1
|
Goral VN, Hong Y, Scibek JJ, Sun Y, Romeo LE, Rao A, Manning D, Zhou Y, Schultes JA, Tjong V, Pikula D, Krebs KA, Ferrie AM, Kramel S, Weber JL, Upton TM, Fang Y, Melkoumian Z. Innovative fixed bed bioreactor platform: Enabling linearly scalable adherent cell biomanufacturing with real-time biomass prediction from nutrient consumption. Biotechnol J 2024; 19:e2300635. [PMID: 39167554 DOI: 10.1002/biot.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 08/23/2024]
Abstract
Scalable single-use adherent cell-based biomanufacturing platforms are essential for unlocking the full potential of cell and gene therapies. The primary objective of this study is to design and develop a novel fixed bed bioreactor platform tailored specifically for scaling up adherent cell culture. The bioreactor comprises a packed bed of vertically stacked woven polyethylene terephthalate mesh discs, sandwiched between two-fluid guide plates. Leveraging computational fluid dynamics modeling, we optimized bioreactor design to achieve uniform flow with minimal shear stress. Residence time distribution measurements demonstrated excellent flow uniformity with plug flow characteristics. Periodic media sampling coupled with offline analysis revealed minimal gradients of crucial metabolites (glucose, glutamine, lactate, and ammonia) across the bioreactor during cell growth. Furthermore, the bioreactor platform demonstrated high performance in automated cell harvesting, with ≈96% efficiency and ≈98% viability. It also exhibited linear scalability in both operational parameters and performance for cell culture and adeno-associated virus vector production. We developed mathematical models based on oxygen uptake rates to accurately predict cell growth curves and estimate biomass in real-time. This study demonstrates the effectiveness of the developed fixed-bed bioreactor platform in enabling scalable adherent cell-based biomanufacturing with high productivity and process control.
Collapse
Affiliation(s)
- Vasiliy N Goral
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Yulong Hong
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Jeffery J Scibek
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Yujian Sun
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Lori E Romeo
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Abhijit Rao
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Daniel Manning
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Yue Zhou
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Joel A Schultes
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Vinalia Tjong
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Dragan Pikula
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Kathleen A Krebs
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Ann M Ferrie
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Stefan Kramel
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Jennifer L Weber
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Todd M Upton
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Ye Fang
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Zara Melkoumian
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| |
Collapse
|
2
|
Dekevic G, Tertel T, Tasto L, Schmidt D, Giebel B, Czermak P, Salzig D. A Bioreactor-Based Yellow Fever Virus-like Particle Production Process with Integrated Process Analytical Technology Based on Transient Transfection. Viruses 2023; 15:2013. [PMID: 37896790 PMCID: PMC10612092 DOI: 10.3390/v15102013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Yellow Fever (YF) is a severe disease that, while preventable through vaccination, lacks rapid intervention options for those already infected. There is an urgent need for passive immunization techniques using YF-virus-like particles (YF-VLPs). To address this, we successfully established a bioreactor-based production process for YF-VLPs, leveraging transient transfection and integrating Process Analytical Technology. A cornerstone of this approach was the optimization of plasmid DNA (pDNA) production to a yield of 11 mg/L using design of experiments. Glucose, NaCl, yeast extract, and a phosphate buffer showed significant influence on specific pDNA yield. The preliminary work for VLP-production in bioreactor showed adjustments to the HEK cell density, the polyplex formation duration, and medium exchanges effectively elevated transfection efficiencies. The additive Pluronic F-68 was neutral in its effects, and anti-clumping agents (ACA) adversely affected the transfection process. Finally, we established the stirred-tank bioreactor process with integrated dielectric spectroscopy, which gave real-time insight in relevant process steps, e.g., cell growth, polyplex uptake, and harvest time. We confirmed the presence and integrity of YF-VLP via Western blot, imaging flow cytometry measurement, and transmission electron microscopy. The YF-VLP production process can serve as a platform to produce VLPs as passive immunizing agents against other neglected tropical diseases.
Collapse
Affiliation(s)
- Gregor Dekevic
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany; (T.T.); (B.G.)
| | - Lars Tasto
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Deborah Schmidt
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany; (T.T.); (B.G.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
- Faculty of Biology and Chemistry, University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| |
Collapse
|
3
|
Turbidimetry and Dielectric Spectroscopy as Process Analytical Technologies for Mammalian and Insect Cell Cultures. Methods Mol Biol 2020; 2095:335-364. [PMID: 31858478 DOI: 10.1007/978-1-0716-0191-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The production of biopharmaceuticals in cell culture involves stringent controls to ensure product safety and quality. To meet these requirements, quality by design principles must be applied during the development of cell culture processes so that quality is built into the product by understanding the manufacturing process. One key aspect is process analytical technology, in which comprehensive online monitoring is used to identify and control critical process parameters that affect critical quality attributes such as the product titer and purity. The application of industry-ready technologies such as turbidimetry and dielectric spectroscopy provides a deeper understanding of biological processes within the bioreactor and allows the physiological status of the cells to be monitored on a continuous basis. This in turn enables selective and targeted process controls to respond in an appropriate manner to process disturbances. This chapter outlines the principles of online dielectric spectroscopy and turbidimetry for the measurement of optical density as applied to mammalian and insect cells cultivated in stirred-tank bioreactors either in suspension or as adherent cells on microcarriers.
