1
|
Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022; 14:nu14091969. [PMID: 35565936 PMCID: PMC9099610 DOI: 10.3390/nu14091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Collapse
|
2
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Gaillard S, Réveillon D, Danthu C, Hervé F, Sibat M, Carpentier L, Hégaret H, Séchet V, Hess P. Effect of a short-term salinity stress on the growth, biovolume, toxins, osmolytes and metabolite profiles on three strains of the Dinophysis acuminata-complex (Dinophysis cf. sacculus). HARMFUL ALGAE 2021; 107:102009. [PMID: 34456027 DOI: 10.1016/j.hal.2021.102009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 06/13/2023]
Abstract
Dinophysis is the main dinoflagellate genus responsible for diarrheic shellfish poisoning (DSP) in human consumers of filter feeding bivalves contaminated with lipophilic diarrheic toxins. Species of this genus have a worldwide distribution driven by environmental conditions (temperature, irradiance, salinity, nutrients etc.), and these factors are sensitive to climate change. The D. acuminata-complex may contain several species, including D. sacculus. The latter has been found in estuaries and semi-enclosed areas, water bodies subjected to quick salinity variations and its natural repartition suggests some tolerance to salinity changes. However, the response of strains of D. acuminata-complex (D. cf. sacculus) subjected to salinity stress and the underlying mechanisms have never been studied in the laboratory. Here, a 24 h hypoosmotic (25) and hyperosmotic (42) stress was performed in vitro in a metabolomic study carried out with three cultivated strains of D. cf. sacculus isolated from the French Atlantic and Mediterranean coasts. Growth rate, biovolume and osmolyte (proline, glycine betaine and dimethylsulfoniopropionate (DMSP)) and toxin contents were measured. Osmolyte contents were higher at the highest salinity, but only a significant increase in glycine betaine was observed between the control (35) and the hyperosmotic treatment. Metabolomics revealed significant and strain-dependent differences in metabolite profiles for different salinities. These results, as well as the absence of effects on growth rate, biovolume, okadaic acid (OA) and pectenotoxin (PTXs) cellular contents, suggest that the D. cf. sacculus strains studied are highly tolerant to salinity variations.
Collapse
Affiliation(s)
- Sylvain Gaillard
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France.
| | - Damien Réveillon
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Charline Danthu
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Fabienne Hervé
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Manoella Sibat
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Liliane Carpentier
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | - Véronique Séchet
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Philipp Hess
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France.
| |
Collapse
|
4
|
Lobine D, Rengasamy KRR, Mahomoodally MF. Functional foods and bioactive ingredients harnessed from the ocean: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:5794-5823. [PMID: 33724095 DOI: 10.1080/10408398.2021.1893643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With an increase in life expectancy and decrease of quality-of-life couple with the high prevalence of diseases, diet is expected to play a key function in sustaining human health. Nutritionists, food technologists and medical experts are working in synergy to cater for the increasing demand of food with associated therapeutic benefits, commonly known as functional food, that may improve well-being and reduce the risk of diseases. Interestingly, the marine ecosystem, due to its abundant and phenomenal biodiversity of marine organisms, constitutes a vital source of a panoply of healthy foods supply for the thriving functional food industry. Marine organisms such as seaweeds, sea cucumbers, sponges, and mollusks amongst others are sources of thousands of biologically active metabolites with antioxidant, anti-parasitic, antiviral, anti-inflammatory and anticancer properties. Given the growing number of research and interest to probe into the therapeutic roles of marine products, this review was designed to provide a comprehensive summary of the therapeutic properties of marine organisms (macroalgae, sea cucumbers and fish among others) which are consumed worldwide, in addition to their potentials and as sources of functional ingredients for developing novel food and fostering wellness. The gap between research development and actual commercialization, and future prospects of marine-based products also summarized to some extent.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences; Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences; Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
5
|
Kannan N, Rao AS, Nair A. Microbial production of omega-3 fatty acids: an overview. J Appl Microbiol 2021; 131:2114-2130. [PMID: 33570824 DOI: 10.1111/jam.15034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
The essence of appropriate nutritional intake on a regular basis has a great impact in maintaining fundamental physiological functions and the body metabolism. Considering how pivotal maintaining a nourishing fat diet is to human health, Omega-3 fatty acids have gained a lot of attention in recent times. Omega-3 fatty acids (n-3 FAs) such as eicosapentaenoic acid (EPA) and DHA are considered as essential fatty acids (EFAs) offering enormous nutritional benefits: from playing a major role in the prevention and treatment of a number of human diseases, such as cardiovascular disorders and neurological disorders, to having anti-inflammatory properties, to providing joint support, etc. Hence, their incorporation into our daily diet is of great importance. Also, both EPA and DHA have been shown to be therapeutically significant in treating several infectious diseases. EFAs were initially thought to be marine in origin, produced by fishes. Consequentially, this led to the increase in the industrial extraction of fish oils for meeting the commercial need for of n-3-rich dietary supplements. Although fish oil supplementation met almost all of the dietary demand for EFAs, they did come with a fair share of drawbacks such as undesirable odour and flavour, heavy metal contamination, extinction of fish species, etc. Oleaginous micro-organisms are a promising alternative for the production of a more sustainable, consistent and quality production of n-3 FAs. Thus, the entire review focuses on understanding the eco-friendlier production of n-3 FAs by micro-organisms.
