1
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
2
|
Purification of Intracellular Bacterial Communities during Experimental Urinary Tract Infection Reveals an Abundant and Viable Bacterial Reservoir. Infect Immun 2018; 86:IAI.00740-17. [PMID: 29378794 DOI: 10.1128/iai.00740-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a major infection of humans, particularly affecting women. Recurrent UTIs can cause significant discomfort and expose patients to high levels of antibiotic use, which in turn contributes to the development of higher antibiotic resistance rates. Most UTIs are caused by uropathogenic Escherichia coli, which is able to form intracellular collections (termed intracellular bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen. IBCs are seen in both infected mice and humans and are a potential cause of recurrent UTI. Genetic and molecular studies of IBCs have been hampered both by the low number of bacteria in IBCs relative to the number extracellular bacteria and by population bottlenecks that occur during IBC formation. We now report the development of a simple and rapid technique for isolating pure IBCs from experimentally infected mice. We verified the specificity and purity of the isolated IBCs via microscopy, gene expression, and culture-based methods. Our results further demonstrated that our isolation technique practically enables specific molecular studies of IBCs. In the first such direct measurement, we determined that a single epithelial cell containing an early IBC typically contains 103 viable bacteria. Our isolation technique complements recent progress in low-input, single-cell genomics to enable future genomic studies of the formation of IBCs and their activation pathways during recurrent UTI, which may lead to novel strategies to eliminate them from the bladder.
Collapse
|
3
|
Barros SA, Yoon I, Chenoweth DM. Modulation of the E. coli rpoH Temperature Sensor with Triptycene-Based Small Molecules. Angew Chem Int Ed Engl 2016; 55:8258-61. [PMID: 27240201 DOI: 10.1002/anie.201601626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/23/2016] [Indexed: 12/30/2022]
Abstract
Regulation of the heat shock response (HSR) is essential in all living systems. In E. coli, the HSR is regulated by an alternative σ factor, σ(32) , which is encoded by the rpoH gene. The mRNA of rpoH adopts a complex secondary structure that is critical for the proper translation of the σ(32) protein. At low temperatures, the rpoH gene transcript forms a highly structured mRNA containing several three-way junctions, including a rare perfectly paired three-way junction (3WJ). This complex secondary structure serves as a primitive but highly effective strategy for the thermal control of gene expression. In this work, the first small-molecule modulators of the E. coli σ(32) mRNA temperature sensor are reported.
Collapse
Affiliation(s)
- Stephanie A Barros
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Ina Yoon
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Barros SA, Yoon I, Chenoweth DM. Modulation of the
E. coli rpoH
Temperature Sensor with Triptycene‐Based Small Molecules. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stephanie A. Barros
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Ina Yoon
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - David M. Chenoweth
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
5
|
Martínez-Bussenius C, Navarro CA, Orellana L, Paradela A, Jerez CA. Global response of Acidithiobacillus ferrooxidans ATCC 53993 to high concentrations of copper: A quantitative proteomics approach. J Proteomics 2016; 145:37-45. [PMID: 27079981 DOI: 10.1016/j.jprot.2016.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Acidithiobacillus ferrooxidans is used in industrial bioleaching of minerals to extract valuable metals. A. ferrooxidans strain ATCC 53993 is much more resistant to copper than other strains of this microorganism and it has been proposed that genes present in an exclusive genomic island (GI) of this strain would contribute to its extreme copper tolerance. ICPL (isotope-coded protein labeling) quantitative proteomics was used to study in detail the response of this bacterium to copper. A high overexpression of RND efflux systems and CusF copper chaperones, both present in the genome and the GI of strain ATCC 53993 was found. Also, changes in the levels of the respiratory system proteins such as AcoP and Rus copper binding proteins and several proteins with other predicted functions suggest that numerous metabolic changes are apparently involved in controlling the effects of the toxic metal on this acidophile. SIGNIFICANCE Using quantitative proteomics we overview the adaptation mechanisms that biomining acidophiles use to stand their harsh environment. The overexpression of several genes present in an exclusive genomic island strongly suggests the importance of the proteins coded in this DNA region in the high tolerance of A. ferrooxidans ATCC 53993 to metals.