Collapse
|
4
|
|
5
|
Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors. Bioprocess Biosyst Eng 2019; 43:193-205. [PMID: 31549309 PMCID: PMC6960217 DOI: 10.1007/s00449-019-02216-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
In 2004, the FDA published a guideline to implement process analytical technologies (PAT) in biopharmaceutical processes for process monitoring to gain process understanding and for the control of important process parameters. Viable cell concentration (VCC) is one of the most important key performance indicator (KPI) during mammalian cell cultivation processes. Commonly, this is measured offline. In this work, we demonstrated the comparability and scalability of linear regression models derived from online capacitance measurements. The linear regressions were used to predict the VCC and other familiar offline biomass indicators, like the viable cell volume (VCV) and the wet cell weight (WCW), in two different industrially relevant CHO cell culture processes (Process A and Process B). Therefore, different single-use bioreactor scales (50–2000 L) were used to prove feasibility and scalability of the in-line sensor integration. Coefficient of determinations of 0.79 for Process A and 0.99 for Process B for the WCW were achieved. The VCV was described with high coefficients of determination of 0.96 (Process A) and 0.98 (Process B), respectively. In agreement with other work from the literature, the VCC was only described within the exponential growth phase, but resulting in excellent coefficients of determination of 0.99 (Process A) and 0.96 (Process B), respectively. Monitoring these KPIs online using linear regression models appeared to be scale-independent, enabled deeper process understanding (e.g. here demonstrated in monitoring, the feeding profile) and showed the potential of this method for process control.
Collapse
|
6
|
Jiang Y, van der Welle JE, Rubingh O, van Eikenhorst G, Bakker WAM, Thomassen YE. Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors. Process Biochem 2019; 81:156-164. [PMID: 31217725 PMCID: PMC6559155 DOI: 10.1016/j.procbio.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mathematical model for Vero cell growth in batch bioreactors. Mathematical model for poliovirus proliferation on Vero cells. Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor.
Collapse
Affiliation(s)
- Yang Jiang
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Olaf Rubingh
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Wilfried A M Bakker
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Yvonne E Thomassen
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
7
|
Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnol Adv 2018; 36:1328-1340. [DOI: 10.1016/j.biotechadv.2018.04.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
|
8
|
Dielectric Spectroscopy and Optical Density Measurement for the Online Monitoring and Control of Recombinant Protein Production in Stably Transformed Drosophila melanogaster S2 Cells. SENSORS 2018; 18:s18030900. [PMID: 29562633 PMCID: PMC5876727 DOI: 10.3390/s18030900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023]
Abstract
The production of recombinant proteins in bioreactors requires real-time process monitoring and control to increase process efficiency and to meet the requirements for a comprehensive audit trail. The combination of optical near-infrared turbidity sensors and dielectric spectroscopy provides diverse system information because different measurement principles are exploited. We used this combination of techniques to monitor and control the growth and protein production of stably transformed Drosophila melanogaster S2 cells expressing antimicrobial proteins. The in situ monitoring system was suitable in batch, fed-batch and perfusion modes, and was particularly useful for the online determination of cell concentration, specific growth rate (µ) and cell viability. These data were used to pinpoint the optimal timing of the key transitional events (induction and harvest) during batch and fed-batch cultivation, achieving a total protein yield of ~25 mg at the 1-L scale. During cultivation in perfusion mode, the OD880 signal was used to control the bleed line in order to maintain a constant cell concentration of 5 × 107 cells/mL, thus establishing a turbidostat/permittistat culture. With this setup, a five-fold increase in productivity was achieved and 130 mg of protein was recovered after 2 days of induced perfusion. Our results demonstrate that both sensors are suitable for advanced monitoring and integration into online control strategies.
Collapse
|
9
|
Rangan S, Kamal S, Konorov SO, Schulze HG, Blades MW, Turner RFB, Piret JM. Types of cell death and apoptotic stages in Chinese Hamster Ovary cells distinguished by Raman spectroscopy. Biotechnol Bioeng 2017; 115:401-412. [DOI: 10.1002/bit.26476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/01/2017] [Accepted: 10/08/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Shreyas Rangan
- Genome Science & Technology Program; Vancouver Canada
- Michael Smith Laboratories; Vancouver Canada
| | - Sepehr Kamal
- Genome Science & Technology Program; Vancouver Canada
- Michael Smith Laboratories; Vancouver Canada
| | - Stanislav O. Konorov
- Michael Smith Laboratories; Vancouver Canada
- Department of Electrical and Computer Engineering; Vancouver Canada
| | - Hans Georg Schulze
- Michael Smith Laboratories; Vancouver Canada
- Department of Electrical and Computer Engineering; Vancouver Canada
| | | | - Robin F. B. Turner
- Michael Smith Laboratories; Vancouver Canada
- Department of Electrical and Computer Engineering; Vancouver Canada
| | - James M. Piret
- Genome Science & Technology Program; Vancouver Canada
- Michael Smith Laboratories; Vancouver Canada
- Chemical and Biological Engineering; University of British Columbia; Vancouver Canada
| |
Collapse
|
10
|
Liu Y, Wang ZJ, Li L, Cui X, Chu J, Zhang SL, Zhuang YP. On-line monitoring of the aggregate size distribution of Carthamus tinctorius L. cells with multi-frequency capacitance measurements. RSC Adv 2016. [DOI: 10.1039/c6ra13527g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study provided an effective methodology for the aggregate size distribution measurement of Carthamus tinctorius L. cells during suspension culture.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Ze-Jian Wang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
- Department of Biotechnology
| | - Lan Li
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Xiaolin Cui
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Si-Liang Zhang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Ying-Ping Zhuang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| |
Collapse
|
11
|
Ude C, Schmidt-Hager J, Findeis M, John GT, Scheper T, Beutel S. Application of an online-biomass sensor in an optical multisensory platform prototype for growth monitoring of biotechnical relevant microorganism and cell lines in single-use shake flasks. SENSORS (BASEL, SWITZERLAND) 2014; 14:17390-405. [PMID: 25232914 PMCID: PMC4208230 DOI: 10.3390/s140917390] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/29/2022]
Abstract
In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.