Collapse
Affiliation(s)
- Nivetha Kannan
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| | - A S Rao
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| | - A Nair
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
6
|
Effect of high levels of CO2 and O2 on membrane fatty acid profile and membrane physiology of meat spoilage bacteria. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe membrane is the major protective barrier separating the cell from the environment and is thus important for bacteria to survive environmental stress. This study investigates changes in membrane lipid compositions and membrane physiology of meat spoiling bacteria in response to high CO2 (30%) and O2 (70%) concentrations, as commonly used for modified atmosphere packaging of meat. Therefore, the fatty acid profile as well as membrane fluidity, permeability and cell surface were determined and correlated to the genomic settings of five meat spoiling bacteria Brochothrix (B.) thermosphacta, Carnobacterium (C.) divergens, C. maltaromaticum, Leuconostoc (L.) gelidum subsp. gelidum and L. gelidum subsp. gasicomitatum cultivated under different gas atmospheres. We identified different genomic potentials for fatty acid adaptations, which were in accordance with actual measured changes in the fatty acid composition for each species in response to CO2 and/or O2, e.g., an increase in saturated, iso and cyclopropane fatty acids. Even though fatty acid changes were species-specific, the general physiological responses were similar, comprising a decreased membrane permeability and fluidity. Thus, we concluded that meat spoiling bacteria facilitate a change in membrane fatty acids upon exposure to O2 and CO2, what leads to alteration of membrane fluidity and permeability. The observed adaptations might contribute to the resistance of meat spoilers against detrimental effects of the gases O2 and CO2 and thus help to explain their ability to grow under different modified atmospheres. Furthermore, this study provides fundamental knowledge regarding the impact of fatty acid changes on important membrane properties of bacteria.
Collapse
|
7
|
Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TAA, Aggelis G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol Lett 2020; 367:5735438. [PMID: 32053204 DOI: 10.1093/femsle/fnaa028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of non-fish sources of polyunsaturated fatty acids (PUFAs) is of great biotechnological importance. Although various oleaginous microalgae and fungi are able of accumulating storage lipids (single cell oils - SCOs) containing PUFAs, the industrial applications utilizing these organisms are rather limited due to the high-fermentation cost. However, combining SCO production with other biotechnological applications, including waste and by-product valorization, can overcome this difficulty. In the current review, we present the major sources of fungi (i.e. members of Mucoromycota, fungoid-like Thraustochytrids and genetically modified strains of Yarrowia lipolytica) and microalgae (e.g. Isochrysis, NannochloropsisandTetraselmis) that have come recently to the forefront due to their ability to produce PUFAs. Approaches adopted in order to increase PUFA productivity and the potential of using various residues, such as agro-industrial, food and aquaculture wastes as fermentation substrates for SCO production have been considered and discussed. We concluded that several organic residues can be utilized as feedstock in the SCO production increasing the competitiveness of oleaginous organisms against conventional PUFA producers.
Collapse
Affiliation(s)
- Maria Kothri
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Mavrommati
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ahmed M Elazzazy
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| | - Tarek A A Moussa
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece.,Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| |
Collapse
|
8
|
Fernandes BS, Dias O, Costa G, Kaupert Neto AA, Resende TFC, Oliveira JVC, Riaño-Pachón DM, Zaiat M, Pradella JGC, Rocha I. Genome-wide sequencing and metabolic annotation of Pythium irregulare CBS 494.86: understanding Eicosapentaenoic acid production. BMC Biotechnol 2019; 19:41. [PMID: 31253157 PMCID: PMC6598237 DOI: 10.1186/s12896-019-0529-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA). EPA is an important and expensive dietary supplement with a promising and very competitive market, which is dependent on fish-oil extraction. This has prompted several research groups to study biotechnological routes to obtain specific fatty acids rather than a mixture of various lipids. Moreover, microorganisms can use low cost carbon sources for lipid production, thus reducing production costs. Previous studies have highlighted the production of EPA by P. irregulare, exploiting diverse low cost carbon sources that are produced in large amounts, such as vinasse, glycerol, and food wastewater. However, there is still a lack of knowledge about its biosynthetic pathways, because no functional annotation of any Pythium sp. exists yet. The goal of this work was to identify key genes and pathways related to EPA biosynthesis, in P. irregulare CBS 494.86, by sequencing and performing an unprecedented annotation of its genome, considering the possibility of using wastewater as a carbon source. RESULTS Genome sequencing provided 17,727 candidate genes, with 3809 of them associated with enzyme code and 945 with membrane transporter proteins. The functional annotation was compared with curated information of oleaginous organisms, understanding amino acids and fatty acids production, and consumption of carbon and nitrogen sources, present in the wastewater. The main features include the presence of genes related to the consumption of several sugars and candidate genes of unsaturated fatty acids production. CONCLUSIONS The whole metabolic genome presented, which is an unprecedented reconstruction of P. irregulare CBS 494.86, shows its potential to produce value-added products, in special EPA, for food and pharmaceutical industries, moreover it infers metabolic capabilities of the microorganism by incorporating information obtained from literature and genomic data, supplying information of great importance to future work.