Collapse
Affiliation(s)
- Cristóbal Martínez-Bussenius
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Luis Orellana
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Alberto Paradela
- Proteomics Laboratory, National Biotechnology Center, CSIC, Madrid, Spain
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Fu X, Liang W, Du P, Yan M, Kan B. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathog 2014; 6:47. [PMID: 25589902 PMCID: PMC4293811 DOI: 10.1186/s13099-014-0047-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/13/2014] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na+ exclusion, K+ uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Meiying Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| |
Collapse
|
7
|
Huwiler SG, Beyer C, Fröhlich J, Hennecke H, Egli T, Schürmann D, Rehrauer H, Fischer HM. Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields. Bioelectromagnetics 2012; 33:488-96. [DOI: 10.1002/bem.21709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
|
8
|
Berry D, Holder D, Xi C, Raskin L. Comparative transcriptomics of the response of Escherichia coli to the disinfectant monochloramine and to growth conditions inducing monochloramine resistance. WATER RESEARCH 2010; 44:4924-4931. [PMID: 20692677 DOI: 10.1016/j.watres.2010.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/25/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
Escherichia coli growth in biofilms and growth at a suboptimal temperature of 20 °C have been shown to decrease sensitivity to monochloramine (Berry, D., C. Xi, L. Raskin. 2009. Environ. Sci. Technol. 43, 884-889). In order to better understand why growth conditions affect sensitivity to monochloramine, a comparative transcriptomic approach was used to identify common patterns of differentially-expressed genes under these growth conditions and during monochloramine exposure. This approach revealed a set of differentially-expressed genes shared under multiple conditions (planktonic growth at 20 °C, biofilm growth, and exposure of planktonic cells to monochloramine), with nine genes shared under all three conditions. Functional gene categories enriched in the shared gene sets included: general metabolic inhibition, redox and oxidoreductase response, cell envelope integrity response, control of iron and sulfur transport metabolism and several genes of unknown function. Single gene deletion mutant analyses verified that loss of 15 of the 24 genes up-regulated during monochloramine exposure as well as during other tested conditions increased E. coli sensitivity to monochloramine up to two fold. Constitutive expression of down-regulated genes in single gene mutants yielded mixed results, indicating that the expression of some down-regulated genes actually decreases sensitivity to monochloramine. These results contribute to the understanding of the bacterial response to disinfectants by characterizing the overlap between growth condition associated stress responses and monochloramine-associated stress responses. This characterization highlights the bacterial responses responsible for decreased sensitivity to monochloramine under different growth conditions.
Collapse
Affiliation(s)
- David Berry
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Ave, 107 EWRE Bldg, Ann Arbor, MI 48109-2125, USA
| | | | | | | |
Collapse
|
9
|
Waldminghaus T, Kortmann J, Gesing S, Narberhaus F. Generation of synthetic RNA-based thermosensors. Biol Chem 2009; 389:1319-26. [PMID: 18713019 DOI: 10.1515/bc.2008.150] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structured RNAs with fundamental sensory and regulatory potential have been discovered in all kingdoms of life. Bacterial RNA thermometers are located in the 5'-untranslated region of certain heat shock and virulence genes. They regulate translation by masking the Shine-Dalgarno sequence in a temperature-dependent manner. To engineer RNA-based thermosensors, we used a combination of computer-based rational design and in vivo screening. After only two rounds of selection, several RNA thermometers that are at least as efficient as natural thermometers were obtained. Structure probing experiments revealed temperature-dependent conformational changes in these translational control elements. Our study demonstrates that temperature-controlled RNA elements can be designed by a simple combined computational and experimental approach.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
10
|