Collapse
Affiliation(s)
- Christian Ude
- Leibniz University of Hanover, Institute of Technical Chemistry, Callinstr. 5, 30167 Hannover, Germany; E-Mails: (C.U.); (J.S.-H.), (T.S.)
| | - Jörg Schmidt-Hager
- Leibniz University of Hanover, Institute of Technical Chemistry, Callinstr. 5, 30167 Hannover, Germany; E-Mails: (C.U.); (J.S.-H.), (T.S.)
| | - Michael Findeis
- PreSens Precision Sensing GmbH, Josef-Engert-Str. 11, 93053 Regensburg, Germany; E-Mails: (M.F.); (G.T.J.)
| | - Gernot Thomas John
- PreSens Precision Sensing GmbH, Josef-Engert-Str. 11, 93053 Regensburg, Germany; E-Mails: (M.F.); (G.T.J.)
| | - Thomas Scheper
- Leibniz University of Hanover, Institute of Technical Chemistry, Callinstr. 5, 30167 Hannover, Germany; E-Mails: (C.U.); (J.S.-H.), (T.S.)
| | - Sascha Beutel
- Leibniz University of Hanover, Institute of Technical Chemistry, Callinstr. 5, 30167 Hannover, Germany; E-Mails: (C.U.); (J.S.-H.), (T.S.)
| |
Collapse
|
12
|
Schmidt-Hager J, Ude C, Findeis M, John GT, Scheper T, Beutel S. Noninvasive online biomass detector system for cultivation in shake flasks. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jörg Schmidt-Hager
- Institute of Technical Chemistry; Leibniz University of Hannover; Hannover Germany
| | - Christian Ude
- Institute of Technical Chemistry; Leibniz University of Hannover; Hannover Germany
| | | | | | - Thomas Scheper
- Institute of Technical Chemistry; Leibniz University of Hannover; Hannover Germany
| | - Sascha Beutel
- Institute of Technical Chemistry; Leibniz University of Hannover; Hannover Germany
| |
Collapse
|
13
|
Crawley N, Thompson M, Romaschin A. Theranostics in the Growing Field of Personalized Medicine: An Analytical Chemistry Perspective. Anal Chem 2013; 86:130-60. [DOI: 10.1021/ac4038812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niall Crawley
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Michael Thompson
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Alexander Romaschin
- Keenan Research Centre and
Clinical Biochemistry, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
14
|
Holland T, Blessing D, Hellwig S, Sack M. The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology. Biotechnol J 2013; 8:1231-40. [PMID: 24039008 DOI: 10.1002/biot.201300125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 01/20/2023]
Abstract
Radio frequency impedance spectroscopy (RFIS) is a robust method for the determination of cell biomass during fermentation. RFIS allows non-invasive in-line monitoring of the passive electrical properties of cells in suspension and can distinguish between living and dead cells based on their distinct behavior in an applied radio frequency field. We used continuous in situ RFIS to monitor batch-cultivated plant suspension cell cultures in stirred-tank bioreactors and compared the in-line data to conventional off-line measurements. RFIS-based analysis was more rapid and more accurate than conventional biomass determination, and was sensitive to changes in cell viability. The higher resolution of the in-line measurement revealed subtle changes in cell growth which were not accessible using conventional methods. Thus, RFIS is well suited for correlating such changes with intracellular states and product accumulation, providing unique opportunities for employing systems biotechnology and process analytical technology approaches to increase product yield and quality.
Collapse
Affiliation(s)
- Tanja Holland
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Aachen, Germany.
| | | | | | | |
Collapse
|
15
|
Kirk TV, Szita N. Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 2013; 110:1005-19. [PMID: 23280578 PMCID: PMC3790518 DOI: 10.1002/bit.24824] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 12/02/2022]
Abstract
Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h-1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h-1kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real-time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy V Kirk
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE United Kingdom
| | | |
Collapse
|
16
|
Liu M, Goudar CT. Gene expression profiling for mechanistic understanding of cellular aggregation in mammalian cell perfusion cultures. Biotechnol Bioeng 2012; 110:483-90. [PMID: 23007466 DOI: 10.1002/bit.24730] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 08/03/2012] [Accepted: 09/10/2012] [Indexed: 12/14/2022]
Abstract
Aggregation of baby hamster kidney (BHK) cells cultivated in perfusion mode for manufacturing recombinant proteins was characterized. The potential impact of cultivation time on cell aggregation for an aggregating culture (cell line A) was studied by comparing expression profiles of 84 genes in the extracellular adhesion molecules (ECM) pathway by qRT-PCR from 9 and 25 day shake flask samples and 80 and 94 day bioreactor samples. Significant up-regulation of THBS2 (4.4- to 6.9-fold) was seen in both the 25 day shake flask and 80 and 94 day bioreactor samples compared to the 9 day shake flask while NCAM1 was down-regulated 5.1- to 8.9-fold in the 80 and 94 day bioreactor samples. Subsequent comparisons were made between cell line A and a non-aggregating culture (cell line B). A 65 day perfusion bioreactor sample from cell line B served as the control for 80 and 94 day samples from four different perfusion bioreactors for cell line A. Of the 84 genes in the ECM pathway, four (COL1A1, COL4A1, THBS2, and VCAN) were consistently up-regulated in cell line A while two (NCAM1 and THBS1) were consistently down-regulated. The magnitudes of differential gene expression were much higher when cell lines were compared (4.1- to 44.6-fold) than when early and late cell line B samples were compared (4.4- to 6.9-fold) indicating greater variability between aggregating and non-aggregating cell lines. Based on the differential gene expression results, two mechanistic models were proposed for aggregation of BHK cells in perfusion cultures.