Collapse
Affiliation(s)
- Bruna S Fernandes
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, PE, Brazil.
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.
| | - Oscar Dias
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Gisela Costa
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Antonio A Kaupert Neto
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Tiago F C Resende
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Juliana V C Oliveira
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego M Riaño-Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo, São Carlos, SP, Brazil.
| | | | - Isabel Rocha
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.
| |
Collapse
|
9
|
Production of High-Value Polyunsaturated Fatty Acids Using Microbial Cultures. Methods Mol Biol 2019. [PMID: 31148133 DOI: 10.1007/978-1-4939-9484-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Microbes can produce not only commodity fatty acids, such as palmitic acid (16:0) and stearic acid (18:0), but also high-value fatty acids (essential fatty acids). Most high value fatty acids belong to long chain polyunsaturated fatty acids (PUFA), such as omega-3 fatty acids (e.g., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) and omega-6 fatty acids (e.g., arachidonic acid (ARA) and γ-linolenic acid (GLA)). EPA (20:5n-3) is a 20-carbon fatty acid with five double bonds, and the first double bond is in the n-3 position. DHA (22:6n-3) is a 22-carbon fatty acid with 6 double bonds and the first double bond is also in the n-3 position. Both EPA and DHA play an essential role in cardiovascular health including prevention of atherosclerotic disease development (Zehr and Walker, Prostaglandins Other Lipid Mediat 134:131-140, 2018). ARA (20:4n-6) is a 20-carbon fatty acid with four double bonds, and the first double bond is in the n-6 position. GLA (18:3n-6) is an 18-carbon fatty acid with three double bonds, and the first double bond is in the n-6 position. ARA and GLA have multiple biological effects, such as lowering blood cholesterol, and lowering cardiovascular mortality (Poli and Visioli, Eur J Lipid Sci Technol 117(11):1847-1852, 2015). This chapter provides details on microbial production of EAP, DHA, ARA, and GLA.
Collapse
|
10
|
Hu H, Li JY, Pan XR, Zhang F, Ma LL, Wang HJ, Zeng RJ. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:140-149. [PMID: 30504016 DOI: 10.1016/j.scitotenv.2018.11.346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the effect of nitrogen (N) and phosphorous (P) stress on the production of DHA or EPA and total fatty acids (TFAs) in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Five N or P starvation/limitation conditions (N sufficient and P limited, N sufficient and P starved, N starved and P sufficient, N starved and P limited, and N and P starved) and one N and P sufficient condition (control) were studied. The results demonstrated that the proportion of DHA or EPA among TFAs and production in the microalgae suspensions decreased (57%, 73% for N stress and 18%, 51% for P stress, respectively) under N or P stress in both microalgae compared with the N and P sufficient group. Differently, DHA dry weight content of T. lutea decreased significantly, and EPA dry weight content of M. subterraneus decreased slightly under N starved conditions. Clear differences in TFA content/production and the relationship between TFA and DHA or EPA production/content and CO2 fixation were observed between the two microalgae. These results give a new sight on the difference between marine microalgae and freshwater microalgae. Meanwhile, it gave a potential application to produce DHA or EPA and TFA combining with CO2 fixation by these microalgae.