Caspeta L, Flores N, Pérez NO, Bolívar F, Ramírez OT. The effect of heating rate onEscherichia colimetabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: A scale-down study. Biotechnol Bioeng 2009; 102:468-82. [DOI: 10.1002/bit.22084] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Yaghmaee P, Durance TD. Destruction and injury of Escherichia coli during microwave heating under vacuum. J Appl Microbiol 2005; 98:498-506. [PMID: 15659204 DOI: 10.1111/j.1365-2672.2004.02466.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the effect of 2450 MHz microwave radiation under vacuum (vacuum microwave or VM) on survival and injury of Escherichia coli and to search for possible nonthermal effects associated with VM. METHODS AND RESULTS Destruction kinetics of E. coli in peptone water were determined in a continuous-flow vacuum system, heated by convection heating in a water bath or with microwaves (VMs). Vacuum was used to control the boiling point of water and to maintain temperature in the bacterial suspensions at specified levels (49-64 degrees C). CONCLUSIONS z-Value in the water bath treatment was 9.1 degrees C while for VM at 510 and 711 W it was 6.2 and 5.9 degrees C, suggesting that E. coli is more sensitive to temperature changes under microwave heating. Arrhenius calculations of the activation energies of the destruction reactions suggest that the mechanism of destruction in VM may be different from that of conventional heat. The number of injured micro-organisms showed no significant differences among treatments. SIGNIFICANCE AND IMPACT OF THE STUDY The impact of temperature on E. coli destruction was different when microwaves were the medium of heat transfer, suggesting the existence of factors other than heat contributing to the lethal effect of VM.
Collapse
Affiliation(s)
- P Yaghmaee
- Food Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
12
|
Bott CB, Love NG. The immunochemical detection of stress proteins in activated sludge exposed to toxic chemicals. WATER RESEARCH 2001; 35:91-100. [PMID: 11257897 DOI: 10.1016/s0043-1354(00)00245-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The heat shock protein, GroEL, was found to be induced in activated sludge cultures exposed to perturbations of chemicals (cadmium, pentachlorophenol, and acetone) or heat stress. In laboratory activated sludge reactors, GroEL was rapidly induced (within minutes) in the presence of 5 mg/l or greater total cadmium. At 5 mg/l cadmium, however, moderate to insignificant changes in activated sludge process performance indicators [effluent suspended solids concentration, chemical oxygen demand (COD) removal, and specific oxygen uptake rate] were observed. As total cadmium concentrations increased above 5 mg/l, there was a significant and consistent increase in effluent volatile suspended solids concentrations from activated sludge sequencing batch reactors relative to unstressed controls. These results indicate that stress proteins may serve as sensitive and rapid indicators of mixed liquor toxicity which can adversely impact treatment process performance, but that GroEL may not be a good candidate protein for this purpose.
Collapse
Affiliation(s)
- C B Bott
- Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering, 418 New Engineering Building, Blacksburg, Virginia 24061-0246, USA
| | | |
Collapse
|
13
|
Mason CA, Dünner J, Indra P, Colangelo T. Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment. Appl Environ Microbiol 1999; 65:3433-40. [PMID: 10427031 PMCID: PMC91516 DOI: 10.1128/aem.65.8.3433-3440.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differences in expression of the Escherichia coli stress protein HtpG were found following exposure of exponentially growing cells to heat or chemical shock when cells were grown under different environmental conditions. With an htpG::lacZ reporter system, htpG expression increased in cells grown in a complex medium (Luria-Bertani [LB] broth) following a temperature shock at 45 degrees C. In contrast, no HtpG overexpression was detected in cells grown in a glucose minimal medium, despite a decrease in the growth rate. Similarly, in pyruvate-grown cells there was no heat shock induction of HtpG expression, eliminating the possibility that repression of HtpG in glucose-grown E. coli was due to catabolite repression. When 5 mM phenol was used as a chemical stress agent for cells growing in LB broth, expression of HtpG increased. However, when LB-grown cells were subjected to stress with 10 mM phenol and when both 5 and 10 mM phenol were added to glucose-grown cultures, repression of htpG expression was observed. 2-Chlorophenol stress resulted in overexpression of HtpG when cells were grown in complex medium but repression of HtpG synthesis when cells were grown in glucose. No induction of htpG expression was seen with 2, 4-dichlorophenol in cells grown with either complex medium or glucose. The results suggest that, when a large pool of amino acids and proteins is available, as in complex medium, a much stronger stress response is observed. In contrast, when cells are grown in a simple glucose mineral medium, htpG expression either is unaffected or is even repressed by imposition of a stress condition. The results demonstrate the importance of considering differences in growth environment in order to better understand the nature of the response to an imposed stress condition.