Collapse
Affiliation(s)
- Meile Liu
- Cell Culture Development, Global Biological Development, Bayer HealthCare, 800 Dwight Way, Berkeley, California 94710, USA
| | | |
Collapse
|
17
|
Dorresteijn RC, Wieten G, van Santen PT, Philippi MC, de Gooijer CD, Tramper J, Beuvery EC. Current good manufacturing practice in plant automation of biological production processes. Cytotechnology 2012; 23:19-28. [PMID: 22358517 DOI: 10.1023/a:1007923820231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The production of biologicals is subject to strict governmental regulations. These are drawn up in current good manufacturing practices (cGMP), a.o. by the U.S. Food and Drug Administration. To implement cGMP in a production facility, plant automation becomes an essential tool. For this purpose Manufacturing Execution Systems (MES) have been developed that control all operations inside a production facility. The introduction of these recipe-driven control systems that follow ISA S88 standards for batch processes has made it possible to implement cGMP regulations in the control strategy of biological production processes. Next to this, an MES offers additional features such as stock management, planning and routing tools, process-dependent control, implementation of software sensors and predictive models, application of historical data and on-line statistical techniques for trend analysis and detection of instrumentation failures. This paper focuses on the development of new production strategies in which cGMP guidelines are an essential part.
Collapse
Affiliation(s)
- R C Dorresteijn
- Laboratory for Product and Process Development, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Petiot E, El-Wajgali A, Esteban G, Gény C, Pinton H, Marc A. Real-time monitoring of adherent Vero cell density and apoptosis in bioreactor processes. Cytotechnology 2012; 64:429-41. [PMID: 22367019 DOI: 10.1007/s10616-011-9421-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022] Open
Abstract
This study proposes an easy to use in situ device, based on multi-frequency permittivity measurements, to monitor the growth and death of attached Vero cells cultivated on microporous microcarriers, without any cell sampling. Vero cell densities were on-line quantified up to 10(6) cell mL(-1). Some parameters which could potentially impact Vero cell morphological and physiological states were assessed through different culture operating conditions, such as media formulation or medium feed-harvest during cell growth phase. A new method of in situ cell death detection with dielectric spectroscopy was also successfully implemented. Thus, through permittivity frequency scanning, major rises of the apoptotic cell population in bioreactor cultures were detected by monitoring the characteristic frequency of the cell population, f(c), which is one of the culture dielectric parameters. Both cell density quantification and cell apoptosis detection are strategic information in cell-based production processes as they are involved in major events of the process, such as scale-up or choice of the viral infection conditions. This new application of dielectric spectroscopy to adherent cell culture processes makes it a very promising tool for risk-mitigation strategy in industrial processes. Therefore, our results contribute to the development of Process Analytical Technology in cell-based industrial processes.
Collapse
Affiliation(s)
- Emma Petiot
- Laboratoire Réactions et Génie des Procédés, UPR CNRS 3349, Nancy-Université, 2 avenue de la Forêt de Haye, 54505, Vandoeuvre-lès-Nancy Cedex, France,
| | | | | | | | | | | |
Collapse
|
19
|
Sarró E, Lecina M, Fontova A, Solà C, Gòdia F, Cairó J, Bragós R. Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures. Biosens Bioelectron 2012; 31:257-63. [DOI: 10.1016/j.bios.2011.10.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/13/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
|
20
|
Zhang X, Yang ST. An online, non-invasive fluorescence probe for immobilized cell culture process development. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Dowd JE, Jubb A, Kwok KE, Piret JM. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 2011; 42:35-45. [PMID: 19002926 DOI: 10.1023/a:1026192228471] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.
Collapse
Affiliation(s)
- Jason E Dowd
- Biotechnology Laboratory, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
22
|
Pamboukian MM, Pereira CA, Augusto EDFP, Tonso A. Adaptation of the "Dynamic Method" for measuring the specific respiration rate in oxygen transfer systems through diffusion membrane. Biotechnol J 2011; 6:1497-503. [PMID: 21648091 DOI: 10.1002/biot.201000273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/23/2010] [Accepted: 04/26/2011] [Indexed: 11/10/2022]
Abstract
Monitoring the specific respiration rate (Q(O2)) is a valuable tool to evaluate cell growth and physiology. However, for low Q(O2) values the accuracy may depend on the measurement methodology, as it is the case in animal cell culture. The widely used "Dynamic Method" imposes serious difficulties concerning oxygen transfer cancellation, especially through membrane oxygenation. This paper presents an improved procedure to this method, through an automated control of the gas inlet composition that can minimize the residual oxygen transfer driving force during the Q(O2) measurement phase. The improved technique was applied to animal cell cultivation, particularly three recombinant S2 (Drosophila melanogaster) insect cell lines grown in a membrane aeration bioreactor. The average measurements of the proposed method reached 98% of stationary liquid phase balance method, taken as a reference, compared to 21% when the traditional method was used. Furthermore, this methodology does not require knowledge of the volumetric transfer coefficient k(L)a, which may vary during growth.
