.40] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Homeostatic signals that control the overall size and composition of the naive T cell pool have recently been identified to arise from contact with self-MHC/peptide ligands and a cytokine, IL-7. IL-7 presumably serves as a survival factor to keep a finite number of naive cells alive by preventing the onset of apoptosis, but how TCR signaling from contact with self-MHC/peptide ligands regulates homeostasis is unknown. To address this issue, murine polyclonal and TCR-transgenic CD8+ cells expressing TCR with different affinities for self-MHC/peptide ligands, as depicted by the CD5 expression level, were analyzed for their ability to respond to and compete for homeostatic factors under normal and lymphopenic conditions. The results suggest that the strength of the TCR affinity determines the relative "fitness" of naive T cells to compete for factors that support cell survival and homeostatic proliferation.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Cell Division/genetics
- Cell Division/immunology
- Clone Cells
- Female
- H-Y Antigen/genetics
- Homeostasis/genetics
- Homeostasis/immunology
- Interphase/genetics
- Interphase/immunology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/metabolism
- Ligands
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Thy-1 Antigens/genetics
- Thy-1 Antigens/metabolism
Collapse
Affiliation(s)
- William C Kieper
- Department of Immunology, The Scripps Research Institute, 1-550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Gaudin E, Rosado M, Agenes F, McLean A, Freitas AA. B-cell homeostasis, competition, resources, and positive selection by self-antigens. Immunol Rev 2004; 197:102-15. [PMID: 14962190 DOI: 10.1111/j.0105-2896.2004.0095.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In adult mice, the number of B lymphocytes remains constant under homeostatic control, in spite of the fact that B cells are produced continuously in numbers that largely exceed the number required to replenish the peripheral pools. It follows that each newly formed lymphocyte can only persist if another lymphocyte dies. In an immune system where the total number of cells is limited, cell survival is no longer a passive phenomenon but rather a continuous active process where each lymphocyte must compete with other lymphocytes to survive. Consequently, the number and the life expectancy of a B-cell clone vary according to the presence or absence of competitor populations. This process of lymphocyte competition is likely controlled by a common need for resources that are in limited supply. The number of peripheral B-cells varies according to the availability of B-cell receptor (BCR) ligands. Indeed, it is possible to modify steady-state B-cell numbers by antigen manipulation. Moreover, conventional self-reactive B cells can undergo positive selection. We showed that the fate of a self-reactive B cell is determined by the quantity of self-antigens, the number of antigen-specific receptors engaged, and its overall antigen-binding avidity rather than the affinity of individual BCRs.
Collapse
Affiliation(s)
- Emmanuelle Gaudin
- Lymphocyte Population Biology, URA CNRS 1961, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
46
|
Ortiz-Suárez A, Miller RA. Antigen-independent expansion of CD28hi CD8 cells from aged mice: cytokine requirements and signal transduction pathways. J Gerontol A Biol Sci Med Sci 2003; 58:B1063-73. [PMID: 14684702 DOI: 10.1093/gerona/58.12.b1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Memory CD8+ T cells from old mice can proliferate in nonirradiated recipients. Transfer of labeled cells from aged donors into young recipients showed that proliferation of aged donor CD8 cells requires host cells that can both respond to interferon-gamma and produce interleukin-15. Reisolation of transferred CD8 cells from host mice showed that LAT (linker for activated T cells) translocation to the immunological synapse, and translocation of NF (nuclear factor)-kappaB to the nucleus were diminished in recovered CD8 T cells from old donors, whether they had divided in vivo or not. Cells able to proliferate in vivo could be isolated based on their unusually high levels of CD28 expression, but were found not to differ from other aged CD8 cells in their low levels of LAT and protein kinase C-theta (PKC-theta) translocation to the immunological synapse. Thus in vivo proliferation of CD28hi CD8 cells from aged mice cannot be attributed to retention of T-cell receptor signaling.
