1
|
Li T, Zhu K, Wang L, Dong Y, Huang J. Stabilization by Chaperone GroEL in Biogenic Selenium Nanoparticles Produced from Bifidobacterium animalis H15 for the Treatment of DSS-Induced Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13439-13452. [PMID: 38456847 DOI: 10.1021/acsami.3c16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Inflammatory bowel diseases have a high rate of mortality and pose a serious threat to global public health. Selenium is an essential trace element, which has been shown to play important roles in redox control and antioxidant defense. Microorganisms play important roles in the reduction of toxic inorganic selenium (selenite and selenate) to less-toxic biogenic selenium nanoparticles (Bio-SeNPs), which have higher biocompatibility. In the present study, novel Bio-SeNPs with high stability were synthesized using probiotic Bifidobacterium animalis subsp. lactis H15, which was isolated from breastfed infant feces. The Bio-SeNPs with a size of 122 nm showed stability at various ionic strengths, temperatures, and in simulated gastrointestinal fluid, while chemosynthetic SeNPs underwent aggregation. The main surface protein in the Bio-SeNPs was identified as chaperone GroEL by liquid chromatography-tandem mass spectrometry. The overexpression and purification of GroEL demonstrated that GroEL controlled the assembly of Bio-SeNPs both in vitro and in vivo. In vivo, oral administration of Bio-SeNPs could alleviate dextran sulfate sodium-induced colitis by decreasing cell apoptosis, increasing antioxidant capacity and the number of proliferating cells, and improving the function of the intestinal mucosal barrier. In vitro experiments verified that Bio-SeNPs inhibited lipopolysaccharide-induced toll-like receptor 4/NF-κB signaling pathway activation. These results suggest that the Bio-SeNPs with high stability could have potential as a nutritional supplement for the treatment of colitis in nanomedicine applications.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Chen MJ, Chou CH, Hsiao TH, Wu TY, Li CY, Chen YL, Chao KH, Lee TH, Gicana RG, Shih CJ, Brandon-Mong GJ, Lai YL, Li PT, Tseng YL, Wang PH, Chiang YR. Clostridium innocuum, an opportunistic gut pathogen, inactivates host gut progesterone and arrests ovarian follicular development. Gut Microbes 2024; 16:2424911. [PMID: 39508647 PMCID: PMC11545266 DOI: 10.1080/19490976.2024.2424911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
\Levels of progesterone, an endogenous female hormone, increase after ovulation; progesterone is crucial in the luteal phase to maintain successful pregnancy and prevent early miscarriage. Both endogenous and exogenous progesterone are recycled between the liver and gut; thus, the gut microbiota regulate host progesterone levels by inhibiting enterohepatic progesterone circulation. Our data indicated Clostridium innocuum as a major species involved in gut progesterone metabolism in women with infertility. C. innocuum converts progesterone into the neurosteroid epipregnanolone (with negligible progestogenic activity). We purified and characterized the corresponding enzyme, namely NADPH-dependent 5β-dihydroprogesterone reductase, which is highly oxygen sensitive and whose corresponding genes are prevalent in C. innocuum. Moreover, C. innocuum-administered female C57BL/6 mice (aged 7 weeks) exhibited decreased plasma progesterone levels (~35%). Clostridium-specific antibiotics (metronidazole) restored low plasma progesterone levels in these mice. Furthermore, prolonged C. innocuum administration (12 weeks) arrested ovarian follicular development in female mice. Cytological and histological analyses indicated that C. innocuum may cause luteal phase insufficiency and affect menstrual regularity. Our findings suggest C. innocuum as a causal factor of progesterone resistance in women taking progesterone.
Collapse
Affiliation(s)
- Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Livia Shan-Yu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsun-Hsien Hsiao
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ying Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuang-Han Chao
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Ting Li
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Tseng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Boyte ME, Benkowski A, Pane M, Shehata HR. Probiotic and postbiotic analytical methods: a perspective of available enumeration techniques. Front Microbiol 2023; 14:1304621. [PMID: 38192285 PMCID: PMC10773886 DOI: 10.3389/fmicb.2023.1304621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Probiotics are the largest non-herbal/traditional dietary supplements category worldwide. To be effective, a probiotic strain must be delivered viable at an adequate dose proven to deliver a health benefit. The objective of this article is to provide an overview of the various technologies available for probiotic enumeration, including a general description of each technology, their advantages and limitations, and their potential for the future of the probiotics industry. The current "gold standard" for analytical quantification of probiotics in the probiotic industry is the Plate Count method (PC). PC measures the bacterial cell's ability to proliferate into detectable colonies, thus PC relies on cultivability as a measure of viability. Although viability has widely been measured by cultivability, there has been agreement that the definition of viability is not limited to cultivability. For example, bacterial cells may exist in a state known as viable but not culturable (VBNC) where the cells lose cultivability but can maintain some of the characteristics of viable cells as well as probiotic properties. This led to questioning the association between viability and cultivability and the accuracy of PC in enumerating all the viable cells in probiotic products. PC has always been an estimate of the number of viable cells and not a true cell count. Additionally, newer probiotic categories such as Next Generation Probiotics (NGPs) are difficult to culture in routine laboratories as NGPs are often strict anaerobes with extreme sensitivity to atmospheric oxygen. Thus, accurate quantification using culture-based techniques will be complicated. Another emerging category of biotics is postbiotics, which are inanimate microorganisms, also often referred to as tyndallized or heat-killed bacteria. Obviously, culture dependent methods are not suitable for these products, and alternative methods are needed for their quantification. Different methodologies provide a more complete picture of a heterogeneous bacterial population versus PC focusing exclusively on the eventual multiplication of the cells. Alternative culture-independent techniques including real-time PCR, digital PCR and flow cytometry are discussed. These methods can measure viability beyond cultivability (i.e., by measuring cellular enzymatic activity, membrane integrity or membrane potential), and depending on how they are designed they can achieve strain-specific enumeration.