Collapse
Affiliation(s)
- Hao Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; Anhui Water Conservancy College, Hefei 231603, PR China
| | - Jia-Yun Li
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, PR China
| | - Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Fang Zhang
- Centre of Wastewater Resource Recovery, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lin-Lin Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Hua-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; School of Environmental and Chemical Engineering, Anhui Vocational and Technical College, Hefei 230011, PR China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; Centre of Wastewater Resource Recovery, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
11
|
Rumiani LA, Jalili H, Amrane A. Enhanced docosahexaenoic acid production by Crypthecodinium cohnii under combined stress in two-stage cultivation with date syrup based medium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhong Y, Cheng JJ. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10875-10883. [PMID: 29179543 DOI: 10.1021/acs.jafc.7b04246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L-1) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L-1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environment and Energy, Peking University-Shenzhen Graduate School , Shenzhen 518055, China
| | - Jay J Cheng
- School of Environment and Energy, Peking University-Shenzhen Graduate School , Shenzhen 518055, China
- Department of Biological and Agricultural Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
|
14
|
Influence of Supplementation of Vegetable Oil Blends on Omega-3 Fatty Acid Production in Mortierella alpina CFR-GV15. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1432970. [PMID: 28466005 PMCID: PMC5390627 DOI: 10.1155/2017/1432970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
Abstract
Objectives of this study were designed for improved production of mycelial omega-3 fatty acids with particular reference to EPA and DHA from the oleaginous fungus Mortierella alpina CFR-GV15 under submerged low temperatures fermentation supplemented with linseed oil and garden cress oil as an additional energy source. The fungus was grown at 20°C temperature for four days initially followed by 12°C temperature for next five days. The basal medium contained starch, yeast extract, and a blend of linseed oil (LSO) and garden cress oil (GCO) in the ratio 1 : 1. Results of the study revealed that, after nine days of total incubation period, the enhancement of biomass was up to 16.7 g/L dry weight with a total lipid content of 55.4% (v/w). Enrichment of omega-3 fatty acids indicated a significant increase in fatty acid bioconversion (ALA 32.2 ± 0.42%, EPA 7.9 ± 0.1%, and DHA 4.09 ± 0.2%) by 2.5-fold. The two-stage temperature cultivation alters the fatty acid profile due to activation of the desaturase enzyme in the cellular levels due to which arachidonic acid (AA) content reduced significantly. It can be concluded that Mortierella alpina CFR-GV15 is a fungal culture suitable for commercial production of PUFAs with enriched EPA and DHA.
Collapse
|
15
|
The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species. Appl Environ Microbiol 2015; 82:218-31. [PMID: 26497452 DOI: 10.1128/aem.02266-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.
Collapse
|
16
|
Salunke D, Manglekar R, Gadre R, Nene S, Harsulkar AM. Production of polyunsaturated fatty acids in recombinant Lipomyces starkeyi through submerged fermentation. Bioprocess Biosyst Eng 2015; 38:1407-14. [DOI: 10.1007/s00449-015-1382-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/25/2015] [Indexed: 11/30/2022]
|
17
|
Jo MJ, Hur SB. Growth and Nutritional Composition of Eustigmatophyceae Monodus subterraneus and Nannochloropsis oceanica in Autotrophic and Mixotrophic Culture. ACTA ACUST UNITED AC 2015. [DOI: 10.4217/opr.2015.37.1.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Řezanka T, Lukavský J, Sigler K, Nedbalová L, Vítová M. Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus. PHYTOCHEMISTRY 2015; 110:37-45. [PMID: 25564261 DOI: 10.1016/j.phytochem.2014.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
This study describes the identification of regioisomers and enantiomers of triacylglycerols of C20 polyunsaturated fatty acids (PUFAs) in the alga Trachydiscus minutus cultivated at different temperatures using reversed- and chiral-phase liquid chromatography-mass spectrometry. The use of the two different phases contributes to ready identification, both qualitative and semiquantitative, of regioisomers and enantiomers of triacylglycerols containing eicosapentaenoic and arachidonic in the molecule. The ratio of regioisomers and enantiomers of triacylglycerols (TAG) depends on the temperature of cultivation; with lowering temperature the proportion of the achiral TAG increases and the enantiomer ratio diverges from 1:1.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Jaromír Lukavský
- Institute of Botany, Academy of Sciences of the Czech Republic, Biorefinery Res. Centre of Competence, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Cell Cycles of Algae, Centre Algatech, Opatovický mlýn 237, 379 81 Třeboň, Czech Republic
| |
Collapse
|
19
|
Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Lipid accumulation during the establishment of kleptoplasty in Elysia chlorotica. PLoS One 2014; 9:e97477. [PMID: 24828251 PMCID: PMC4020867 DOI: 10.1371/journal.pone.0097477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022] Open
Abstract
The establishment of kleptoplasty (retention of "stolen plastids") in the digestive tissue of the sacoglossan Elysia chlorotica Gould was investigated using transmission electron microscopy. Cellular processes occurring during the initial exposure to plastids were observed in laboratory raised animals ranging from 1-14 days post metamorphosis (dpm). These observations revealed an abundance of lipid droplets (LDs) correlating to plastid abundance. Starvation of animals resulted in LD and plastid decay in animals <5 dpm that had not yet achieved permanent kleptoplasty. Animals allowed to feed on algal prey (Vaucheria litorea C. Agardh) for 7 d or greater retained stable plastids resistant to cellular breakdown. Lipid analysis of algal and animal samples supports that these accumulating LDs may be of plastid origin, as the often algal-derived 20∶5 eicosapentaenoic acid was found in high abundance in the animal tissue. Subsequent culturing of animals in dark conditions revealed a reduced ability to establish permanent kleptoplasty in the absence of photosynthetic processes, coupled with increased mortality. Together, these data support an important role of photosynthetic lipid production in establishing and stabilizing this unique animal kleptoplasty.