Collapse
|
23
|
Process analytical technology (PAT) for biopharmaceutical products. Anal Bioanal Chem 2010; 398:137-54. [DOI: 10.1007/s00216-010-3781-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/20/2010] [Accepted: 04/23/2010] [Indexed: 11/27/2022]
|
24
|
Le Ru A, Jacob D, Transfiguracion J, Ansorge S, Henry O, Kamen AA. Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing. Vaccine 2010; 28:3661-71. [PMID: 20347632 DOI: 10.1016/j.vaccine.2010.03.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 12/28/2022]
Abstract
Cell culture processes offer an attractive alternative to conventional chicken egg-based influenza vaccine production methods. However, most protocols still rely on the use of adherent cells, which makes process scale-up a challenging issue. In this study, it is demonstrated that the HEK-293 human cell line is able to efficiently replicate influenza virus. Production in serum-free suspension of HEK-293 cultures resulted in high titers of infectious influenza viruses for different subtypes and variants including A/H1, A/H3 and B strains. After virus adaptation and optimization of infection conditions, production in 3-L bioreactor resulted in titers of up to 10(9)IVP/mL demonstrating the scale-up potential of the process.
Collapse
Affiliation(s)
- Audrey Le Ru
- Animal Cell Technology, National Research Council of Canada, 6100 Royalmount Avenue, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Kamen AA, Bédard C, Tom R, Perret S, Jardin B. On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 2009; 50:36-48. [PMID: 18626897 DOI: 10.1002/(sici)1097-0290(19960405)50:1<36::aid-bit5>3.0.co;2-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase.
Collapse
Affiliation(s)
- A A Kamen
- Animal Cell Engineering Group, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
26
|
Optical Inline Measurement Procedures for Counting and Sizing Cells in Bioprocess Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009. [DOI: 10.1007/10_2009_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
27
|
Höpfner T, Bluma A, Rudolph G, Lindner P, Scheper T. A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 2009; 33:247-56. [PMID: 19396466 DOI: 10.1007/s00449-009-0319-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/08/2009] [Indexed: 11/29/2022]
Abstract
To observe and control cultivation processes, optical sensors are used increasingly. Important variables for controlling such processes are cell count, cell size distribution and the morphology of cells. Among turbidity measurement methods, imaging procedures are applied for determining these process values. A disadvantage of most previously developed imaging procedures is that they are only available offline, which requires sampling. On the other hand, available imaging inline probes can only deliver a limited number of process values so far. This contribution gives an overview of optical procedures for the inline determination of cell count, cell size distribution and other variables. In particular, by in situ microscopy, an imaging procedure will be described, which allows the determination of direct and non-direct cell variables in real time without sampling.
Collapse
Affiliation(s)
- Tim Höpfner
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
28
|
Vaidyanathan S, Macaloney G, Vaughan J, McNeil B, Harvey LM. Monitoring of Submerged Bioprocesses. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Cole–Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass. Bioprocess Biosyst Eng 2008; 32:161-73. [DOI: 10.1007/s00449-008-0234-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
|
30
|
Maskow T, Röllich A, Fetzer I, Yao J, Harms H. Observation of non-linear biomass-capacitance correlations: reasons and implications for bioprocess control. Biosens Bioelectron 2008; 24:123-8. [PMID: 18479904 DOI: 10.1016/j.bios.2008.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Electrical capacitance has been discussed as a real time measure for living biomass concentration in technical bioreactors such as brewery (fermentation) tanks. Commonly, a linear correlation between biomass concentration and capacitance is assumed. While following the growth and subsequent lipid formation of the yeast Arxula adeninivorans we observed non-linearity between biomass concentration and capacitance. Capacitance deviation from linearity coincided with incipient lipid formation and depended on the intracellular lipid content. As the extent of deviation between capacitance and biomass concentration was proportional to the lipid concentration, it was considered as a quantitative measure of intracellular product formation. The correlation between shifts in dielectric relaxation (summarized as characteristic frequency of the Cole-Cole equation) and lipid content could not be explained by interfacial polarization on the lipid droplets alone. However, the parameters of the Cole-Cole equation were found to be a clear indicator for different phases of growth and lipid production. Integrating all results in a redundancy analysis (RDA), we were able to accurately describe the formation of cellular lipid inclusions. Our measurements are thus potentially valuable as components of future bioprocess control strategies targeting intracellular products such as proteins or biopolyesters.
Collapse
Affiliation(s)
- Thomas Maskow
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
31
|
Rudolph G, Lindner P, Gierse A, Bluma A, Martinez G, Hitzmann B, Scheper T. Online monitoring of microcarrier based fibroblast cultivations with in situ microscopy. Biotechnol Bioeng 2008; 99:136-45. [PMID: 17546690 DOI: 10.1002/bit.21523] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Animal cell culture is widely used in biotechnology for the production of many biological products. In situ microscopes acquire images directly from cell suspensions and analyze the images in matters of cell concentration, cell size distribution and cell morphology. Their applicability was already proven for yeast and suspended mammalian cell cultivations. In this work the in situ microscope was utilized to measure the level of colonization of fibroblasts on microcarrier surfaces during cultivation. For this study the murine cell line NIH-3T3 was used in combination with Cytodex 1 microcarriers. Cultivations were carried out in a 5 L stirred tank bioreactor equipped with the in situ microscope. Images were obtained sequentially with the in situ microscope over the whole cultivation time (900 images per sequence, 7.5 h per sequence on average). For the microcarrier analysis an image analysis algorithm based on a neural network was developed and implemented in the microscope analysis software.