Collapse
Affiliation(s)
- Marie-Eve Boyte
- NutraPharma Consulting Services Inc., Sainte-Anne-des-Plaines, QC, Canada
| | | | - Marco Pane
- Probiotical Research s.r.l., Novara, Italy
| | | |
Collapse
|
4
|
Kammara R, Nellikka A. Acquiring bifidobacteria species from formula-fed and breast-fed newborns: identifying, quantifying and creating an antibiogram. Access Microbiol 2023; 5:acmi000590.v3. [PMID: 37691835 PMCID: PMC10484311 DOI: 10.1099/acmi.0.000590.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
After examining the Bifidobacterium spp. population in faeces samples from breast-fed and formula-fed infants, an antibiogram was created. The prevalence of Bifidobacterium spp. in faeces was determined using common bacterial growth media, including Man Rogos Sharpe (MRS), Brain Heart Infusion (BHI), Luria Bertani (LB) broth and Bifidobacteria agar. According to the findings, formula-fed babies had a low population of Bifidobacterium spp. in their stools while breast-fed babies had a high population. By using phylogenetic analysis of the 16S rRNA and xfp (xylose/fructose 6-phosphate phosphoketolase) genes, and RFLP mapping of Bifidobacterium isolates, it was possible to identify a new and unique Bifidobacterium species. The intensity of the reddish brown colour produced during the F6PPK (fructose 6-phosphate phosphoketolase) assay is an accurate indicator of the proportion of various bifidobacteria present. Bifidobacteria agar media produced the greatest amounts of bifidobacteria diversity and recovery. Small (SCV) and Big colony variations (BCV) were formed during growth on different media. The various antibiotic MIC values changed depending on the use of different media, growth circumstances, bile salt treatment and low pH. The findings of this study demonstrate that test conditions also impact the diversity of microbiological conditions that distinguish between resistant and susceptible bacteria.
Collapse
Affiliation(s)
- Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| |
Collapse
|
5
|
Zhang G, Sun H, Xu Z, Tan Z, Xiao L, He M, Shang J, Tsapieva AN, Zhang L. Screening of Bifidobacteria with Probiotic Potential from Healthy Infant Feces by Using 2'-Fucosyllactose. Foods 2023; 12:foods12040858. [PMID: 36832933 PMCID: PMC9957139 DOI: 10.3390/foods12040858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Using 2'-fucosyllactose (2'-FL) as the sole carbon source can be an efficient way to screen bifidobacteria with superior probiotic capabilities since 2'-FL is a key element in promoting the growth of intestinal bifidobacteria in newborns. This approach was used in this work to screen eight bifidobacteria strains, including one strain of Bifidobacterium longum subsp. infantis BI_Y46 and seven strains of Bifidobacterium bifidum (BB_Y10, BB_Y30, BB_Y39, BB_S40, BB_H4, BB_H5 and BB_H22). Studies on their probiotic properties showed that BI_Y46 had a unique morphology with pilus-like structure, a high resistance to bile salt stimulation and a potent inhibitory action on Escherichia coli ATCC 25922. Similarly, BB_H5 and BB_H22 produced more extracellular polysaccharides and had a higher protein content than other strains. In contrast, BB_Y22 displayed considerable auto-aggregation activity and a high resistance to bile salt stimulation. Interestingly, BB_Y39 with weak self-aggregation ability and acid resistance had very excellent bile salt tolerance, extracellular polysaccharides (EPS) production and bacteriostatic ability. In conclusion, 2'-FL was used as sole carbon source to identify eight bifidobacteria with excellent probiotic properties.
Collapse
Affiliation(s)
- Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihe Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ze Tan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Xiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxue He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Anna N. Tsapieva
- Department of Molecular Microbiology, FSBSI Institute of Experimental Medicine, Acad. Pavlov Street, 12, 197376 St. Petersburg, Russia
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-5519-0675
| |
Collapse
|
6
|
Fischer C, Kleinschmidt T. Valorisation of sweet whey by fermentation with mixed yoghurt starter cultures with focus on galactooligosaccharide synthesis. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Cui L, Chang SK, Nannapaneni R. Comparative studies on the effect of probiotic additions on the physicochemical and microbiological properties of yoghurt made from soymilk and cow's milk during refrigeration storage (R2). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Li T, Yang J, Zhang H, Xie Y, Jin J. Bifidobacterium from breastfed infant faeces prevent high-fat-diet-induced glucose tolerance impairment, mediated by the modulation of glucose intake and the incretin hormone secretion axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3308-3318. [PMID: 32108348 DOI: 10.1002/jsfa.10360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Bifidobacterium are the most frequently used probiotics in humans. The aim of this study was to evaluate the antidiabetic activity of Bifidobacterium strains isolated from breastfed infant faeces, both in vitro, using the Caco-2 monolayer transwell model, and in vivo, using a mice model of impaired glucose tolerance induced by a high-fat diet (HFD). RESULTS The cell-free supernatant of Bifidobacterium lactis A12 showed better inhibitory activity of α-glucosidase and inhibited the glucose absorption and transport than B. lactis BB12, which is a typical probiotic with antidiabetic capabilities. B. lactis A12 improved the impaired glucose intolerance, restored islet function and morphology with insulin resistance induced by the HFD in C57BL/6J mice. Furthermore, in small intestine tissues, the cell-free supernatant of B. lactis A12 decreased the messenger RNA expressions of sucrase-isomaltase, live B. lactis A12 cells decreased glucose transporters 2. B. lactis A12 significantly stimulated the glucagon like peptide-1 (GLP-1) secretion and upregulated proglucagon messenger RNA levels. CONCLUSION B. lactis A12 protect against the deleterious effects of HFD-induced diabetes by inhibiting the utilization, absorption, and transport of glucose by intestinal epithelial cells and promoting the expression and secretion of GLP-1. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Jianjun Yang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hongxing Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Yuanhong Xie
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Junhua Jin
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| |
Collapse
|
9
|
Ali MA, Zhang Z, Li H, Zhang Y, Fu S, Zhang W, Man C, Jiang Y. A Culture-Independent Method for Enumeration of Viable Load of Lactobacillus acidophilus NCFM by using Real-Time PCR. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2019-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe study was performed to develop a non-culture method to quantify viable loads of Lactobacillus acidophilus NCFM using RNA-based molecular technique. The ‘growth curve’ and ‘cycle threshold curve’ were developed respectively by plate counting and using cycle threshold (CT) values. ‘Standard curve’ was constructed using cells per milliliter and relative CT values. A maximum viable count (1.5 ± 0.15) × 1010 cells/mL with a minimum CT value 20.18 ± 0.56 was achieved following 18 h of growth. The two parameters were inversely proportional to each other over the exponential growth. The ‘standard curve’ corresponded to equation y = 2E + 28e−2.034x (y = cells/mL, x = CT value; R2 = 0.993), and no sample showed significant difference between ‘plate count’ and relative ‘PCR count’ following the validation process. Industrial adaptation of this method in dairy processing could potentially contribute to a faster enumeration of viable L. acidophilus NCFM compared to plate counting.