Collapse
|
21
|
Effect of Culture Conditions on Characteristics of Growth and Production of Docosahexaenoic acid (DHA) by Schizochytrium mangrovei. ACTA ACUST UNITED AC 2014. [DOI: 10.5657/kfas.2014.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Tilay A, Azargohar R, Dalai AK, Annapure US, Kozinski JA. Extraction and fractionation of polyunsaturated fatty acids from Mortierellasp. using supercritical fluid: experimental and kinetic studies. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashwini Tilay
- Department of Chemical and Biological Engineering; University of Saskatchewan; Saskatoon SK S7N 5A9 Canada
- Food Engineering and Technology Department; Institute of Chemical Technology; Mumbai Maharashtra 400 019 India
| | - Ramin Azargohar
- Department of Chemical and Biological Engineering; University of Saskatchewan; Saskatoon SK S7N 5A9 Canada
| | - Ajay K. Dalai
- Department of Chemical and Biological Engineering; University of Saskatchewan; Saskatoon SK S7N 5A9 Canada
| | - Uday S. Annapure
- Food Engineering and Technology Department; Institute of Chemical Technology; Mumbai Maharashtra 400 019 India
| | - Janusz A. Kozinski
- Science and Technology Department; York University; Toronto Ontario M3J 1P3 Canada
| |
Collapse
|
23
|
Wang Z, Ma X, Zhou W, Min M, Cheng Y, Chen P, Shi J, Wang Q, Liu Y, Ruan R. Oil crop biomass residue-based media for enhanced algal lipid production. Appl Biochem Biotechnol 2013; 171:689-703. [PMID: 23881783 DOI: 10.1007/s12010-013-0387-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/02/2013] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Biorefining, Bioproducts and Biosystems Engineering Department, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN, 55108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Greene J, Ashburn SM, Razzouk L, Smith DA. Fish oils, coronary heart disease, and the environment. Am J Public Health 2013; 103:1568-76. [PMID: 23409906 DOI: 10.2105/ajph.2012.300959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clinical trials continue to produce conflicting results on the effectiveness of fish oils for the primary and secondary prevention of coronary heart disease. Despite many large, well-performed studies, questions still remain, made even more complex by the addition of early revascularization and statins in our coronary heart disease armamentarium. This is complicated by the reality that fish oil production has a measureable impact on reducing fish populations, which in turn has a negative impact on creating a sustainable product. We review the current data for fish oil usage in the primary and secondary prevention of coronary heart disease with an eye toward future studies, and the effects fish oil production has on the environment and efforts that are currently under way to mitigate these effects.
Collapse
|
25
|
Cao Y, Cao Y, Zhao M. Biotechnological production of eicosapentaenoic acid: From a metabolic engineering point of view. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
de Carvalho CC. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 2012; 163:125-36. [DOI: 10.1016/j.resmic.2011.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
|
27
|
Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 2011; 9:1056-1100. [PMID: 21747748 PMCID: PMC3131561 DOI: 10.3390/md9061056] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.
Collapse
Affiliation(s)
- Sinéad Lordan
- Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland; E-Mails: (S.L.); (R.P.R.)
| | - R. Paul Ross
- Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland; E-Mails: (S.L.); (R.P.R.)
| | - Catherine Stanton
- Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland; E-Mails: (S.L.); (R.P.R.)
| |
Collapse
|
28
|
The Plackett–Burman Design for Evaluating the Production of Polyunsaturated Fatty Acids by Physcomitrella patens. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-009-1532-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp in rats. Nutrients 2009; 1:156-67. [PMID: 22253975 PMCID: PMC3257595 DOI: 10.3390/nu1020156] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/18/2009] [Indexed: 01/22/2023] Open
Abstract
Red microalgae contain functional sulfated polysaccharides (containing dietary fibers), polyunsaturated fatty acids, zeaxanthin, vitamins, minerals, and proteins. Studies in rat models support the therapeutic properties of algal biomass and isolated polysaccharides. Algal products incorporated into rat diets were found to significantly improve total serum cholesterol, serum triglycerides, hepatic cholesterol levels, HDL/LDL ratios and increased fecal excretion of neutral sterols and bile acids. Morphological and metabolic changes were induced by consumption of algal products. These results suggest that red microalgae can be used as potent hypocholesterolemic agents, and they support the potential use of red microalgae as novel nutraceuticals.