Collapse
Affiliation(s)
- Anavelys Ortiz-Suárez
- Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | |
Collapse
|
47
|
Pettersson FE, Grönvik KO. Long-term CD4+ and CD8+ memory T cells developed in severe combined immunodeficiency mice during homoeostasis exhibit differences in sensitivity to antigen. Scand J Immunol 2003; 57:311-8. [PMID: 12662293 DOI: 10.1046/j.1365-3083.2003.01239.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T cells transferred in small numbers to lymphopenic hosts proliferate spontaneously, and naïve T cells turn into memory cells without complete cellular reconstitution of the lymphoid compartment. In this study, neonatal severe combined immunodeficiency mice were treated with peripheral CD4+ or CD8+ T cells purified from the spleen of syngeneic C.B-17 mice. At 2 weeks and more pronounced at 10 weeks post treatment, a majority of the residing donor T cells showed memory phenotype, with high expression of CD44 and an early onset of proliferation and cytokine production upon stimulation. These memory type of donor cells were sustained in numbers for at least 1.5 years post treatment in a homoeostatic fashion, recognized by normal CD4/CD8 ratio and no bias towards type 1 or type 2 immune response. Furthermore, amongst the memory type of cells, there was a striking difference in their response, where the CD8+ donor cells had higher threshold for stimulation than the CD4+ donor cells.
Collapse
Affiliation(s)
- F Ekholm Pettersson
- Department of Vaccine Research, National Veterinary Institute, Uppsala University, SE-751 89 Uppsala, Sweden
| | | |
Collapse
|
48
|
Jackola DR, Pierson-Mullany LK, Daniels LR, Corazalla E, Rosenberg A, Blumenthal MN. Robustness into advanced age of atopy-specific mechanisms in atopy-prone families. J Gerontol A Biol Sci Med Sci 2003; 58:99-107. [PMID: 12586846 DOI: 10.1093/gerona/58.2.b99] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We evaluated atopy-associated parameters in 1,099 people (aged 6-84 years) from families with history for atopy. All were tested for serum total immunoglobulin E (IgE) and allergen sensitivity by skin prick test. Specific IgE tests were done in randomly selected families. There was a decline with age in serum total IgE values, and relative atopy "incidence rates" were slightly lower among those older than 60 years. However, there was no change with age in sensitivity or severity of atopy. Among those sensitized to ragweed (Ambrosia artemisilfolia), there was no age-associated change in IgE levels specific to Amb a 1, a major allergen extracted from ragweed, and no change in the binding affinity of IgE for the Amb a 1 allergen. Among families with atopic histories, the underlying atopic mechanisms are particularly robust, and the atopic propensity remains into advanced age. In addition, established atopic responses may be focused in an immune system compartment either independent of or minimally influenced by T-cell activity.
Collapse
Affiliation(s)
- Duaine R Jackola
- The Asthma & Allergy Center, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Akesson C, Pero RW, Ivars F. C-Med 100, a hot water extract of Uncaria tomentosa, prolongs lymphocyte survival in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2003; 10:23-33. [PMID: 12622460 DOI: 10.1078/094471103321648629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Water extracts of the bark of Uncaria tomentosa, a vine indigenous to South America, has been used for generations as an "immuno modulator". To understand the basis of this immuno modulatory effect we fed mice in their drinking water with C-Med 100, which is a commercially available water extract from Uncaria tomentosa. We found a dose-dependent increase in spleen cell numbers in the supplemented mice, but the proportions of B cells, T cells, NK cells, granulocytes, and memory lymphocytes were normal. However, there were no detectable changes of the lymphoid architecture of the spleen even after long-term treatment. Further, when C-Med 100 treatment was interrupted the cellularity returned to normal level within four weeks. The increased number of lymphocytes was most likely not due to increased production because C-Med 100 did not have any significant effect on precursor cells nor on the accumulation of recent thymic emigrants in the spleen. We conclude that accumulation is most likely due to prolonged cell survival, because adoptive transfer experiments demonstrated that C-Med 100 treatment significantly prolonged lymphocyte survival in peripheral lymphoid organs, without increasing their proliferation rate. Since the accumulation was reversible and without detectable pathological effects, these results suggest the use of C-Med 100 as a potential agent for clinically accelerating the recovery of patients from leukopenia.
Collapse
Affiliation(s)
- Ch Akesson
- Sections for Immunology, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
50
|
Affiliation(s)
- Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Hospital, Changhua 500, Taiwan
| | | |
Collapse
|