Collapse
Affiliation(s)
- Md. Aslam Ali
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Ziwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Hongfu Li
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Yashuo Zhang
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Shiqian Fu
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Wei Zhang
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Chaoxin Man
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| | - Yujun Jiang
- College of Food Science, Northeast Agricultural University, Harbin150030, China
| |
Collapse
|
10
|
Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Appl Environ Microbiol 2018; 84:AEM.02893-17. [PMID: 29500265 DOI: 10.1128/aem.02893-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Inulin-type fructans (ITF) and arabinoxylan oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at the strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME) after inoculation with feces from one healthy individual was investigated. Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short-chain-length fractions of fructooligosaccharides (FOS) than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially and consumed AXOS to a limited extent. B. adolescentis B72 degraded all fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms were suggested to be complementary and indicated resource partitioning. Specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research.IMPORTANCE It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as ITF and AXOS, in the human colon. However, this process has never been studied for strains coexisting in the same individual. To examine strain-dependent mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the SHIME after inoculation with feces from one healthy individual was investigated. Among the 18 bifidobacterial strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found, indicating that such strains can coexist in the human colon. Such specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects.
Collapse
|
11
|
Spray drying probiotics along with maoluang juice plus Tiliacora triandra gum for exposure to the in vitro gastrointestinal environments. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Chaikham P, Rattanasena P. Combined effects of low-fat ice cream supplemented with probiotics on colon microfloral communities and their metabolites during fermentation in a human gut reactor. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2016.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Quartieri A, Simone M, Gozzoli C, Popovic M, D'Auria G, Amaretti A, Raimondi S, Rossi M. Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe 2016; 38:130-137. [DOI: 10.1016/j.anaerobe.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023]
|
14
|
Zeng Z, Luo JY, Zuo FL, Yu R, Zhang Y, Ma HQ, Chen SW. Bifidobacteria possess inhibitory activity against dipeptidyl peptidase-IV. Lett Appl Microbiol 2016; 62:250-5. [PMID: 26482681 DOI: 10.1111/lam.12510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED The incretin hormones are extremely rapidly metabolized by the ubiquitous enzyme dipeptidyl peptidase IV (DPP-IV). Therefore, DPP-IV inhibitors which can prolong the incretin effect are the newest and promising drugs for management of type 2 diabetes. In this study, we investigated whether Bifidobacteria colonizing the human gut possess DPP-IV inhibitory activity. Cell-free intracellular extracts of 13 Bifidobacterium strains isolated from breast-fed infant faecal samples were prepared and screened for DPP-IV inhibitory activity, and two Bifidobacterium strains-Bif. longum BBMN68 and Bif. lactis Bb12-were used as reference strains. Most of the strains showed varying levels of DPP-IV inhibitory property (7-27%). Strains of Bifidobacterium adolescentis IF1-11 and Bifidobacterium bifidum IF3-211 showed the greatest DPP-IV inhibitory activity (27 and 25%) as well as good in vitro probiotic properties. This initial finding suggested that new beneficial function of Bifidobacteria is strain-dependent and the strains or their components may have the potential application for management of type 2 diabetes via inhibiting gastrointestinal DPP-IV activity. Further investigations into the isolation and identification of the bioactive components of Bifidobacteria are warranted. SIGNIFICANCE AND IMPACT OF THE STUDY Our results show that Bifidobacteria isolated from breast-fed infants' faecal samples possess DPP-IV inhibitory activity. Strains of Bifidobacterium bifidum IF3-211 and Bifidobacterium adolescentis IF1-11, which showed excellent DPP-IV inhibitory properties as well as good in vitro probiotic properties, are expected to be beneficial for application as anti-diabetic probiotics.
Collapse
Affiliation(s)
- Z Zeng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - J Y Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - F L Zuo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - R Yu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Y Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - H Q Ma
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - S W Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1187-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Truchado P, Van den Abbeele P, Rivière A, Possemiers S, De Vuyst L, Van de Wiele T. Bifidobacterium longum D2 enhances microbial degradation of long-chain arabinoxylans in an in vitro model of the proximal colon. Benef Microbes 2015; 6:849-60. [PMID: 26193074 DOI: 10.3920/bm2015.0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Long-chain arabinoxylans (LC-AX) are degraded in the colon by intestinal bacteria possessing AX-degrading enzymes, such as bifidobacteria. Enzymatic activity of intestinal bacterial might vary depending on the composition of the gut microbiota. To compare the enzymatic activities of the bacterial gut communities of two healthy individuals (donors D1 and D2), these bacterial communities were inoculated into in vitro model M-SHIME(®). Differences in xylanase activities and denaturing gradient gel electrophoresis profiles, in particular a DNA-band corresponding with Bifidobacterium longum, were found in the proximal colon vessel. 16S rRNA gene sequencing analysis demonstrated the presence of two different B. longum species in these bacterial communities, showing 99% gene sequence similarity with B. longum NCC2705 and B. longum. subsp. longum KACC 91563, respectively, further referred to as B. longum D1 and B. longum D2. When grown on LC-AX as the sole added energy source, B. longum D2 displayed significantly higher activities of β-xylanase (5.3-fold), β-xylosidase (2.9-fold), and α-arabinofuranosidase (1.5-fold), respectively, compared to B. longum D1. When B. longum D2 was inoculated in the M-SHIME, inoculated with the bacterial gut communities of the individual with low AX-degrading enzyme activities, the β-xylanase activity increased (1.5-fold) in the proximal vessel. We demonstrated the presence of differences in LC-AX degrading enzyme activities of the bacterial gut communities of two individuals in the in vitro M-SHIME model, which could be linked to the presence of a potent AX-degrading B. longum (D2) strain.
Collapse
Affiliation(s)
- P Truchado
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P Van den Abbeele
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - A Rivière
- 2 Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - S Possemiers
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - L De Vuyst
- 2 Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - T Van de Wiele
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
18
|
Montenegro-Rodríguez C, Peirotén A, Sanchez-Jimenez A, Arqués JL, Landete JM. Analysis of gene expression of bifidobacteria using as the reporter an anaerobic fluorescent protein. Biotechnol Lett 2015; 37:1405-13. [DOI: 10.1007/s10529-015-1802-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/26/2015] [Indexed: 01/16/2023]
|
19
|
The probiotic Bifidobacterium breve B632 inhibited the growth of Enterobacteriaceae within colicky infant microbiota cultures. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301053. [PMID: 25309908 PMCID: PMC4163384 DOI: 10.1155/2014/301053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
Abstract
Infant colic is a common gastrointestinal disorder of newborns, mostly related to imbalances in the composition of gut microbiota and particularly to the presence of gas-producing coliforms and to lower levels of Bifidobacteria and Lactobacilli. Probiotics could help to contain this disturbance, with formulations consisting of Lactobacillus strains being the most utilized. In this work, the probiotic strain Bifidobacterium breve B632 that was specifically selected for its ability to inhibit gas-producing coliforms, was challenged against the Enterobacteriaceae within continuous cultures of microbiota from a 2-month-old colicky infant. As confirmed by RAPD-PCR fingerprinting, B. breve B632 persisted in probiotic-supplemented microbiota cultures, accounting for the 64% of Bifidobacteria at the steady state. The probiotic succeeded in inhibiting coliforms, since FISH and qPCR revealed that the amount of Enterobacteriaceae after 18 h of cultivation was 0.42 and 0.44 magnitude orders lower (P < 0.05) in probiotic-supplemented microbiota cultures than in the control ones. These results support the possibility to move to another level of study, that is, the administration of B. breve B632 to a cohort of colicky newborns, in order to observe the behavior of this strain in vivo and to validate its effect in colic treatment.