Collapse
|
30
|
|
31
|
Rasmussen RS, Morrissey MT. Marine biotechnology for production of food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2007; 52:237-92. [PMID: 17425947 DOI: 10.1016/s1043-4526(06)52005-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine world represents a largely untapped reservoir of bioactive ingredients that can be applied to numerous aspects of food processing, storage, and fortification. Due to the wide range of environments they survive in, marine organisms have developed unique properties and bioactive compounds that, in some cases, are unparalleled by their terrestrial counterparts. Enzymes extracted from fish and marine microorganisms can provide numerous advantages over traditional enzymes used in food processing due to their ability to function at extremes of temperature and pH. Fish proteins such as collagens and their gelatin derivatives operate at relatively low temperatures and can be used in heat-sensitive processes such as gelling and clarifying. Polysaccharides derived from algae, including algins, carrageenans, and agar, are widely used for their ability to form gels and act as thickeners and stabilizers in a variety of foods. Besides applications in food processing, a number of marine-derived compounds, such as omega-3 polyunsaturated fatty acids and photosynthetic pigments, are important to the nutraceutical industry. These bioactive ingredients provide a myriad of health benefits, including reduction of coronary heart disease, anticarcinogenic and anti-inflammatory activity. Despite the vast possibilities for the use of marine organisms in the food industry, tools of biotechnology are required for successful cultivation and isolation of these unique bioactive compounds. In this chapter, recent developments and upcoming areas of research that utilize advances in biotechnology in the production of food ingredients from marine sources are introduced and discussed.
Collapse
Affiliation(s)
- Rosalee S Rasmussen
- Seafood Laboratory, Department of Food Science and Technology, Oregon State University, Astoria, OR 97103, USA
| | | |
Collapse
|
32
|
Hsiao TY, Blanch HW. Physiological studies of eicosapentaenoic acid production in the marine microalga Glossomastix chrysoplasta. Biotechnol Bioeng 2006; 93:465-75. [PMID: 16304671 DOI: 10.1002/bit.20761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the characterization of the microalga Glossomastix chrysoplasta, an eicosapentaenoic acid (EPA) producer in the Pinguiophyceae class, Chromophyte division. Growth conditions were selected to optimize algal growth and EPA production. EPA represented up to 30% of the fatty acid content of Glossomastix chrysoplasta, at levels of 22 mg EPA per gram dry weight. Up to 72% of the EPA was produced as glycolipids, components of structural lipids. The optimal growth conditions in continuous culture were found to be greater than 500 micromol photons/m(2) . s light intensity, 0.33/day dilution rate, pH 7.20-7.45, and a temperature of 18-20 degrees C. Macronutrient studies indicated the limiting nutrient to be bicarbonate or dissolved carbon dioxide, and consequently decreasing pH increased EPA production.
Collapse
Affiliation(s)
- Tracy Y Hsiao
- Department of Chemical Engineering, University of California, Berkeley, 94720, USA
| | | |
Collapse
|
33
|
Bauch A, Lindtner O, Mensink GBM, Niemann B. Dietary intake and sources of long-chain n-3 PUFAs in German adults. Eur J Clin Nutr 2006; 60:810-2. [PMID: 16482078 DOI: 10.1038/sj.ejcn.1602399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary intake of long-chain polyunsaturated fatty acids (EPA and DHA) was analysed, stratified by sex and age groups, using data from the German Nutrition Survey 1998. The median intake of both fatty acids combined (EPA and DHA) was 141 mg per day among women and 186 mg among men. In all age groups, women consumed less EPA and DHA than men, partly because of lower total intake. The lowest median intake was observed among women aged 18-24 years (84 mg) and the highest median intake among men aged 45-54 years (217 mg). The main sources of these fatty acids are fish (68%), eggs (12%), poultry (7%), meat and sausages (7%). The remaining 6% of EPA and DHA is supplied by bakery products.
Collapse
Affiliation(s)
- A Bauch
- Robert Koch Institute, Nordufer, Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
The optimum culture conditions of Monodus subterraneus UTEX 151 for eicosapentaenoic acid (EPA) production were at 25 degrees C, initial pH 7.0 and continuous illumination at 10 Klux light. The gas chromatographic data indicated that the fatty acid composition 20:5n-3 was predominant, at approximately 31%. In addition, 16:1, was the major monounsaturated fatty acid, while the 22:6n-3 was absent. Cultivation in 20 mM sodium acetate slightly enhanced the content of EPA from 31% up to 34% of the total fatty acids. Light micrographs of M. subterraneus UTEX 151 showed that the cell shape changed from spherical to ellipsoidal, as cell maturity was achieved. When the cells were in stationary phase, these became elongated spindle-shaped ellipses. TEM data demonstrated lipid body formation occurring in the thylakoid space of the chloroplast. Lipid body size varied with growth phase stage and they finally formed round clusters. The ultrastructure of M. subterraneus UTEX 151 vegetative cells of early and stationary growth stage showed the presence of chloroplasts, with many lipid bodies in the cell. Starch granules and lipid bodies occupied an--equal volume in the cell.