Collapse
Affiliation(s)
- Guido Rudolph
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Melero-Martin J, Santhalingam S, Al-Rubeai M. Methodology for Optimal In Vitro Cell Expansion in Tissue Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Optische Inline-Messverfahren zur Zellzahl- und Zellgrößenbestimmung in der Bioprozesstechnik. CHEM-ING-TECH 2007. [DOI: 10.1002/cite.200600110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Junker BH, Wang HY. Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng 2006; 95:226-261. [PMID: 16933288 DOI: 10.1002/bit.21087] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review article has been written for the journal, Biotechnology and Bioengineering, to commemorate the 70th birthday of Daniel I.C. Wang, who served as doctoral thesis advisor to each of the co-authors, but a decade apart. Key roots of the current PAT initiative in bioprocess monitoring and control are described, focusing on the impact of Danny Wang's research as a professor at MIT. The history of computer control and monitoring in biochemical processing has been used to identify the areas that have already benefited and those that are most likely to benefit in the future from PAT applications. Past applications have included the use of indirect estimation methods for cell density, expansion of on-line/at-line and on-line/in situ measurement techniques, and development of models and expert systems for control and optimization. Future applications are likely to encompass additional novel measurement technologies, measurements for multi-scale and disposable bioreactors, real time batch release, and more efficient data utilization to achieve process validation and continuous improvement goals. Dan Wang's substantial contributions in this arena have been one key factor in steering the PAT initiative towards realistic and attainable industrial applications.
Collapse
Affiliation(s)
- B H Junker
- Bioprocess Research and Development, Merck Research Laboratories, Building R810-127, Rahway 07065, New Jersey
| | - H Y Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Goudar C, Biener R, Zhang C, Michaels J, Piret J, Konstantinov K. Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 101:99-118. [PMID: 16989259 DOI: 10.1007/10_020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cellular physiology and metabolism were monitored using a quasi real-time combination of on-line and off-line data to estimate metabolic fluxes in an established bioreaction network. The utility of this approach towards optimizing bioreactor operation was demonstrated for CHO cells cultivated in 15 L perfusion reactors at 20 x 10(6) cells/mL. Medium composition and dilution rates were changed to obtain several steady states with varying glucose and glutamine concentrations. When cells were restored to initial culture medium and perfusion rate conditions after being exposed to lower glucose and glutamine concentrations, the pyruvate flux into the TCA cycle was increased 30% while the pyruvate flux through lactate was decreased 30%, suggesting steady-state multiplicity. By appropriately altering cellular metabolism, perfusion bioreactors can operate at lower perfusion rates without significant accumulation of inhibitory metabolites such as lactate. Changes in glucose, lactate and glutamine uptake/production rates had significant effects on the calculation of other fluxes in the network. Sensitivity analysis of these key metabolic fluxes highlighted the need for accurate and reliable real-time sensors. Overall, rapid observation of metabolic fluxes can be a valuable tool for bioprocess development, monitoring and control. The framework presented in this study offers a convenient means for quasi real-time estimation of metabolic fluxes and represents a step towards realizing the potential of metabolic flux analysis for accelerated bioprocess optimization.
Collapse
Affiliation(s)
- Chetan Goudar
- Research & Development, Process Sciences, Bayer HealthCare, Biological Products Division, 800 Dwight Way, Berkeley, CA 94710, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Carvell JP, Dowd JE. On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance. Cytotechnology 2006; 50:35-48. [PMID: 19003069 PMCID: PMC3475999 DOI: 10.1007/s10616-005-3974-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 11/28/2022] Open
Abstract
In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform.
Collapse
|
37
|
Meuwly F, Papp F, Ruffieux PA, Bernard AR, Kadouri A, von Stockar U. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 2006; 122:122-9. [PMID: 16153735 DOI: 10.1016/j.jbiotec.2005.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/20/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022]
Abstract
For animal cell cultures growing in packed-bed bioreactors where cell number cannot be determined directly, there is a clear need to use indirect methods that are not based on cell counts in order to monitor and control the process. One option is to use the glucose consumption rate (GCR) of the culture as an indirect measure to monitor the process in bioreactors. This study was done on a packed-bed bioreactor process using recombinant CHO cells cultured on Fibra-Cel disk carriers in perfusion mode at high cell densities. A key step in the process is the switch of the process from the cell growth phase to the production phase triggered by a reduction of the temperature. In this system, we have used a GCR value of 300 g of glucose per kilogram of disks per day as a criterion for the switch. This paper will present results obtained in routine operations for the monitoring and control of an industrial process at pilot-scale. The process operated with this GCR-based strategy yielded consistent, reproducible process performance across numerous bioreactor runs performed on multiple production sites.
Collapse
Affiliation(s)
- F Meuwly
- Serono Biotech Center, Laboratoires Serono SA, Zone Industrielle B, Fenil-sur-Corsier, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Garófano GJR, Venancio CG, Suazo CAT, Almeida PIF. Application of the wavelet image analysis technique to monitor cell concentration in bioprocesses. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2005. [DOI: 10.1590/s0104-66322005000400010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Soley A, Lecina M, Gámez X, Cairó JJ, Riu P, Rosell X, Bragós R, Gòdia F. On-line monitoring of yeast cell growth by impedance spectroscopy. J Biotechnol 2005; 118:398-405. [PMID: 16026878 DOI: 10.1016/j.jbiotec.2005.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 05/23/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
The application of impedance spectroscopy to estimate on-line cell concentration was studied. The estimation was based on the relative variation between electrical impedance measured at low (10 kHz) and high frequencies (10 MHz). Studies were carried out to characterise the influence of changes in physical and chemical parameters on the impedance measurement. Two different possibilities to perform on-line measurements were tested: a simple set-up, based on an in situ probe, gave good results but was not suitable for high agitation and aeration rates. An ex situ flow-through on-line measuring cell was used to overcome these problems, showing a better performance. The use of this set-up for the growth monitorisation of a Saccharomyces cerevisiae culture showed an efficient performance, having the correlation between estimated and measured S. cerevisiae a Pearson coefficient of 0.999.