Collapse
|
20
|
Davis C. Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 2014; 103:9-17. [DOI: 10.1016/j.mimet.2014.04.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/09/2023]
|
21
|
Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:365738. [PMID: 24575407 PMCID: PMC3915797 DOI: 10.1155/2014/365738] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/24/2013] [Indexed: 11/28/2022]
Abstract
Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage.
Collapse
|
22
|
Tomas-Barberan F, García-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 2013; 58:1122-31. [PMID: 24550206 DOI: 10.1002/mnfr.201300441] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/10/2013] [Accepted: 10/12/2013] [Indexed: 11/06/2022]
Abstract
SCOPE Chlorogenic acid (3-O-caffeoyl-quinic acid, C-QA), the caffeic ester of quinic acid, is one of the most abundant phenolic acids in Western diet. The majority of C-QA escapes absorption in the small intestine and reaches the colon, where the resident microbiota transforms it into several metabolites. C-QA conversion by the gut microbiota from nine subjects was compared to evaluate the variability of bacterial metabolism. It was investigated whether a potentially probiotic Bifidobacterium strain, capable of C-QA hydrolysis, could affect C-QA fate. METHODS AND RESULTS Bioconversion experiments exploiting the microbiota from diverse subjects revealed that C-QA was metabolized through a succession of hydrogenation, dexydroxylation and ester hydrolysis, occurring in different order among the subjects. Transformation may proceed also through quinic acid residue breakdown, since caffeoyl-glycerol intermediates were identified (HPLC-MS/MS, Q-TOF). All the pathways converged on 3-(3-hydroxyphenyl)-propanoic acid, which was transformed to hydroxyphenyl-ethanol and/or phenylacetic acid in few subjects. A strain of Bifidobacterium animalis able to hydrolyze C-QA was added to microbiota cultures. It affected microbial composition but not to such an extent that C-QA metabolism was modified. CONCLUSION A picture of the variability of microbiota C-QA transformations among subjects is provided. The transformation route through caffeoyl-glycerol intermediates is described for the first time.
Collapse
|
23
|
Van den Abbeele P, Venema K, Van de Wiele T, Verstraete W, Possemiers S. Different human gut models reveal the distinct fermentation patterns of Arabinoxylan versus inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9819-9827. [PMID: 24028202 DOI: 10.1021/jf4021784] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Different in vitro models have been developed to assess how food compounds affect the human gut microbiota. Using two such models (SHIME(R) and TIM-2), we compared how long-chain arabinoxylan (LC-AX), a wheat-derived potentially prebiotic fiber, and inulin (IN), a well-established prebiotic compound, modulate SCFA production and bifidobacteria composition. While both the SHIME and TIM-2 differ in experimental design, they both demonstrated that LC-AX and IN specifically increased the health-promoting metabolites propionate and butyrate, respectively. Furthermore, LC-AX stimulated Bifidobacterium longum, while IN stimulated other bifidobacteria including Bifidobacterium adolescentis. The SHIME experiment also revealed that effects of LC-AX were more persistent during the 2-week wash-out period. These results confirm a recent in vivo study, during which humanized rats were treated with the same LC-AX/IN. In conclusion, results from different human gut models suggest that, besides IN, LC-AX are promising prebiotic candidates with high specificity toward Bifidobacterium longum and a selective propionate increase.
Collapse
Affiliation(s)
- Pieter Van den Abbeele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
24
|
Possemiers S, Pinheiro I, Verhelst A, Van den Abbeele P, Maignien L, Laukens D, Reeves SG, Robinson LE, Raas T, Schneider YJ, Van de Wiele T, Marzorati M. A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9380-9392. [PMID: 24006902 DOI: 10.1021/jf402137r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
EpiCor, derived from Saccharomyces cerevisiae, has been shown to have immunomodulating properties in human clinical trials and in vitro. However, the underlying mechanisms behind its immune protection via the gut remain largely unknown. Therefore, the aim of this study was to use an integrated in vitro approach to evaluate the metabolism of EpiCor by the intestinal microflora, its modulating effect on the gut microbiota, and its anti-inflammatory activity on human-derived cell lines. Using the SHIME model, in combination with a mucus adhesion assay, has shown that low doses of EpiCor have a prebiotic-like modulatory effect on the luminal- and mucosa-associated microbiota. These include gradual changes in general community structure, reduction of potential pathogens, quantitative increase in lactobacilli, and qualitative modulation of bifidobacteria. Moreover, by combination of the SHIME with Caco-2 cells and Caco-2/THP1 cocultures, a significant decrease in pro-inflammatory cytokines was observed at the end of the treatment period.