Collapse
Affiliation(s)
- C A Mason
- Department of Microbiology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
14
|
Kovárová K, Zehnder AJ, Egli T. Temperature-dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture. J Bacteriol 1996; 178:4530-9. [PMID: 8755881 PMCID: PMC178220 DOI: 10.1128/jb.178.15.4530-4539.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.
Collapse
Affiliation(s)
- K Kovárová
- Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | | | | |
Collapse
|
15
|
A temperature profile in batch culture to increase the production of the recombinant UDP-glucuronosyltransferase 2B4 in Escherichia coli. Process Biochem 1996. [DOI: 10.1016/0032-9592(95)00055-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Lupi CG, Colangelo T, Mason CA. Two-Dimensional Gel Electrophoresis Analysis of the Response of Pseudomonas putida KT2442 to 2-Chlorophenol. Appl Environ Microbiol 1995; 61:2863-72. [PMID: 16535093 PMCID: PMC1388547 DOI: 10.1128/aem.61.8.2863-2872.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of exposure of Pseudomonas putida KT2442 to 2-chlorophenol as a model for the chemical stress response were examined by two-dimensional polyacrylamide gel electrophoresis. Individual protein concentrations were determined at 45, 65, and 95 min following the addition of 2-chlorophenol at a concentration of 1.63 mM to exponentially growing cultures of P. putida KT2442 by silver staining the separated proteins. The changes in the protein concentrations could be classified into four categories, namely those which increased continuously during exposure, those which decreased in concentration, those which showed a concentration peak at some point following exposure, and those which were essentially unaffected. Thirty proteins with isoelectric points between pH 4 and 6 increased in concentration, 27 decreased, and 90 had a concentration maximum or minimum between 45 and 95 min. Of those proteins with isoelectric points between 5.5 and 10, 68 increased in concentration, 39 decreased in concentration, and 47 showed a concentration peak in the middle of the sampling period. Thus, in the evaluation of the stress response, a functional description requires an understanding both of proteins which are required at higher concentrations and of those whose presence appears to be no longer essential.
Collapse
|
17
|
Heitzer A, Malachowsky K, Thonnard JE, Bienkowski PR, White DC, Sayler GS. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 1994; 60:1487-94. [PMID: 8017932 PMCID: PMC201507 DOI: 10.1128/aem.60.5.1487-1494.1994] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An optical whole-cell biosensor based on a genetically engineered bioluminescent catabolic reporter bacterium was developed for continuous on-line monitoring of naphthalene and salicylate bioavailability and microbial catabolic activity potential in waste streams. The bioluminescent reporter bacterium, Pseudomonas fluorescens HK44, carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism. Exposure to either compound resulted in inducible bioluminescence. The reporter culture was immobilized onto the surface of an optical light guide by using strontium alginate. This biosensor probe was then inserted into a measurement cell which simultaneously received the waste stream solution and a maintenance medium. Exposure under defined conditions to both naphthalene and salicylate resulted in a rapid increase in bioluminescence. The magnitude of the response and the response time were concentration dependent. Good reproducibility of the response was observed during repetitive perturbations with either naphthalene or salicylate. Exposure to other compounds, such as glucose and complex nutrient medium or toluene, resulted in either minor bioluminescence increases after significantly longer response times compared with naphthalene or no response, respectively. The environmental utility of the biosensor was tested by using real pollutant mixtures. A specific bioluminescence response was obtained after exposure to either an aqueous solution saturated with JP-4 jet fuel or an aqueous leachate from a manufactured-gas plant soil, since naphthalene was present in both pollutant mixtures.
Collapse
Affiliation(s)
- A Heitzer
- Department of Microbiology, University of Tennessee, Knoxville 37932
| | | | | | | | | | | |
Collapse
|