Collapse
Affiliation(s)
- A Soley
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kacmar J, Srienc F. Dynamics of single cell property distributions in Chinese hamster ovary cell cultures monitored and controlled with automated flow cytometry. J Biotechnol 2005; 120:410-20. [PMID: 16144728 DOI: 10.1016/j.jbiotec.2005.06.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/06/2005] [Accepted: 06/21/2005] [Indexed: 11/19/2022]
Abstract
Two important variables that are often not measured online in Chinese hamster ovary (CHO) cell cultures are cell number concentration and culture viability. We have developed an automated flow cytometry system that measured the cell number concentration, single cell viability based on propidium iodide (PI) exclusion, and single cell light scattering from bioreactor samples every 30 min. The bioreactor was monitored during batch growth, and then the cell number concentration was controlled at a set point during cytostat operation. NH(4)Cl was added during steady state operation in cytostat mode to monitor the transient cell population response to adverse growth conditions. The automated measurements correlated well to cell concentration and viability determined manually using a hemacytometer. The described system provides a method to study mammalian cell culture physiology and dynamics in great detail. It presents a new method for the monitoring and control of animal cell culture.
Collapse
Affiliation(s)
- James Kacmar
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
41
|
Gorenflo VM, Chow VS, Chou C, Piret JM. Optical analysis of perfusion bioreactor cell concentration in an acoustic separator. Biotechnol Bioeng 2005; 92:514-8. [PMID: 16155953 DOI: 10.1002/bit.20693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Automated monitoring of cell concentration in perfusion bioprocesses facilitates the maintenance of constant cell specific perfusion rates. However, most on-line measuring devices are relatively complex and foul as the culture progresses. A simple external optical sensor was developed using the transparent glass walls of acoustic separators for automated optical analysis of their contents. For each measurement, the separator was filled by an automated pumping system with triplicate representative bioreactor samples that were optically analyzed and the device returned to perfusion operation within approximately 1 or 2 min. Chinese hamster ovary cell concentrations, ranging from 5 x 10(5) to 2 x 10(7) cells/mL, were highly correlated (R(2) = 0.99) with the 90 degrees scattered light response. Since the device was operated externally, it did not complicate bioreactor sterilization or cleaning. Viability was not optically analyzed, but this information was not required between manual samples of a properly operated perfusion process. Using single-point recalibration based on routine off-line samples, this external optical system remained effective during a 4-month perfusion run, thus providing a non-invasive and easily maintained on-line cell concentration monitoring system to improve the control of perfusion bioreactors.
Collapse
Affiliation(s)
- Volker M Gorenflo
- Michael Smith Laboratories, 2185 East Mall, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
42
|
Guez JS, Cassar JP, Wartelle F, Dhulster P, Suhr H. Real time in situ microscopy for animal cell-concentration monitoring during high density culture in bioreactor. J Biotechnol 2004; 111:335-43. [PMID: 15246669 DOI: 10.1016/j.jbiotec.2004.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 04/26/2004] [Accepted: 04/30/2004] [Indexed: 12/01/2022]
Abstract
An in situ microscope (ISM) device is utilised in this study to monitor hybridoma cells concentration in a stirred bioreactor. It generates images by using pulsed illumination of the liquid broth synchronised with the camera frame generation to avoid blur from the cell's motion. An appropriate image processing isolates the sharp objects from the blurred ones that are far from the focal plane. As image processing involves several parameters, this paper focuses on the robustness of the results of the cells counting. This stage determines the applicability of the measuring device and has seldom been tackled in the presentations of ISM devices. Calibration is secondly performed for assessing the cell-concentration from the cell automated numeration provided by the ISM. Flow cytometry and hemacytometer chamber were used as reference analytical methods. These measures and the output of the image processing allow estimating a single calibration parameter: the reference volume per image equal to 1.08 x 10(-6) mL. In these conditions, the correlation coefficient between both reference and ISM data sets becomes equal to 0.99. A saturation of this system during an ultrasonic wave perfusion phase that deeply changes the culture conditions is observed and discussed. Principal component analysis (PCA) is used to undergo the robustness study and the ISM calibration step.
Collapse
Affiliation(s)
- J S Guez
- Laboratoire Génie Biologique et d'Automatique, EPU USTL Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
43
|
Palomares LA, López S, Ramı́rez OT. Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of infected insect cell cultures. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2003.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Abstract
Fed-batch fermentation is used to prevent or reduce substrate-associated growth inhibition by controlling nutrient supply. Here we review the advances in control of fed-batch fermentations. Simple exponential feeding and inferential methods are examined, as are newer methods based on fuzzy control and neural networks. Considerable interest has developed in these more advanced methods that hold promise for optimizing fed-batch techniques for complex fermentation systems.
Collapse
Affiliation(s)
- J Lee
- Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, South Korea
| | | | | | | |
Collapse
|
45
|
Henry O, Dormond E, Perrier M, Kamen A. Insights into adenoviral vector production kinetics in acoustic filter-based perfusion cultures. Biotechnol Bioeng 2004; 86:765-74. [PMID: 15162452 DOI: 10.1002/bit.20074] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One of the major limitations in the production of adenoviral vectors is the reduction in cell-specific productivity observed for increasing cell density at infection in batch cultures. This observation strongly suggests some nutrient depletion and/or metabolite inhibition in the media. These limitations have been partially overcome through other feeding strategies, such as fed-batch and sequential batch operations. To improve these results, we evaluated perfusion as a strategy to increase the volumetric productivity of HEK-293 cell cultures, by allowing productive infection at higher cell densities. An acoustic cell separator was employed in consideration of the increased shear sensitivity of the cells during the infection phase. The effects of perfusion rate and cell density at infection on the production of a recombinant adenovirus expressing the GFP were investigated. The perfusion mode allowed successful infection at cell densities in the range of 2.4-3 x 10(6) cell/mL, while maintaining a similar cell specific productivity (17,900 +/- 2400 VP/cell) to that of a batch infected at a low cell density (5 x 10(5) cell/mL). The highest virus concentrations (4.1 +/- 0.6 x 10(10) VP/mL) were attained for a feed rate of 2 vol/d and constituted a fivefold increase compared to a batch with medium replacement. Rapid assessment of the infection status was achieved through the use of on-line monitoring of respiration, fluorescence, and biovolume. Analysis of the kinetics of nutrient consumption and metabolite production revealed that a reduction in specific productivity is correlated with reduced metabolic activity.