Collapse
Affiliation(s)
- Sam Possemiers
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Struijs K, Van de Wiele T, Le TT, Debyser G, Dewettinck K, Devreese B, Van Camp J. Milk fat globule membrane glycoproteins prevent adhesion of the colonic microbiota and result in increased bacterial butyrate production. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Synthesis of raffinose family oligosaccharides by regioselective de-O-benzylation with Co2(CO)8/Et3SiH/CO system. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Biagi G, Cipollini I, Bonaldo A, Grandi M, Pompei A, Stefanelli C, Zaghini G. Effect of feeding a selected combination of galacto-oligosaccharides and a strain of Bifidobacterium pseudocatenulatum on the intestinal microbiota of cats. Am J Vet Res 2013; 74:90-5. [PMID: 23270351 DOI: 10.2460/ajvr.74.1.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the growth kinetics of a strain of Bifidobacterium pseudocatenulatum (BP) on 4 oligo- or polysaccharides and the effect of feeding a selected probiotic-prebiotic combination on intestinal microbiota in cats. ANIMALS 10 healthy adult cats. PROCEDURES Growth kinetics of a strain of cat-origin BP (BP-B82) on fructo-oligosaccharides, galacto-oligosaccharides (GOS), lactitol, or pectins was determined, and the combination of GOS and BP-B82 was selected. Cats received supplemental once-daily feeding of 1% GOS-BP-B82 (10(10) CFUs/d) for 15 days; fecal samples were collected for analysis the day before (day 0) and 1 and 10 days after the feeding period (day 16 and 25, respectively). RESULTS Compared with the prefeeding value, mean fecal ammonia concentration was significantly lower on days 16 and 25 (288 and 281 μmol/g of fecal dry matter [fDM], respectively, vs 353 μmol/g of fDM); fecal acetic acid concentration was higher on day 16 (171 μmol/g of fDM vs 132 μmol/g of fDM). On day 16, fecal concentrations of lactic, n-valeric, and isovaleric acids (3.61, 1.52, and 3.55 μmol/g of fDM, respectively) were significantly lower than on days 0 (5.08, 18.4, and 6.48 μmol/g of fDM, respectively) and 25 (4.24, 17.3, and 6.17 μmol/g of fDM, respectively). A significant increase in fecal bifidobacteria content was observed on days 16 and 25 (7.98 and 7.52 log(10) CFUs/g of fDM, respectively), compared with the prefeeding value (5.63 log(10) CFUs/g of fDM). CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that feeding 1% GOS-BP-B82 combination had some positive effects on the intestinal microbiota in cats.
Collapse
Affiliation(s)
- Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chaikham P, Apichartsrangkoon A. Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 2013; 98:485-95. [DOI: 10.1007/s00253-013-4763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 01/17/2023]
|
29
|
Fontana L, Bermudez-Brito M, Plaza-Diaz J, Muñoz-Quezada S, Gil A. Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 2013; 109 Suppl 2:S35-S50. [PMID: 23360880 DOI: 10.1017/s0007114512004011] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the FAO and the WHO, probiotics are 'live microorganisms which, when administered in adequate amounts, confer a health benefit on the host'. The strains most frequently used as probiotics include lactic acid bacteria and bifidobacteria, which are isolated from traditional fermented products and the gut, faeces and breast milk of human subjects. The identification of microorganisms is the first step in the selection of potential probiotics. The present techniques, including genetic fingerprinting, gene sequencing, oligonucleotide probes and specific primer selection, discriminate closely related bacteria with varying degrees of success. Additional molecular methods, such as denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis and fluorescence in situ hybridisation, are employed to identify and characterise probiotics. The ability to examine fully sequenced genomes has accelerated the application of genetic approaches to the elucidation of the functional roles of probiotics. One of the best-demonstrated clinical benefits of probiotics is the prevention and treatment of acute and antibiotic-associated diarrhoea;however, there is mounting evidence for a potential role for probiotics in the treatment of allergies and intestinal, liver and metabolic diseases. There are various mechanisms by which probiotics exert their beneficial effects: regulation of intestinal permeability, normalisation of host intestinal microbiota, improvement of gut immune barrier function, and adjustment between pro- and anti-inflammatory cytokines. The number of studies carried out to test the effects of probiotics in vitro and in animals is enormous. However, the most reliable method of assessing the therapeutic benefits of any probiotic strain is the use of randomised, placebo-controlled trials, which are reviewed in this article [corrected].
Collapse
Affiliation(s)
- Luis Fontana
- Department of Biochemistry & Molecular Biology II, School of Pharmacy and Institute of Nutrition & Food Technology José Mataix, Biomedical Research Centre, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
30
|
Influence of encapsulated probiotics combined with pressurized longan juice on colon microflora and their metabolic activities on the exposure to simulated dynamic gastrointestinal tract. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Screening for cholesterol-lowering probiotic based on deoxycholic acid removal pathway and studying its functional mechanisms in vitro. Anaerobe 2012; 18:516-22. [DOI: 10.1016/j.anaerobe.2012.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/01/2012] [Accepted: 08/15/2012] [Indexed: 02/07/2023]
|
32
|
Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl Environ Microbiol 2012; 78:7698-705. [PMID: 22923409 DOI: 10.1128/aem.02142-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To study the gastrointestinal survival and enterotoxin production of the food-borne pathogen Bacillus cereus, an in vitro simulation experiment was developed to mimic gastrointestinal passage in 5 phases: (i) the mouth, (ii) the stomach, with gradual pH decrease and fractional emptying, (iii) the duodenum, with high concentrations of bile and digestive enzymes, (iv) dialysis to ensure bile reabsorption, and (v) the ileum, with competing human intestinal bacteria. Four different B. cereus strains were cultivated and sporulated in mashed potato medium to obtain an inoculum of 7.0 log spores/ml. The spores showed survival and germination during the in vitro simulation of gastrointestinal passage, but vegetative outgrowth of the spores was suppressed by the intestinal bacteria during the final ileum phase. No bacterial proliferation or enterotoxin production was observed, despite the high inoculum levels. Little strain variability was observed: except for the psychrotrophic food isolate, the spores of all strains survived well throughout the gastrointestinal passage. The in vitro simulation experiments investigated the survival and enterotoxin production of B. cereus in the gastrointestinal lumen. The results obtained support the hypothesis that localized interaction of B. cereus with the host's epithelium is required for diarrheal food poisoning.
Collapse
|
33
|
Rodes L, Paul A, Coussa-Charley M, Al-Salami H, Tomaro-Duchesneau C, Fakhoury M, Prakash S. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia. ACTA ACUST UNITED AC 2012; 39:351-6. [PMID: 22066794 DOI: 10.3109/10731199.2011.622280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retention time, which is analogous to transit time, is an index for bacterial stability in the intestine. Its consideration is of particular importance to optimize the delivery of probiotic bacteria in order to improve treatment efficacy. This study aims to investigate the effect of retention time on Lactobacilli and Bifidobacteria stability using an established in vitro human colon model. Three retention times were used: 72, 96, and 144 h. The effect of retention time on cell viability of different bacterial populations was analyzed with bacterial plate counts and PCR. The proportions of intestinal Bifidobacteria, Lactobacilli, Enterococci, Staphylococci and Clostridia populations, analyzed by plate counts, were found to be the same as that in human colonic microbiota. Retention time in the human colon affected the stability of Lactobacilli and Bifidobacteria communities, with maximum stability observed at 144 h. Therefore, retention time is an important parameter that influences bacterial stability in the colonic microbiota. Future clinical studies on probiotic bacteria formulations should take into consideration gastrointestinal transit parameters to improve treatment efficacy.