Collapse
Affiliation(s)
- Ching-Piao Liu
- Department of Biological Science and Technology, Mei Ho Institute of Technology, Taiwan, ROC.
| | | |
Collapse
|
35
|
Morita N, Nishida T, Tanaka M, Yano Y, Okuyama H. Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria. Biotechnol Lett 2005; 27:389-93. [PMID: 15834803 DOI: 10.1007/s10529-005-1532-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
When docosahexaenoic acid (DHA)-producing Moritella marina strain MP-1 was cultured in the medium containing 0.5 microg cerulenin ml-1, an inhibitor for fatty acid biosynthesis, the cells grew normally, but the content of DHA in the total fatty acids increased from 5.9-19.4%. The DHA yield of M. marina strain MP-1 cells also increased from 4 to 13.7 mg l-1 by cerulenin treatment. The same effect of cerulenin was observed in eicosapentaenoic acid (EPA)-producing Shewanella marinintestina strain IK-1 grown in the medium containing 7.5 microg cerulenin ml-1, and the cerulenin treatment increased the EPA yield from 1.6 to 8 mg l-1. The use of cerulenin is, therefore, advantageous to increase the content of intracellular polyunsaturated fatty acids (PUFA) in particular PUFA-containing phospholipids in bacterial cells.
Collapse
Affiliation(s)
- Naoki Morita
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan.
| | | | | | | | | |
Collapse
|
36
|
Macronutrients. Dis Mon 2004. [DOI: 10.1016/j.disamonth.2004.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Alonso DL, Maroto FG. Plants as 'chemical factories' for the production of polyunsaturated fatty acids. Biotechnol Adv 2004; 18:481-97. [PMID: 14538098 DOI: 10.1016/s0734-9750(00)00048-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are valuable products because of their involvement in several aspects of human health. Market demand for most PUFAs is growing continually and current sources are considered insufficient for satisfying this demand; alternative sources are actively sought after. Oilseed plants can be a potential source of PUFAs if they are appropriately gene engineered. Most of the basic tools for genetic engineering of oilseed plants for giving them the ability to produce PUFAs are already developed. Here we review the prospects of genetic engineering of oilseed plants for producing some valuable long-chain polyunsaturated fatty acids. Genetic transformation for GLA production seems to be a near-term possibility, but gene engineering seems considerably more difficult for the other long-chain PUFAs. Nevertheless, with the current rapid pace of biotechnological advancement, the remaining difficulties may be surmounted in the near future.
Collapse
Affiliation(s)
- D L Alonso
- Dept. Biología Aplicada, Universidad de Almería, Spain.
| | | |
Collapse
|
38
|
Allen EE, Bartlett DH. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1903-1913. [PMID: 12055309 DOI: 10.1099/00221287-148-6-1903] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA) have been shown to be of major importance in the promotion of cardiovascular health, proper human development and the prevention of some cancers. A high proportion of bacterial isolates from low-temperature and high-pressure marine environments produce EPA or DHA. This paper presents the sequence of a 33 kbp locus from the deep-sea bacterium Photobacterium profundum strain SS9 which includes four of the five genes required for EPA biosynthesis. As with other bacterial pfa (polyunsaturated fatty acid) genes, the deduced amino acid sequences encoded by the SS9 genes reveal large multidomain proteins that are likely to catalyse EPA biosynthesis by a novel polyketide synthesis mechanism. RNase protection experiments separated the SS9 pfa genes into two transcriptional units, pfaA-C and pfaD. The pfaA transcriptional start site was identified. Cultivation at elevated hydrostatic pressure or reduced temperature did not increase pfa gene expression despite the resulting increase in percentage composition of EPA under these conditions. However, a regulatory mutant was characterized which showed both increased expression of pfaA-D and elevated EPA percentage composition. This result suggests that a regulatory factor exists which coordinates pfaA-D transcription. Additional consideration regarding the activities required for PUFA synthesis is provided together with comparative analyses of bacterial pfa genes and gene products.
Collapse
Affiliation(s)
- Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA1
| | - Douglas H Bartlett
- Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA1
| |
Collapse
|
39
|
Chiou SY, Su WW, Su YC. Optimizing production of polyunsaturated fatty acids in Marchantia polymorpha cell suspension culture. J Biotechnol 2001; 85:247-57. [PMID: 11173092 DOI: 10.1016/s0168-1656(00)00346-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chlorophyll containing callus cells of Marchantia polymorpha are able to grow under dim illumination in the presence of an organic carbon source and retain the ability to produce polyunsaturated fatty acids (PUFA), including C(20) fatty acids. Highest PUFA production was achieved using 2,4-dichlorophenoxyacetic acid as growth regulator. Inoculum size, illumination intensity, organic carbon source, and ferrous ion are the major factors affecting PUFA productivity. Maximum PUFA productivity is attained under low light intensity, with a photon flux density ca. 20 micromol m(-2) s(-1). Optimal inoculum size and glucose concentration for PUFA production are 8-12% and 20-30 g l(-1), respectively. Ferrous ion can promote PUFA productivity by increasing the intracellular lipid content. Highest productivities for PUFA, arachidonic acid (ARA), and eicosapentaenoic acid (EPA) were 35.0+/-2.1, 6.7+/-0.4 and 6.6+/-0.4 mg l(-1) day(-1), respectively. PUFA production in the M. polymorpha culture is shown to be strongly growth-associated. Environmental stress (osmotic pressure) is ineffective in promoting PUFA productivity. Chitosan, an elicitor, also has no effect on intracellular PUFA content in cultured M. polymorpha cells.