Collapse
Affiliation(s)
- Olivier Henry
- Ecole Polytechnique de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
46
|
Stärk E, Hitzmann B, Schügerl K, Scheper T, Fuchs C, Köster D, Märkl H. In-situ-fluorescence-probes: a useful tool for non-invasive bioprocess monitoring. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 74:21-38. [PMID: 11991181 DOI: 10.1007/3-540-45736-4_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Optical sensors appear to be very promising for different applications in modern biotechnology. They offer the possibility to interface all the well known optical analysis techniques to bioprocesses via fiber optical cables. Thus, high sophisticated and sensitive optical analysis techniques can be coupled to a bioprocess via these light signal transporting fibers. A wide variety of sensor types for application in biotechnology has been described. Normally these sensors are non-invasive and the response times are nearly instantaneous. In particular, the use of glass fiber technology makes these sensors small, robust and reduces their costs.
Collapse
Affiliation(s)
- E Stärk
- Institut für Technische Chemie, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Abu-Absi NR, Srienc F. Instantaneous evaluation of mammalian cell culture growth rates through analysis of the mitotic index. J Biotechnol 2002; 95:63-84. [PMID: 11879713 DOI: 10.1016/s0168-1656(01)00444-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since a culture increases in cell number when dividing cells separate into two newborn cells, the fraction of mitotic cells in a growing cell population directly reflects the overall growth behavior of a cell culture. To rapidly assess the effects of growth conditions on the fraction of mitotic cells we have employed an antibody specific for the phosphorylated form of histone H3 for the identification of mitotic cells using flow cytometry. The phosphorylation of histone H3 closely correlates with the chromosomal condensation that accompanies the onset of mitosis, and, therefore, it represents a convenient marker for dividing cells. We have optimized the protocol for the staining of mitotic cells for both Chinese hamster ovary and hybridoma cell cultures. Fluorescence micrographs taken of stained cells show that cells in the various stages of mitosis can be detected based on the morphological characteristics of the chromosomes. The variation in the mitotic cell fraction has been determined throughout the batch growth phases of cultures under different growth conditions. The dynamics of the mitotic index show that balanced growth was never truly reached and that the growth rate is in fact quite variable for these cultures since large variations in the mitotic index are observed. In addition, a large increase in the fraction of mitotic cells just prior to the exponential growth phase for all cultures indicates that they are partially synchronized at the exit from the lag phase. According to a two-staged, age structured population balance model, the mitotic index is directly proportional to the growth rate of a culture. The proportionality constant for this case is shown to be the time required for cells to progress through mitosis. This time is believed to be constant for a particular cell line, as shown by experimental data. Thus, growth rates can be determined solely by measurement of the fraction of cells in mitosis. The mitotic index measurements were then used to calculate the growth in cell number of the cultures, and these simulations accurately reflect observed cell counts. Other simulations also show that changes in cell growth can be predicted before they are reflected in the cell count data. This technique can be used as a sensitive indicator of cell growth and could be useful as a process monitoring technique and for developing better feeding strategies for animal cell cultures.
Collapse
Affiliation(s)
- Nicholas R Abu-Absi
- Department of Chemical Engineering and Materials Science, and the Biological Process Technology Institute, The University of Minnesota, 1479 Gortner Ave, Room 240 Gortner Labs, Saint Paul, MN 55108, USA
| | | |
Collapse
|
48
|
Ducommun P, Kadouri A, von Stockar U, Marison IW. On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng 2002; 77:316-23. [PMID: 11753940 DOI: 10.1002/bit.1197] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dielectric spectroscopy was applied to two industrial high cell density culture processes and used to determine on-line the concentration of CHO cells immobilized on macroporous microcarriers in a stirred bioreactor and in a packed-bed of disk carriers. The cell concentration predicted from the spectroscopic data was in excellent agreement with off-line cell counting data for both processes. Deviations between the two counting methods only occurred in the case of a significant decrease of the cell viability, from 93% to 64%, which induced a change of the average cell size in the culture. Results for the packed-bed process were further confirmed by the application of indirect yield models based on the measurement of glucose, lactate, and the protein of interest. Moreover, dielectric spectroscopy was used as a tool to characterize the packed-bed process. It was possible to determine both the maximum cell concentration that could be reached in the culture system, 2.0 x 10(11) cell per kg of disk carrier, and to quantify the increase of specific protein productivity induced by the production phase, from 5.14 x 10(-8) microg x cell(-1) x h(-1) to 4.24 x 10(-7) microg x cell(-1) x h(-1).
Collapse
Affiliation(s)
- P Ducommun
- Institute of Chemical Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
49
|
Yardley JE, Kell DB, Barrett J, Davey CL. On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnol Genet Eng Rev 2001; 17:3-35. [PMID: 11255671 DOI: 10.1080/02648725.2000.10647986] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- J E Yardley
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DA, Wales, U.K
| | | | | | | |
Collapse
|
50
|
Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, von Stockar U, Marison IW. On-line determination of animal cell concentration. Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20010305)72:5<515::aid-bit1015>3.0.co;2-q] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|