Collapse
Affiliation(s)
- Laetitia Rodes
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Ruiz-Moyano S, Tao N, Underwood MA, Mills DA. Rapid discrimination of Bifidobacterium animalis subspecies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Food Microbiol 2011; 30:432-7. [PMID: 22365357 DOI: 10.1016/j.fm.2011.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/30/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
Abstract
Currently, the species Bifidobacterium animalis consists of two subspecies, B. animalis subsp. lactis and B. animalis subsp. animalis. Among these two subspecies, B. animalis subsp. lactis is especially important because it is widely used in the manufacture of probiotic dairy products. The application of these microbes in the food industry demands fast, accurate and low cost methods to differentiate between species and strains. Although various genotypic methods have been employed to discriminate between these two subspecies, they are not easily adapted for rapid identification in the industry. The purpose of this study was to evaluate the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to differentiate between the two subspecies of B. animalis, and for discrimination at strain level. We identified twenty-three strains of B. animalis at subspecies and strain level by genotypic methods and by proteomics using MALDI-TOF MS. The proteomics identification by MALDI-TOF was nearly identical to that obtained by genotypic identification using comparison of tuf and atpD gene sequences, and single-nucleotide polymorphisms (SNPs), insertions, and deletions (INDELs). We identified four protein markers, L1, L2, A1, and A2, which are useful for discriminating between both subspecies. Proteomics identification using MALDI-TOF MS was therefore an accurate method for discriminating and identifying these bacteria. Given the speed in which this method is achieved (~20 min including sample preparation), MALDI-TOF MS is promising as a tool for rapid discrimination of starter cultures and probiotics.
Collapse
Affiliation(s)
- Santiago Ruiz-Moyano
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
35
|
Ashraf R, Shah NP. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt — A review. Int J Food Microbiol 2011; 149:194-208. [DOI: 10.1016/j.ijfoodmicro.2011.07.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/23/2011] [Accepted: 07/08/2011] [Indexed: 01/30/2023]
|
36
|
Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 2011; 34:148-55. [PMID: 21300508 DOI: 10.1016/j.syapm.2010.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) are generally accepted as beneficial to the host and their presence is directly influenced by ingestion of fermented food or probiotics. While the intestinal lactic microbiota is well-described knowledge on its routes of inoculation and competitiveness towards selective pressure shaping the intestinal microbiota is limited. In this study, LAB were isolated from faecal samples of breast feeding mothers living in Syria, from faeces of their infants, from breast milk as well as from fermented food, typically consumed in Syria. A total of 700 isolates were characterized by genetic fingerprinting with random amplified polymorphic DNA (RAPD) and identified by comparative 16S rDNA sequencing and Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analyses. Thirty six different species of Lactobacillus, Enterococcus, Streptococcus, Weissella and Pediococcus were identified. RAPD and MALDI-TOF-MS patterns allowed comparison of the lactic microbiota on species and strain level. Whereas some species were unique for one source, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Lactobacillus brevis were found in all sources. Interestingly, identical RAPD genotypes of L. plantarum, L. fermentum, L. brevis, Enterococcus faecium, Enterococcus faecalis and P. pentosaceus were found in the faeces of mothers, her milk and in faeces of her babies. Diversity of RAPD types found in food versus human samples suggests the importance of host factors in colonization and individual host specificity, and support the hypothesis that there is a vertical transfer of intestinal LAB from the mother's gut to her milk and through the milk to the infant's gut.
Collapse
Affiliation(s)
- Rima Albesharat
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Weihenstephaner Steig 16, 85350 Freising, Germany
| | | | | | | | | |
Collapse
|
37
|
Screening of Bile Salt Hydrolase-Active Lactic Acid Bacteria for Potential Cholesterol-Lowering Probiotic Use. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.345.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
.Cholesterol-lowering effect of lactic acid bacteria (LAB) with bile salt hydrolase activity is well known. In this study, 150 LAB were screened for bile salt deconjugation ability and probiotic characters. Fourteen isolates with higher bile salt deconjugation ability were initially screened out using deconjugation rate above 50% as standard. These isolates were further screened for adhesion to HT-29 cells, bile tolerance and acid resistance. Four isolates, namely Lactobacillus casei F0822, Lactobacillus casei F0422, Enterococcus faecium F0511 and Enterococcus faecium IN7.12, was finally screened out. The 4 isolates may be able to reduce serum cholesterol levels in human and thus have a potential to apply in the biomedicine field.
Collapse
|
38
|
Kekkonen RA, Holma R, Hatakka K, Suomalainen T, Poussa T, Adlercreutz H, Korpela R. A probiotic mixture including galactooligosaccharides decreases fecal β-glucosidase activity but does not affect serum enterolactone concentration in men during a two-week intervention. J Nutr 2011; 141:870-6. [PMID: 21411613 DOI: 10.3945/jn.110.137703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A high serum concentration of enterolactone, an enterolignan produced by colonic microbiota from precursors in cereals, vegetables, and fruits, is associated with reduced risk of acute coronary events. Probiotics and prebiotics modify colonic metabolism and may affect the serum enterolactone concentration. The effects of a probiotic mixture alone and with galactooligosaccharides (GOS) on serum enterolactone concentration and fecal metabolism were investigated in 18 healthy men. Participants received 3 interventions, each for 2 wk: 1) probiotics [Lactobacillus rhamnosus strains GG (LGG) and LC705, Propionibacterium freudenreichii ssp. shermanii JS, and Bifidobacterium breve Bb99, for a total amount of 2 × 10(10) CFU/d]; 2) probiotics and GOS 3.8 g/d; 3) probiotics, GOS, and rye bread (minimum 120 g/d). Serum enterolactone and fecal dry weight, enzyme activities, pH, SCFA, lactic acid bacteria, bifidobacteria, propionibacteria, and the strains LGG and LC705 were determined. The serum enterolactone concentration (nmol/L) tended to be decreased from baseline [mean (95% CI) 18.6 (10.8-26.4)] by probiotics alone [15.2 (7.8-22.7); P = 0.095], was not significantly affected by probiotics with GOS [21.5 (13.2-29.8)], and was increased by probiotics with GOS and rye bread [24.6 (15.4-33.7); P < 0.05]. Probiotics alone did not affect fecal β-glucosidase activity and bifidobacteria, but probiotics with GOS decreased β-glucosidase activity and increased bifidobacteria compared with baseline (P < 0.05) and with probiotics alone (P < 0.01). In conclusion, this probiotic mixture with or without GOS does not significantly affect serum enterolactone concentration. Because probiotics with GOS decreased fecal β-glucosidase activity but not serum enterolactone, the reduced fecal β-glucosidase, within the range of activities measured, does not seem to limit the formation of enterolactone.