Collapse
Affiliation(s)
- S Y Chiou
- Department of Agricultural Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan, ROC.
| | | | | |
Collapse
|
40
|
Willis WM, Marangoni AG. Biotechnological strategies for the modification of food lipids. Biotechnol Genet Eng Rev 2000; 16:141-75. [PMID: 10819078 DOI: 10.1080/02648725.1999.10647973] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- W M Willis
- Department of Food Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
41
|
|
42
|
Robles Medina A, Molina Grima E, Giménez Giménez A, Ibañez González MJ. Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 1998; 16:517-80. [PMID: 14538144 DOI: 10.1016/s0734-9750(97)00083-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Little information exists on recovering polyunsaturated fatty acids from microalgae; however, methods for concentration and purification of PUFAs from fish oil have been extensively reported. This review examines recovery and purification of microalgae derived PUFAs, but techniques developed for use with fish oil are also reviewed as being potentially useful for concentration and purification from microalgae. The two main techniques for concentrating and purifying-urea fractionation and high performance liquid chromatography-are discussed in depth and attention is focused on the process developed by the authors for obtaining highly pure PUFA. Other potentially useful techniques, such as supercritical fluid extraction and lipase-catalyzed processing are detailed.
Collapse
Affiliation(s)
- A Robles Medina
- Department of Chemical Engineering, University of Almeria, E-04120 Almeria, Spain
| | | | | | | |
Collapse
|
43
|
Botha A, Kock JL, Nigam S. The production of eicosanoid precursors by mucoralean fungi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 433:227-9. [PMID: 9561141 DOI: 10.1007/978-1-4899-1810-9_48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Botha
- Dept. of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | | | | |
Collapse
|
44
|
Singh A, Ward OP. Microbial production of docosahexaenoic acid (DHA, C22:6). ADVANCES IN APPLIED MICROBIOLOGY 1997; 45:271-312. [PMID: 9342829 DOI: 10.1016/s0065-2164(08)70266-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A Singh
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
45
|
Brown JL, Ross T, McMeekin TA, Nichols PD. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 1997; 37:163-73. [PMID: 9310851 DOI: 10.1016/s0168-1605(97)00068-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A reversible adaptive tolerance to low pH termed 'acid habituation' is demonstrated for five strains of Escherichia coli. Superimposed upon the intrinsic acid tolerance of individual strains, acid habituation significantly enhances the survival of exponential phase cultures exposed to a lethal acid challenge (pH 3.0), and minimises inter-strain variability in acid tolerance. The fatty acid composition of acid habituated, non-habituated, and de-habituated exponential phase cultures is also reported. During acid habituation, monounsaturated fatty acids (16:1 omega 7c and 18:1 omega 7c) present in the phospholipids of E. coli are either converted to their cyclopropane derivatives (cy17:0 and cy19:0), or replaced by saturated fatty acids. The acid tolerance of individual strains of E. coli appears to be correlated with membrane cyclopropane fatty acid content and, thus, it is postulated that increased levels of cyclopropane fatty acids may enhance the survival of microbial cells exposed to low pH. The results presented illustrate the remarkable capacity of E. coli to adapt to environmental challenges, and have significant implications for the survival of spoilage and pathogenic bacteria, and hence for food safety.
Collapse
Affiliation(s)
- J L Brown
- Department of Agricultural Science, University of Tasmania, Australia. brown
| | | | | | | |
Collapse
|
46
|
Nikkil� PA, Johnsson TSE, Laakso SV. Direct acid-catalysed transmethylation of lactobacillic acid in lactic acid bacteria. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf00765192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Botha A, Kock J, Roux C, Coetzee D, Botes P. An Isolation Medium for Gamma-linolenic Acid Producing Mucoralean Fungi. Syst Appl Microbiol 1995. [DOI: 10.1016/s0723-2020(11)80437-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Molina Grima E, Sánchez Pérez J, García Camacho F, García Sánchez J, Acién Fernández F, López Alonso D. Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol 1994. [DOI: 10.1016/0168-1656(94)90007-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|