Collapse
|
39
|
Scheller M, O'Sullivan DJ. Comparative analysis of an intestinal strain of Bifidobacterium longum and a strain of Bifidobacterium animalis subspecies lactis in Cheddar cheese. J Dairy Sci 2011; 94:1122-31. [PMID: 21338778 DOI: 10.3168/jds.2010-3430] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/20/2010] [Indexed: 11/19/2022]
Abstract
Bifidobacteria cultures were incorporated into Cheddar cheeses to conduct a comparative analysis between the commercially available strain Bifidobacterium animalis ssp. lactis Bb-12 and the wild-type intestinal isolate, Bifidobacterium longum DJO10A. They were incorporated as starter adjuncts in separate vats and as a mixed culture, and survival through manufacturing and cheese ripening was assessed. For cheese using only Bb-12, the cells may have grown during cheese manufacture as 133% of the inoculum was incorporated into the cheese, resulting in 8.00 log cfu/g. Counts remained high during ripening showing less than 1 log decrease over a 12-mo period. For cheese using a mixed culture of Bb-12 and DJO10A, both strains were incorporated at much lower levels: 3.02 and 1.11%, respectively. This resulted in cheese with 6.00 and 5.04 log cfu/g for Bb-12 and DJO10A, respectively. Bifidobacteria survival rates were low, most likely due to the moisture of the cheese being below 38%. The Bb-12 demonstrated almost 100% viability during ripening. Numbers of DJO10A started to decline after 2 mo of ripening and dropped below the level of detection (2 log cfu/g) after 4.5 mo of ripening. Neither DJO10A nor Bb-12 fortified cheeses produced detectable amounts of organic acids during ripening other than lactic acid, indicating the lack of detectable metabolic contribution from bifidobacteria during cheese production and ripening such as production of acetic acid. To determine if sublethal stresses could improve the viability of DJO10A, 2 more vats were made, 1 with DJO10A exposed to sublethal acid, cold, and centrifugation stresses, and 1 exposed to none of these stresses. Although stress-primed DJO10A survived cheese manufacture better, as 72.8% were incorporated into the cheese compared with 41.1% of the unprimed, the statistical significance of this difference is unknown. In addition, the difference in moisture levels in the cheese cannot be excluded as influencing this difference. However, the rate of decline during ripening was similar for both. After 6 mo of ripening, cell counts in cheese were 4.68 and 4.24 log cfu/g for primed and unprimed cultures, respectively. These results suggest that whereas priming bifidobacteria with sublethal stresses before incorporation in a cheese fermentation may improve the number of viable cells that get incorporated into the cheese, it does not affect viability during cheese ripening.
Collapse
Affiliation(s)
- M Scheller
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, St. Paul, MN 55108l, USA
| | | |
Collapse
|
40
|
Verdenelli MC, Silvi S, Cecchini C, Orpianesi C, Cresci A. Influence of a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502® on bowel habits of healthy adults. Lett Appl Microbiol 2011; 52:596-602. [PMID: 21395626 DOI: 10.1111/j.1472-765x.2011.03042.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS This study aims to investigate the effect of different kinds of food products enriched with a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501(®) and Lactobacillus paracasei IMC 502(®), on bowel habits of healthy adults. METHODS AND RESULTS Fifty healthy volunteers took part in a double-blind placebo probiotic feeding study (25 fed probiotics, 25 fed placebo) for 12 weeks. Each volunteer ingested daily one or more food products enriched with a combination of the two potential probiotic strains (probiotic group) or the same food products without the probiotics (control group). Faecal samples were collected before, at the end and 2 weeks later the intervention period, and some of the main groups of faecal bacteria were enumerated by plate count and real-time PCR. Questionnaires on bowel habits were submitted to volunteers. After the intervention, a significant increase in faecal lactobacilli and bifidobacteria were observed in the probiotic group, and stool frequency and stool volume were higher in the probiotic group than in the placebo group. CONCLUSIONS Daily consumption of food products enriched with the two potential probiotic strains, Lact. rhamnosus IMC 501(®) and Lact. paracasei IMC 502(®) , contributes to improve intestinal microbiota with beneficial properties and enhances bowel habits of healthy adults. SIGNIFICANCE AND IMPACT OF THE STUDY The study revealed that Lact. rhamnosus IMC 501(®) and Lact. paracasei IMC 502(®) exert a positive effect, in terms of improved bowel habits, on healthy adults.
Collapse
Affiliation(s)
- M C Verdenelli
- School of Biosciences and Biotechnologies, Laboratory of Microbiology, Camerino University, Camerino, Italy
| | | | | | | | | |
Collapse
|
41
|
Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis. Eur J Gastroenterol Hepatol 2010; 22:1481-6. [PMID: 20739895 DOI: 10.1097/meg.0b013e32833eb8b0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/PURPOSE The intestinal microflora plays a major role in human health. Intestinal flora imbalances are seen in clinical settings, such as cirrhosis, in which bacterial translocation (BT) results in migration of bacteria or bacterial products from the intestinal lumen to extraintestinal sites. In this study, we explored the effect of alterations in gut flora on BT and liver function in cirrhotic rats. METHODS In this study, we used a carbon tetrachloride-induced cirrhotic rat model to compare the abundance of major aerobic and anaerobic bacterial species in healthy and cirrhotic rats. We used antibiotic (norfloxacin) and different probiotic treatments to change the status of gut flora in the cirrhotic rats and evaluated BT, liver function, and endotoxemia in the different models. RESULTS We found higher levels of Enterobacteriaceae in cirrhotic rats when compared with healthy rats. Bifidobacteria treatment resulted in lower levels of Enterobacteriaceae along with increased levels of Lactobacillus when compared with the normal saline group. Both Bifidobacteria and Enterococcus treatments resulted in lower endotoxin levels than in the normal saline group. CONCLUSION Gut flora imbalances in cirrhotic rats result in significant changes in BT and liver function in cirrhotic rats.
Collapse
|
42
|
Saxelin M, Lassig A, Karjalainen H, Tynkkynen S, Surakka A, Vapaatalo H, Järvenpää S, Korpela R, Mutanen M, Hatakka K. Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int J Food Microbiol 2010; 144:293-300. [PMID: 21074284 DOI: 10.1016/j.ijfoodmicro.2010.10.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 10/06/2010] [Accepted: 10/17/2010] [Indexed: 12/13/2022]
Abstract
Most clinical studies of probiotics use freeze-dried, powdered bacteria or bacteria packed in capsules. However, probiotics are commercially available in various food matrices, which may affect their persistence in the gastrointestinal tract. The objective of the study was to compare oral and faecal recovery during and after administration of a combination of Lactobacillus rhamnosus GG and LC705, Propionibacterium freudenreichii subsp. shermanii JS, and Bifidobacterium animalis subsp. lactis Bb12 as capsules, yoghurt, or cheese. This randomized, parallel-group, open-label trial (n=36) included a 4-week run-in, 2-week intervention, and 3-week follow-up period. Participants consumed 10(10)cfu/day of probiotic combination and provided saliva and faecal samples before, during, and after the intervention. Strain-specific real-time PCR was used to quantify the strains. L. rhamnosus GG was the only probiotic strain regularly recovered in saliva samples. During the intervention period it was recovered in the saliva of 88% of the volunteers at least once. No difference was found between the yoghurt and cheese groups. At the end of the intervention, L. rhamnosus GG and LC705 counts were high in faecal samples of all product groups (8.08 and 8.67log(10) genome copies/g, respectively). There was no matrix effect on strain quantity in faeces or the recovery time after ceasing the intervention. For P. freudenreichii subsp. shermanii JS and B. animalis subsp. lactis Bb12, a matrix effect was found at the end of the intervention (P<0.01 and P<0.001, respectively) and in the recovery time during follow-up (P<0.05 for both). Yoghurt yielded the highest faecal quantity of JS and Bb12 strains (8.01 and 9.89log(10) genome copies/g, respectively). The results showed that the administration matrix did not influence the faecal quantity of lactobacilli, but affected faecal counts of propionibacteria and bifidobacteria that were lower when consumed in cheese. Thus, the consumption of probiotics in yoghurt matrix is highly suitable for studying potential health benefits and capsules provide a comparable means of administration when the viability of the strain in the capsule product is confirmed.
Collapse
Affiliation(s)
- Maija Saxelin
- Valio Ltd, Research and Development, P.O. Box 30, FI-00039 Valio, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ceuppens S, Boon N, Rajkovic A, Heyndrickx M, Van de Wiele T, Uyttendaele M. Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J Microbiol Methods 2010; 83:202-10. [PMID: 20849884 DOI: 10.1016/j.mimet.2010.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/26/2010] [Accepted: 09/02/2010] [Indexed: 11/15/2022]
Abstract
There is an interest to understand the fate and behaviour of the food-borne pathogen Bacillus cereus in the gut, a challenging environment with a high bacterial background. We evaluated the current detection methods to select an appropriate strategy for B. cereus monitoring during gastrointestinal experiments. Application of quantitative real-time PCR (qPCR) in a gastrointestinal matrix required careful selection of the qPCR reaction and elaborate optimization of the DNA extraction protocol. Primer competition and depletion problems associated with qPCR reactions targeting general 16S rRNA gene can be avoided by the selection of a target sequence that is unique for and widespread among the target bacteria, such as the toxin gene nheB in the case of pathogenic B. cereus. Enumeration of B. cereus during the ileum phase was impossible by plating due to overgrowth by intestinal bacteria, while a carefully optimized qPCR enabled specific detection and quantification of B. cereus. On the other hand, plating allowed the distinction of viable, injured and dead bacteria and the germination of spores, which was not possible with qPCR. In conclusion, both plating and qPCR were necessary to yield the maximal information regarding the viability and physiology of the B. cereus population in various gastrointestinal compartments.
Collapse
Affiliation(s)
- Siele Ceuppens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
45
|
Influence of some potential prebiotics and fibre-rich foodstuffs on composition and activity of canine intestinal microbiota. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2010.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol 2010; 10:182. [PMID: 20576129 PMCID: PMC2912857 DOI: 10.1186/1471-2180-10-182] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background Contamination of grains with trichothecene mycotoxins, especially deoxynivalenol (DON), has been an ongoing problem for Canada and many other countries. Mycotoxin contamination creates food safety risks, reduces grain market values, threatens livestock industries, and limits agricultural produce exports. DON is a secondary metabolite produced by some Fusarium species of fungi. To date, there is a lack of effective and economical methods to significantly reduce the levels of trichothecene mycotoxins in food and feed, including the efforts to breed Fusarium pathogen-resistant crops and chemical/physical treatments to remove the mycotoxins. Biological approaches, such as the use of microorganisms to convert the toxins to non- or less toxic compounds, have become a preferred choice recently due to their high specificity, efficacy, and environmental soundness. However, such approaches are often limited by the availability of microbial agents with the ability to detoxify the mycotoxins. In the present study, an approach with PCR-DGGE guided microbial selection was developed and used to isolate DON -transforming bacteria from chicken intestines, which resulted in the successful isolation of several bacterial isolates that demonstrated the function to transform DON to its de-epoxy form, deepoxy-4-deoxynivalenol (DOM-1), a product much less toxic than DON. Results The use of conventional microbiological selection strategies guided by PCR-DGGE (denaturing gradient gel electrophoresis) bacterial profiles for isolating DON-transforming bacteria has significantly increased the efficiency of the bacterial selection. Ten isolates were identified and isolated from chicken intestines. They were all able to transform DON to DOM-1. Most isolates were potent in transforming DON and the activity was stable during subculturing. Sequence data of partial 16S rRNA genes indicate that the ten isolates belong to four different bacterial groups, Clostridiales, Anaerofilum, Collinsella, and Bacillus. Conclusions The approach with PCR-DGGE guided microbial selection was effective in isolating DON-transforming bacteria and the obtained bacterial isolates were able to transform DON.
Collapse
Affiliation(s)
- Hai Yu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, de Wiele TV, Possemiers S. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol 2010; 139:168-76. [DOI: 10.1016/j.ijfoodmicro.2010.02.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/30/2010] [Accepted: 02/28/2010] [Indexed: 01/06/2023]
|
48
|
Kim ER, Cho YH, Kim YH, Park SO, Woo GJ, Chun HN. Comparison of Bifidobacteria Selective Media for the Detection of Bifidobacteria in Korean Commercial Fermented Milk Products. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.1.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Jia L, Shigwedha N, Mwandemele OD. Use ofâDacid-,âDbile-,âzacid-, andâzbile-Values in Evaluating Bifidobacteria with Regard to Stomach pH and Bile Salt Sensitivity. J Food Sci 2010; 75:M14-8. [DOI: 10.1111/j.1750-3841.2009.01398.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Tuohy KM, Ziemer CJ, Klinder A, Knöbel Y, Pool-Zobel BL, Gibson GR. A Human Volunteer Study to Determine the Prebiotic Effects of Lactulose Powder on Human Colonic Microbiota. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106002320644357] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kieran M. Tuohy
- Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Reading, UK
| | | | - Annett Klinder
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University of Jena, Dornburger Strasse 25, 07743 Jena, Germany
| | | | | | | |
Collapse
|